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1 Introduction

According to Luce and Tukey (1964), additivity is basic to science. This simplifying structure
is present in many models of economic behavior starting with Leontieff (1947); see Deaton and
Muellbauer (1980) for examples. It is certainly hard to think of models that are not additive
in some sense. Additivity is also widely used in parametric and semiparametric models of
economic data. Our purpose here is to investigate a very general class of statistical models that
combine additive separability with an unrestricted functional form for the covariate effects;
this general class of structures are generically called additive nonparametric regression models.
Specifically, this paper introduces a new test for a specified form of additively separability in a
class of nonparametric regression models.

Let (Y, X) be a random variable with X of dimension d and Y a scalar and let the regression

function be m(z) = E (Y | X = x). We say that m(x) has a generalized additive structure if

G{m(z)} =c+ > ma(a) (1)

a=1

for some known ”link function” G, where z = (z1,...,24)" are the d-dimensional predictor
variables and m,, are one-dimensional nonparametric functions operating on each element of
the vector or predictor variables. It is convenient here to assume that E {m,(X,)} = 0 for
identification. This class of models includes additive regression when G is the identity and
multiplicative regression when G is the logarithm. For binary data it is appropriate to take G
to be the inverse of a cumulative distribution function like the normal or logit [this ensures that
the regression function lies between 0 and 1 no matter what values ¢ + 2%_, m,(z,) takes].
Compare this specification with the semiparametric single index model considered in Ichimura
(1993) in which the index on the right hand side of (1) is linear, but the link function G(-) is
unrestricted [apart from the fact that it is the inverse of a c.d.f]. Both models considerably
weaken the restrictions imposed by parametric binary choice models, but are non-nested. One

advantage of the additive model is that it allows for more general elasticity patterns: specifically,



while in the single index model 1, = (0lnm /0z;) /(0lnm /Ox) is restricted to be constant
with respect to x, for the additive model 7, can vary with z; and x) [although not with
other z's]. Note that (1) is a partial model specification and we have not restricted in any
way the variance or other aspects of the conditional distribution £(Y|X) of ¥ given X. A
full model specification, widely used in this context, is to assume that £(Y|X) belongs to an
exponential family with known link function G and mean m. This class of models was called
Generalized Additive by Hastie and Tibshirani (1991). In some respects, econometricians would
prefer the partial model specification in which we keep (1), but do not restrict ourselves to the
exponential family. This flexibility is a relevant consideration for many datasets where there is
overdispersion or heterogeneity.

Estimation in these models was first discussed by Stone (1985,1986) who showed that the
optimal rate for estimating m(-) is the one-dimensional rate of convergence e.g. n?/® for twice
continuously differentiable functions. In the statistical literature the additive regression model
has been advanced in the eighties largely by the work of Buja, Hastie and Tibshirani (1989) and
Hastie and Tibshirani (1991). Their estimation methods, called generically backfitting, rely on
iteratively computing one-dimensional smooths. Unfortunately, there does not exist a central
limit theorem for these procedures as yet. Recently, Linton and Nielsen (1995), Tjgstheim and
Auestadt (1994), and Newey (1994) have independently proposed an alternative procedure for
estimating m,, when G is the identity, based on integration of a standard kernel estimator. The
procedure is explicitly defined and its asymptotic distribution is easily derived: it converges at
the one-dimensional rate and satisfies a central limit theorem. This estimation procedure has
been extended to a number of other contexts like the generalized additive model [Linton and
Hérdle (1996)], to dependent variable transformation models [Linton, Chen, Wang, and Hardle
(1996)], to econometric time series models [Hardle and Yang (1996)], and to hazard models
with time varying covariates and right censoring [Nielsen (1996)].

The additive structure is important in terms of its interpretability and its ability to deliver

fast rates of convergence. Unfortunately, especially when G is not the identity, (1) is not terribly



robust. Specifically, if some relevant variables were omitted, the regression function on this new
set of variables does not satisfy (1). Similarly, if the wrong link function were used, additivity
would not be maintained. More generally, how do we know that the additive structure provides
a good approximation? In light of this we think it important to test (1) statistically. In
this paper we propose tests of additivity based on the integration method of estimation and
derive their asymptotic properties under sequences of local alternatives. Our tests are based
on similar principles to other smoothing-based tests for parametric null hypotheses against
general nonparametric alternatives, as for example in Eubank and Spiegelman (1990), Gozalo
(1993, 1995), Hérdle and Mammen (1993), Hjellvik and Tjgstheim (1995), Hong and White
(1995), Staniswalis and Severini (1991) and Zheng (1996), and to tests for omitted variables in
nonparametric regression such as Hidalgo (1994), Fan and Li (1996), Gozalo (1993, 1995), Ait-
Sahalia, Bickel, and Stoker (1994), and Lavergne and Vuong (1996). The contribution we make
is to apply these principles to testing the additivity hypothesis which may be important for
future applications. We examine four different tests and derive their asymptotic distributions
under sequences of local alternatives; this enables us to make a ranking of the tests according
to their power. We also provide some simulation evidence on the small sample properties of all
tests.

Notation. We use |-, to denote the L, norm of a function, e.g. ||gll, = (f g*(x)dr)/? and
9]l = sup, |g(x)|. The convolution between two densities K and L is denoted K * L(t) =

J K(s)L(t — s)ds. We use 2 16 denote asymptotic equivalence in distribution.

2 Hypotheses of Interest

Throughout we work with independently sampled data {(Y;, X;)}’; from a common popula-
tion, although we allow for considerable heterogeneity in the conditional distribution £(Y'|X).

We first provide the machinery to reformulate (1) in a convenient way for application of the



integration methodology. For any direction «, partition « = (24, z,) and X; = (Xai, Xa,), and

let p(-), pa(-) and p,(-) denote the marginal density of X, X, and X, respectively. Let

Palza) = [ G {m(ra,2a)} palra) e,

Co = | Pa(Ta)Pa(Ta)dTy, and let € = d~' 3", C,. Finally, let

o) = 7 { 3= palen) - (- vef.

where F' = G™'. When the additive restriction (1) is true,

0a(To) =ma(za) +¢ 3 Tu=c ; m(x)=m(x). (2)

Relation (2) is the basis of the so-called integration method of estimating additive nonpara-
metric models as exploited in Linton and Hérdle (1996).

We are concerned with testing the validity of the additive specification (1) of the regression
function m(z) over a subset of interest X C R? of the support of X. Thus the null hypothesis

to be tested can be reformulated as

Ho: m(z) =m®(z), alzcX, (3)

against the general alternative that Hy is false, which we denote by H,4. Both Hy and H, are

nested within the following general class of local alternatives:
H, : m(z) = m’(x) + 6, \(z), allz € X, (4)

for certain 6,. The null hypothesis (3) is given by 6, = 0, while 6, = 1 yields the global
alternative. We shall choose the rate at which ¢,, tends to zero to obtain a limiting distribution
with noncentrality parameter bounded away from 0 and oo. Note that the null hypothesis can
be equivalently restated as G {m°(z)} = S¢_, pu(74) — (d — 1)¢, for all € X, which suggests

specifying the local alternatives as



H, : G{m(zx)} = Z Ya(xq) — (d — 1)+ 6, (z), allz e X. (5)

However, for 6, small: a given A(z) in (4) is equivalent to having A\*(z) = A(z)G’ {m°(z)} in (5),
and a given \*(z) in (5) is equivalent to having A(z) = A\*(z)F'[G {m°(z)}] in (4). Therefore,

without loss of generality we can restrict our attention to (4).

3 Estimation and Test Statistics

3.1 Estimation

We provide two estimates of m(z): one that is consistent when (1) is assumed and one that is
consistent more generally. To estimate m(z) in the general case we will use the multidimensional
Nadaraya-Watson product kernel estimator

- n Iy Ky —X,)Y, 7wz

) = ) = ) )
where K, (z — X;) = [1¢_; kn(24 — Xoi) in which k,(-) = h=1k(-/h) with k(-) a one-dimensional

kernel and h = h(n) a bandwidth sequence. Under our regularity conditions given below, the
Nadaraya-Watson estimator satisfies
hi 1

in(z) = m(e) = N | (R)b(z), —gro(K)o(o) | (7)

where p,(k) = [uik(u)du and vo(K) = [ K*(u)du, while v(z) = o*(x) /p(z) , where o(z) =
var(Y|X = ) is the conditional variance function, and b(x) is the bias function (when ¢ = 2,
this is tr [0?m(x) /0x0x’ +2{0Inp(z) /0x } Im(z) /Ox']). Here, q is the order of the kernel.
Note that the (mean squared error) optimal bandwidth is of order n='/(4+4) for which the
asymptotic mean squared error is of order n~=2¢/(2¢+d) see Hirdle and Linton (1994), which

reflects the curse of dimensionality — as d increases, the rate of convergence decreases.



When m(-) satisfies the generalized additive model structure (1), we can estimate m(x)
with a better rate of convergence by imposing these restrictions. Following Linton and Hardle
(1996) we define empirical versions of ¢, (-), ¢4, and c;

Balwa) =137 G {Tny (Tar Xei) } (8)
i=1

and ¢, = n" ' X" | B (Xes) and ¢ = d~' ¢ _, €,. We then reestimate m(z) by

(o) = { 3 falen) — (- el )

Linton and Hérdle (1996) derived the pointwise asymptotic properties of ¢, (z,) and m(z):
under their regularity conditions,

_ AD hé 1

i o) = me) 22 N | S (Kol (K)o (1)
where bo(z) = F' [G {m(2)}] S bao(2e) and vo(z) = F' [G {m(z)}]* Tu Va0 (Ta) With bao(za) =
JG {m(z)} b(z)ps(z4)dzy and veo(zs) = [G {m(m)}2v(m)p;(xg)dxg.2 By choosing hy o
n~ Y24+ one can achieve the optimal rate of convergence i.e. mean squared error of order
n~24/2¢t1 which is independent of the dimensions d. One feature of the Linton and Hardle
(1996) analysis was that for large dimensions they used bias reduction in the “directions not
of interest”. This added flexibility is important (at least in the technical analysis) for large
dimensions when the objective is to obtain the optimal one-dimensional rate of convergence. In
this paper we are concerned with the properties of the test and so will take a slightly different
approach: indeed we shall chose the same kernel for both procedures, but allow k& to be higher

order throughout.

2This result does not assume (1), but when (1) is true m®(z) = m(z) and the target is actually m(z).



3.2 Test Statistics

The first proposed test statistic is, rather like a Hausman test, based on the mean squared
difference between the unrestricted nonparametric estimate and the restricted estimate over

the sample points

P =LY (X)) — i (X)) 7(X), (11)

where 7(-) is a prespecified nonnegative weighting function used, for example, to eliminate
or ameliorate boundary problems. This test relies on the fact that 7 consistently estimates
= [{m(z) — m°(z)}* n(2)p(x)dz, which is zero if and only if the null hypothesis is satisfied.

We also consider testing in the G-scale using the statistic

n

7 =0 U [G{mR(X;)} — G {7, (X))} 7(X;) (12)

=1

and to accommodate both scales at once we shall write

nlz";@{mh 0} — Q {7y () 12 (X)) (13)

for some known function ) [we shall on occasion drop the additional ) subscript in @og].
There are a number of alternative paradigms for testing additivity that have been used in
other nonparametric contexts. T'wo tests that have some analogy with a Lagrange Multiplier

test are

0] = %éﬁz {1 (X5) — Mgy (X3) } 7(X5) (14)

considered, among others, in Hong (1993) (with 7(X;) o< ps(X;)), and the quadratic form

Dy = nzhd Y'Y K <X X >u2u]7r(Xi)7r(Xj), (15)

i#]



where u; = Y; — my (X;) are the additive (restricted) residuals. Both these tests look for
correlations between the restricted residuals and suitable functions of X. The latter type of
test has been proposed in Zheng (1996) in the context of testing a parametric null against a
nonparametric alternative, and in Fan and Li (1996) and Lavergne and Vuong (1996) to test for
nonparametric exclusion of variables. Another paradigm is motivated by the likelihood ratio
method of parametric statistics. If the errors were homoskedastic Gaussian, we might consider

the difference in the sum of squared residuals

n
Oy =n 1Y (W — @) m(Xy), (16)
i=1
where u; = Y; — mp(X;). In situations where Y is subject to support restrictions it may be

appropriate to use other criteria. Our application below is to binary data for which the following

criterion suggests itself

agb:nfli; [}an{%}%—(l—}@)ln{f:g—%}] 7(X,). (17)
A version of this statistic has been proposed in Azzalini, Bowman, and Hardle (1989) as a device
for checking parametric models. See also Staniswalis and Severini (1991) for some theoretical
analysis.

Finally, Hérdle and Mammen (1993) consider a modification to (11) that replaces the null
model estimate with a kernel smoothed version of it. The purpose of this is to eliminate
smoothing bias terms associated with the unrestricted estimation (which are present even under
the null hypothesis). This is really a version of the trend removal procedure whose study was

initiated in Stone (1977). It can be readily adapted to the current context. Specifically, consider
in place of My (X;) = S, wiYe (with wie =n 'K, (X; — X,)/pr(X;), see (6)) the estimator

My (X)) = Mo (X;) + Y wietiy.
£



This has bias essentially like m,,(X;) under the null hypothesis [so you get a cancellation of

bias terms]. One can also make the adjustment in a multiplicative fashion, i.e.
iy (X5) = Tng (X5) X D wjemm—ros

see Jones, Linton, and Nielsen (1995) for discussion. Rather than analyze versions of &y and
&1 with m replaced by mi® or mi® we point out that they behave statistically rather like @,

(after interchanging summations), which also has no bias from the unrestricted estimation.

4 Asymptotic Properties

The test statistics @;, 7 = 0,...,3 have very similar statistical properties; namely, after location
and scale adjustment they are asymptotically standard normal. Let
_ nh?P0; —

Tyj = V12

nj

. j=0,...,3, (18)

where p,; = E{nhd/Q@j |H0} and V,,; = var {nhd/Q@j |H0}, j =0,...,3, or asymptotic ap-

proximations thereof. We will show that

T,; = N(0,1), j=0,...,3, (19)

under the null hypothesis Hy, while under fixed alternatives Hy, T,,; —, oo. Therefore, a
consistent test is provided by T,,; (or suitable approximations thereof). A natural rejection rule

here is then

reject at level av if T),; > 24, (20)

10



where ®(z,) = 1—q, that is, one-sided.? Given (20), Pr(reject |Hg) — «, while Pr(reject [Hy ) —
1.

4.1 A Central Limit Theorem

Our strategy is as follows. We first state and discuss our regularity conditions. We then give the
relevant location and scale quantities for @;, j = 0,1, 2,3 and provide a theorem that states the
asymptotic properties of @; under the sequence of local alternatives. We provide two methods
for obtaining critical values by either (a) explicitly estimating the unknown quantities or by
(b) applying the bootstrap. Finally, we argue that the main result holds for the feasible tests.

We work throughout with a common kernel k& but allow for two bandwidths h and hy. We

shall assume that:

ASSUMPTION A: (a) The random sample {Z; = (Y, X!), Yi € R, X; € RY}_,, is inde-
pendent and identically distributed. (b) On the compact set X, the variance function o*(X;) =
var(u;| X;) is Lipschitz continuous and E(exp(tu;)|X;) < oo almost surely for some t in a
neighborhood of 0, where w; =Y; —m(X;). (¢) The regression function m(-) and the marginal
density p(-) [with respect to Lebesque measure| of X are both q times continuously differen-
tiable on X. (d) The design density p(-) is bounded away from zero on X. (e) The weighting
function m: X — Ry is bounded continuous and positive. (f) The functions G and F have
bounded continuous q’th derivatives over X. (g) The kernel function k(-) with [k(u)du =1
is of bounded support, symmetric about zero, Lipschitz continuous, and of order q — that is

Ju'k(u)du=0,i=1,...,q— 1. (h) The alternative function \ : X — R is continuous.

3We do not consider two-sided rejection. Although in the Hausman test, for example, one can achieve power
against some root-n alternatives by this method, one loses power against other alternatives and in a minimax
sense one is better off with the one-sided rejection. See Gourieroux and Tenreiro (1994) for a comparison of

these two rules.

11



These assumptions are slightly stronger than those given in Linton and Héardle (1996). They

provide sufficient conditions for the uniform convergence of py(z), 74(z), and my,, so that

5’%) +0,(h9), (21)

where 7(z) = m(z)p(x), see Hardle and Mammen (1993).* Let o, = max {||pr, — pll., |7 — Il } -

180 = ple IFn =7l = O, (

In our proof given in the appendix we make a number of approximations: specifically, in the
expansion of (13) we drop terms that are cubic in m — m; also, there is an error term in (10)

of order ¢? in probability. We end up with an approximation of the form

where the random variable &} is much more tractable: its moments can readily be found and
a degenerate U-statistic central limit theorem can also be applied to it. A sufficient condition

enabling us to drop the O,(g3) term from the analysis is that for some € > 0,

1
nenhd/QW —0 and nh¥?h% — 0.
The first condition requires that n'=2>h?¢ — oo and the second condition requires that 3g+d/2 >

2d, i.e. ¢ > d/2. Under these restrictions it is possible to provide formulae for p,; and V,;
and to carry out the test. However, some of the terms [in p,o particularly] depend on the
bias function of both the unrestricted and the restricted estimates, both of which are rather
complicated quantities to estimate. We therefore impose a further restriction that nh%/2h% — 0
which makes these terms of smaller order. This requires that ¢ > 3d/4.

Provided hg < h, the restricted estimator has bias magnitude less than or equal to that

of the unrestricted estimator but variance considerably less [this is the result of the additional

4See also the recent paper by Masry (1996) which gives the sharp rate of uniform convergence for local

polynomial estimation with dependent data under weaker conditions.
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averaging]. In fact, the bias terms may tend to offset each other and in any case, by virtue of
the higher order kernels, the bias terms do not appear in the limiting distribution of the test.
So although the restricted and unrestricted estimators might nominally have the same rate of
convergence [when h = hgl, the test statistic works because of the difference in the stochastic
terms. Note that the larger the dimensionality, the greater the difference in the stochastic
terms between the two estimators and perhaps the easier it is to discriminate between them
statistically. This is apparently in conflict with the usual belief that high dimensions lead to
poorer performance.

Before stating the main result we give the location and scale adjustments for the various

test statistics. These are

o = KPS WAXIRK) ¢ Ve = 200 33 g (X (X R(X)R(X,)
=1 i1 it
1 = hd/22wii02(Xi)7T(Xz-) ; 1—2hd22w 0 (X;)oH (X)) m (X7 (X;)
=1 i#j
2 X — X:\?
Ve = = Y5 K (S ) (X0)R(X)P (G
n2h e h
Vas = 2093 4507 (X0) o (X)) m(Xo)m (X)),
7]
where 7(z) = 7(z)Q'[m(2)]?, wy; = n ' Kn(X; — X3)/on(X;), pji = Sewjewie, and vy =

—(pji — 2wy;). Note also that p,, = 0, while since w3 = 2&; — @y (with @ = 1), we have

Hn3 = 2,“111 — HMno-

THEOREM 1. Suppose that Assumption A is satisfied and that the sequence of local alterna-
tives (4) holds with 6, = (nh?)~Y2. Suppose that for some ¢ > 0, n'~*h*? — oo, where d > 2
and q > 3d/4. Finally, suppose that for some ¢ > 0, h\¥2=¢ < hq < h. Then

sup ‘Pr ni — 8,;(A) < 2) — @(z)‘ —0, 7=0,1,23, (22)

—oo<z<x0

13



where ®(-) is the standard normal distribution function and the noncentrality parameters are

App(A) = /)\2 p(x)dz/VY? /)\2 p(a)dz VY2
BN = [ N(a)r(a)p(a)da/ Vi /AQ p(a)dz/ V4

REMARK. When d = 2, there is insufficient difference between the magnitudes of the
variances of the restricted and unrestricted estimators for the above theorem to be valid as
stated. In this case, one must also include additional terms in u, coming from the stochastic

part of the restricted estimator.

The tests have some power against all alternatives of magnitude (nh%2)=1/2,

Furthermore,
their local asymptotic powers are constant with respect to the data generation process given the
value of the quantity [ A\2dpu [for a certain measure p that varies somewhat from test to test].
This is in accord with the common sense requirement that power should increases with the
magnitude [in this case a certain Lo-norm]| of departure. We now compare the tests according
to their power. By appropriate choice of 7, the differences between A,o(A) [for G = I| and

Ani(N), 7 =1,2,3, only arise form the differences in the kernel constants in the variances.> We

have essentially
Vag = 2|15 x [ ot @)n(e)dz, j=0,1,2,3,

where Ko = K * K, K1, Ky = K, and K3 = Ky — 2K;. In fact,

5The local power of the test based on the transformed differences &g varies with Q. We are ignoring the
difference between 7 and 7 and the fact that V,,5 should have an additional 72(z)p?(z) inside the integral, which

counters the additional 7(z)p(z) in the numerator of the noncentrality Aya(\).

14



2 2 2
[[1Kollz < [l < 1Kl

which suggests that @y is the most powerful test, at least in large samples.

4.2 Implementation of the Tests

There are two alternative ways of carrying out the test: one based on the asymptotic critical
values and the other on the bootstrap. In the first approach we must replace u, and V,, by

consistent estimators fi,, and Vn. Define the relevant quantities

oo = WP WRER(Y,) 5 Vae =200 YN R@ERXR(Y,)
j=1i=1 i£j

= WY wdn(X) 5 V=200 S whaae(X)m(X;)
i=1 i#j

Vo = = z#zx( ) BEr(XP)

i]

Vs = 2hdzz QZU?U§7T )m(X;),

i#]

where 7(z) = 7(z)Q'[m(x)]?; for the test &3, take fipz = 2fin1 — fino. Now let

~ W/hd/Q(D' — ﬁn ]
T =", §=0123 (23)
nj

We then apply the rejection rule (20) with fnj replacing 7},;. The results of Theorem 1 apply to
fnj provided an is consistent and fi,; are consistent at a rate better than h~%2 In fact, since
tn; and V,,; are averages and do not involve higher derivatives of m, one can estimate these

quantities root-n consistently with bias reduction and under sufficient smoothness conditions.

15



The asymptotic approximations here can work poorly because there are many terms of
slightly smaller magnitude that have been omitted, as pointed out in Hjellvik and Tjgstheim
(1995). To mitigate this problem, our second method relies on the bootstrap to compute
critical values. This can be done for the unadjusted statistics @;, which is much simpler to
implement, and for the asymptotically pivotal statistics fnj, which ought to have better size
according to standard bootstrap theory, see Horowitz (1995). There are two general approaches
to the bootstrap here depending on whether the support of the dependent variable is restricted
or not. When it is not subject to restrictions, we might proceed as in other nonparametric
regression problems allowing for heteroskedasticity by using the wild bootstrap. This consists

of the following steps:

1. Construct residuals @; = Y;— my (X;), i =1,...,n.

2. For each index i, randomly draw (with replacement) the bootstrap residual u; from

an arbitrary distribution F¥ such that for Z ~ FWV,

EF;;VVZ - 07 (24)
EpwZ® = (;)*, (25)
Epw Z° = ()", (26)

3. Generate the bootstrap sample Y;* = my,: (X;) + uj, for i = 1,...,n for some bandwidth

he.

4. Use the bootstrap sample {(Y;*, X;)}i_, to calculate the quantities mj and mj_ and thus
the bootstrap test statistics, @* and f;;, in identical fashion to the way my,, mp,, @ and

~

T,, were computed from the original sample.
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5. Repeat steps 2-4 B times and use the B values of @*, and f;f, to construct the empirical
bootstrap distribution functions, e.g. Fi(r) = B 1Y 1{&; < 7}. Use the empirical

bootstrap distribution function to calculate empirical critical values or p-values.

This general proposal was first made in Wu (1986) in a parametric context who noticed how
the naive bootstrap can fail to approximate the distribution of the linear model least squares
estimators in the presence of heteroskedasticity. The wild bootstrap for nonparametric kernel
regression was used by Hérdle and Marron (1991) to construct simultaneous error bars. Note
that it is necessary to take a larger bandwidth in the resample, as was suggested in Hardle and
Marron (1991), even though we have no requirement to approximate the bias of m or m well

because of our bias reduction.® In the appendix we establish the following result:

THEOREM 2. Let the same assumptions as in Theorem 1 hold with 6, = 0 and suppose
that ho < hy < h and that for some € > 0, h(2ad/2)/2at1)=¢ < p*  Then, we have along almost

all sample sequences,

sup | Pr*(1F < z) — ®(z)| — 0,

—oo<z<x0

where Pr* denotes the bootstrap distribution of Y7*,. .., Y [{(X;,Y;)},.

When the dependent variable is subject to support constraints, e.g. it is binary, the above
approach will not work well since one can obtain data inconsistent with the support constraints.
Our second approach is appropriate when the dependent variable is binary, i.e. Pr(Y; = 1|X; =
xz) = m(xz), although the main idea can be extended to other types of limited dependent

variables. In this case, we recommend generating the bootstrap sample {Y;*}? | by sampling

6The relevance of this issue in small samples is briefly addressed in our Monte Carlo simulations.

17



from a Bernoulli distribution with Pr(Y;* = 1|X; = z;) = mp,(z;). The bootstrap steps are

therefore:

L. Calculate my«(X;), i = 1,...,n, for some bandwidth hg.
2. Construct Y;* as a random draw from a Bern01llli{mh3(Xi)} Jfori=1,...,n.

3. Use the bootstrap sample {(Y;*, X;)}?” ; to calculate the bootstrap test statistics, @* and

T . in identical fashion to the way @ and T,, were computed from the original sample.

4. Repeat steps 2 and 3 B times and use the B values of &*, and T; , to construct the
empirical bootstrap distribution functions, e.g. F¥(r) = B! 3P, 1{&; < 7}. Use the

empirical bootstrap distribution function to calculate empirical critical values or p-values.

The same result can be obtained for this bootstrap procedure as was given in Theorem 2.

5 Numerical Results

5.1 Empirical Illustration

We first applied our procedures to the study of migration between East and West Germany
using data from the 1991 Social and Economic Panel survey conducted by the Deutsche Institut
Wirtschaftsforschung. This data were used in Linton and Hérdle (1996). The binary dependent
variable to be explained is whether the individual intended to migrate from East to West
Germany at this time. The four continuous explanatory variables are: age, household income,

rent, and a subjective measure of personal satisfaction on a scale of 1 to 10. Our sample consists
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of 315 individuals who all had at least Abitur education” and had some friends in the West. Of
these, 172 had the intention of leaving the East. Linton and Héardle (1996) presented estimates
of the components m,(-); we now provide a test of whether their estimates can be interpreted
as being additive in the logit-scale.

We used B = 200 iterations to compute the bootstrap critical values. The unrestricted
bandwidth was chosen by cross validation to be A = 0.8, while in the implementation of the
restricted estimate we adopted precisely the Linton and Hérdle (1996) method.® Table 1 shows
the empirical p-values based on both asymptotic and bootstrap approximations for a number
of the tests. We fail to reject the null hypothesis of additivity at 10% significance levels using
any of the tests.

**¥* TABLE 1 HERE ***

5.2 Simulations

The simulation study compares the performance of the different test statistics in a setup deter-
mined by the Linton and Hérdle (1996) dataset. The model used to generate the data under
the null was

Y; ~ Bernoulli {my,, (X;)}, (27)

where myp, (X;) = A {E—i— S Ma (X,)} is the estimate obtained in the previous section im-
posing additivity with A (-) the logistic distribution function.
The model under the alternative was created by adding an interaction term to the additive

null model. Linton and Hérdle (1996) found the probability of migration to West Germany to

“i.e. they graduated from High School.
81n fact, they chose as pilot

Die1 lho (Ta — Xaj) Lyg(Ta — Xaj)Y;
D i1 bho (T — Xai) Ly (Ta — Xai)

where (5, (-) = hg *€(hy*-) and £(-) is a one-dimensional Gaussian kernel, while Ly(-) = g~ (¢~ Y L(g~!.) and L(:)

mho (‘T) =

is a d — 1-dimensional Gaussian kernel; hg = 0.5 and g = 1.0 are scalar bandwidths.
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decrease with X; = age and X, = personal satisfaction, and increase with Xy = income and
X3 = rent. The interaction term was constructed to enhance these individual variable effects.
Specifically,
Y; ~ Bernoulli [A {E+ i Mo (Xi) +2 sin(2[i)H ) (28)
a=1

where I; denotes the interaction log{ Xo;(X3; + 5)}/{X1:(X4 + 0.5)} (after location and scale
normalization).

The Monte Carlo distributions of the tests under the null and alternative were obtained
from 200 replications of (27) and (28), respectively. The computational requirements of the
restricted estimator my, (-) prevented us from using in the simulations the same sample of
n = 315 observations used in the empirical illustration. Instead, in each iteration we drew
random samples of size n = 50 and 100 from the “population” of 315 values of X; and its
corresponding my, (X;), and then used these to generate the binary variable Y; as in (27) and
(28). To satisfy the assumptions of the test, we used a Gaussian (mixture) kernel of order
q = 4, and bandwidths h = an=(17)/24 (¢ = 0.01) for my, (-), and hg = an~'/® for My, (-), with
a=1.6, 2.0, and 2.4. This range of the constant a includes the interval where the cross-validated
estimates fell in a separate study. The weighting function 7 (-) was chosen to be zero for the

5% of the observations with the smallest density estimate py, (X;) values, and one otherwise.
*4% ADDITIONAL TABLES AND FIGURES HERE ***

Figures 1 and 2 show the boxplot for the empirical distribution of the statistics @;, for
j=0,1,2,3 (p with @ = 1), and their normalized counterparts fnj, j=0,1,2,3.9 In each
figure, the three boxplots on the left correspond to the distributions under the null for the
three bandwidth constants a = 1.6,2.0, and 2.4, respectively. The three boxplots on the right

of each figure correspond to the distributions under the alternative for the same values of a.

9The tests &y and TnO with () = G are denoted Wyg and fnog, respectively. The results for the Likelihood

Ratio—type test W3, are basically the same as for &3 and are omitted.
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It is easy to see that the distribution of each test has a different sensitivity to the bandwidth
choice. The figures also illustrate the location shift of the distributions under the alternative.
Table 2 presents the percentage of rejections by @; and T n; of the alternative hypotheses based
on the 5%, 10% and 20% empirical critical values (ECV). The Hausman-type tests, &y and
Wog, and the LM-type test &y (as well as their normalized versions) have power against the
alternative even for n = 50. The power of these tests increases with the bandwidth size. The
highest power among non-normalized tests is achieved by @y, and by Too among normalized
tests. In contrast, the LM-type test &; and the error sum of squares type test @ (as well as
their normalized versions) have very little power against this alternative at these sample sizes.
Their power decreases with the bandwidth size.

Table 3 presents the percentage of rejections by the normalized tests fnj of the null and
alternative hypotheses based on the 5%, 10% and 20% asymptotic critical values (ACV). The
size of Tnj,j =0,1,2,3, based on the ACV is quite poor for all tests and bandwidths at this
small sample sizes with the exception of Ti,0 which are reasonable for n = 100. The best power
corresponds to the two Hausman-type tests an and fnog for n = 100.

Given the poor approximation of the asymptotic N(0,1) distribution to the distribution of
most of the normalized tests, we investigated the bootstrap approximation for binary dependent
variables described above. To this effect we calculated my (X;) with A§ = 1.1h¢ and let Y;* be a
random draw from a Bernoulli {ﬁhz (X,»)}, fori =1,...,n. The bootstrap sample {(Y;*, X;)};,
was then used to calculate the bootstrap statistics W} and T wisJ =0,1,2,3. In each Monte Carlo
iteration, B = 100 bootstrap samples were used to compute the bootstrap p—values. Table 3
presents the percentage of rejections of the null and alternative hypothesis for n = 50 at 5%, 10%
and 20% significance levels. As before, @y, &y, and &y (as well as their normalized versions)
exhibit similar behaviour: the percentage of rejections appears to increase with the bandwidth
size both under the null and the alternative. For @; and @3 (as well as their normalized versions)
the opposite is true. The best size is achieved at the bandwidth constant a = 2.0 for @;, and

Tnj j=1,2,3, and at a = 2.4 for the Hausman-type tests. For these “optimal” bandwidths,
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the highest power based on the bootstrap critical values is attained by the Hausman-type tests.

In general, though, power is much lower than when using ECV.

6 Conclusion

Perhaps the two most important issues for the implementation of our test are the selection of
bandwidths (we have at least three to choose: h, hg, and hf) and the quality of the asymptotic
(or bootstrap) approximations being used. With regard to the latter issue, there is clearly a
difference between the results predicted by the asymptotics and those we have experienced in
our simulations. Nevertheless, some of the tests performed quite reasonably with samples as
small as n = 100; in practice, we would have much larger sample sizes and we expect our tests
to perform somewhat better. Although it is widely believed that the curse of dimensionality
worsens performance in estimation, in our testing problem we think this is not necessarily so
because the larger the dimensionality the greater the difference in the null convergence rates
of the restricted and unrestricted estimates. Provided bandwidth is chosen appropriately, it
should be possible to maintain the same trade-off between size distortion and local power
regardless of dimensions, see Fan and Linton (1997) for further discussion. The bandwidth
issue is notoriously difficult to resolve even in much simpler situations. Nevertheless, simple
rules for h and hg (derived from cross-validation or the ocular method) should work tolerably

well, while taking h{ just a little larger than hy seems to work fine.

7 Appendix

Let Ejx, denote expectation conditional on X; and let E|x denote expectation conditional on

Xi,...,X,. We also use the symbol ~ to denote asymptotic equivalence in probability, thus
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X, ~ Y, + Z, means that X,, = Y, {1+0,(1)} + Z, {1+ 0,(1)}. Linton, Chen, Wang, and
Hérdle (1996, Lemma 1) showed that

[0 — || < 17 — ml . + Op(n72). (20)

Proor or THEOREM 1. (i) We first examine &y. By the Mean Value theorem,
n s 1 . . s 2
> [Q [ (X5} () = g (X))} + 5Q {7 (X))} {7 (X)) — 7 (X)) Y| (X)),
7=1
where m*(X;) lie between my, (X;) and mp, (X;), j = 1,. .., n. Similarly, expand out Q' {m, (X;)}
around Q' {m(X;)} . Then, using Cauchy-Schwarz inequality, the boundedness of Q)(-), and the

uniform convergence results (21) and (29), we obtain

o ’IZQ{m Y () = g (X))} m(X5) + Op(e})

as in Linton and Hérdle (1996). Write

M (X5) = Ting (X;) = {n(X;) = m(X;)} + {m(X;) = m°(X;) } = (A, (X;) = m*(X;) }
= (X)) + (X)) — a3(X;)

and 7(X;) = 7(X;)Q' {m(X;)}*. Some of the calculations below are best presented after g, (X))

and ¢3(X;) have been replaced by their linearized approximations. We have

h -1
@1 (X;) ~ q! — g (K)b(X;) + Zleh (Xi =X )P(Xj)’

see Hardle (1991). Similarly, ¢3(XX;) can be decomposed into a stochastic and a deterministic

j=1,...,n, (30)

component: following Linton and Hérdle (1996), we have
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q

n_ h ‘
X;)=n? ZkhO(Xj, Xi)u; + q—?uq(kz)bo(Xj), j=1,....n, (31)
— !
where the one-dimensional ’equivalent kernel’ is

Pa(Xai)

Eho (Xja X) F G {m Z kho XM)G/ {m(Xaj’ Xgi)} p(X - X ) ‘
ajyr N ai

The approximation errors in (31) and (30) are of small enough order to be ignored; specifi-

cally, substituting the right hand sides of (31) and (30) into @y we get
Wo = n” Z {UL(X)) + Ua(X;) + Us(X;) — Ua(X;) = Us(X;)}* 7(X5), (32)

where

Ui(X;) = n7' S Kn(Xi — Xj)ui/p(X;),
Ua(X;) = ‘Gig(R)b(X;)

Us(X;) = 6nA(X))

Us(Xg) = n " 0 kg (X5, Xi)ui,

Us(X;) = Sp,(k)bo(X;).

To establish the result we will show below that:

{nhd/?n—lef(Xj uno} / Vi = N(0,1) (33)

=1

nh?n IS UZ(XE(X;) = AneVid® + 0p(1), (34)
j=1
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while the other terms are of smaller order, specifically:

n,hd/Qn_lilUf(Xj)ﬁ(Xj) = 0,(h*?n3") (35)
nhd/Qn1§:U1();j)U4(Xj)f(Xj) = O,(h%*n 1) (36)
nhd;iniUg(Xj)ﬁ(Xj) = O,(nh%?n%) (37)
nhd/Qn_li{Ul(Xj)—U4(Xj)}U2(Xj)?(Xj) = O,(n'?n??p9) (38)
nh®*n 1220’2 Us(X;)T(X;) = Op(nh??h36,). (39)

Direct calculations similar to those we will use to prove (33)—(39) show that the other elements in
(32) have means, variances and covariances with smaller order of magnitude, and can therefore

be ignored. The result for @y then follows from (33)-(39).

Proof of (33): Write

nh®/?p-1 Z U(X;)7(X;)

- —1Zn‘1hd/QZKhX X;)uiw(X;) /1 (X;)

j—l =1
+n”! Z n~'hY?y DK (Xs = X5) K (X — Xy uium(X;) /p*(X;)
=1
= A+ Ay,

say, where Ay =n 'h 2" wla,; and Ay =n th Y2 3 uiugby, with

o hdz <X X)ZQ(())%))

. nhdZK<X X>K<X52Xj) 72(())%‘)) (i £0).
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Note that b,;, behaves rather like a d-dimensional kernel, say L((X; — X,)/h) [forgetting the
order one quantities 7(X;) and p(Xj), it is really an empirical convolution of K with itself], in

the sense that E(b ;) = O(h?) for all t > 1, while E(a! ;) = O(1) for all t > 1. We have

i=1

= pno + OP(1)7

var|x(A;) = W X —,ZE\X [{U -0 (Xz)}? dp;

= 0,(n"'n7Y).

Consider Ay mnow. Let Wi, = n'h™%?uub,e (i # ¢) and zero else, we write Ay =
S 31 Wi, which is a degenerate U-statistic, since FE (Wi, u;)) = E(Wig|ue) = 0. We
can therefore use either Hall’s (1984, Theorem 1) or deJong (1987, Theorem 2.1) central limit
theorems for i.i.d. and in.i.d. degenerate U-statistics, respectively. In particular, following
deJong (1987), {var(43)}™* A4, — N(0,1) in distribution if

n

1r£1?<>7<12\far W) /var(Az) — 0, (40)
and
E(A})/{var(A4,)}* — 3. (41)

The proofs of (40) and (41) follow identical steps to those used by Hérdle and Mammen (1993,
p. 1943) to prove their conditions (7.7) and (7.8). First, we calculate

var|x (Az) = Ex (ZZM/]én) ZZ E|X(2I/Vi£n)2 =4 Z E\X(Wmn)

i=14=1 [

Straightforward calculations yield Ejx(W3,) = o2(X1)o?(X2)b2,n 2h™?, where E(b2,,) =
O(h%). Condition (40) follows directly from the fact that var(W;,,) < en=2h~? for some finite
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constant ¢ due to the boundedness of K and the other conditions on p, 7, and ). For the proof

of (41) we refer the reader to Hardle and Mammen (1993, p. 1943).

Proof of (35): The proof for this stochastic element of the restricted estimator follows

identical steps to those used above to show (33). Firstly, we have
o2
Eix {Uf(Xj)} =02k, (X, Xi)o?(X5).
i=1
Then note that kp, (X}, X;) really does behave just like a one-dimensional kernel, i.e.

Bix, {Fno (X5, X)g(X) } = 0,(1) 5 By, {Fny (X, X0)g(X0)} = O, (h5")

for integrable functions g(-). Therefore, taking expectations conditional on X; and using iden-
tity of distribution, we have Ex {UZ(X;)} = Op(n 'hy') which implies that the mean of
nh®2n~t Y UR(X;)7(X;) is of order h*/?hg' = o(1) [its variance is of order h?/hq].

Proof of (36): We have by identity of distribution:

1By {02 (X0)En, (X5, X2) K (X — X1) |
n p(Xj) .

Eix, {UL(X;)Us(X;)}

We must essentially examine the covariance between ky, (X, X;) and Kj,(X; — X;). Letting

I =hy'h™ [k[(Xa; — Xa1) /ho] K[(X; — X1) /h]p(X1)dX;, we have

Xoi — X, Xoi — X, Xoi — Xg
] = halh_d/k’< Oé]ho al)k( Oé]h a1>K<—7T—l>p(Xl)Xm

Xoi— X\ -/ Xui — X
_ holhl/k( - 1) k;< - 1>K(ug)p(xa1,xg + ugh)dugd X o,

by the change of variables (Xy; — Xa1) /b — uq. Here, K(ty) = [lgza k(t3). Thus we can

restrict our attention to integrals of the form

Xoj — Xa Xoj — Xa
I:halh_l/k( jh 1> k( ’ h/ 1>g(XCKl)dXCt1
0
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for suitable bounded continuous functions g(-). We make the change of variables (X,; —

Xa1) /ho — ug to write

7] = K™

/ k(hoa /h)E(ua)g(Xa; + tuaho)dua

< bt sup k()| suplg(@)] [ [k(u)ldu
which is O,(h™!) by the boundedness of the suprema and integral. Therefore, the result is

established by substituting back into (36).

Proof of (37): Direct calculation using the magnitude of Uy(X;). A similar result with

h§ replacing h? holds for the analogous term involving Us(X;).

Proof of (38): Rewrite the left hand side of (38) as

b2 hqﬂqq_(!k') % i“ {% > {%}Xﬂ — Fona (X5 Xi)} b(Xﬂf(Xj)]

by interchanging the order of summation. By direct calculation of the first two moments [first

=1

conditioning on X, ..., X,],
1 & 1 b(X;)7(X;) ]
S i = Ky (X; — X B Sl /A el A — 1
nl/2 ;U {”921 n( i) (%) | O,(1)
N [ N
nl/2 Zul |:; Zkho (X5, X)b(X)m(X5) | = Op(1),
i=1 =1 |

so that (38) is as claimed.

Proof of (39): Substituting for Uy(X;) and Us(X;) we get

nhd/Qn—l§2U2(Xj)U3(Xj)f(Xj) = nhd/th(Sanq—(!k)n_léb(Xj))\(Xj)ﬁ(Xj){l—I—Op(l)}

= O,(nh??n1s,)
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by the weak law of large numbers for independent random variables.

Proof of (34): Substituting for Us(X;) we get

nhPn N U X)R(X;) = nh®282n 1Y N(X)T(X;)

j=1 7j=1

— nhd2g? / N2 (2)7(2)p(x)dz + 0,(1)

= Ao - VP +0,(1)

by the weak law of large numbers for independent random variables. [
(i) We now deal with the test ©; = n™' S0, {mn(X;) — mp, (Xi) } a7 (X;), where

;o ~ u;+ Us(X;) — Ul(Xi) — Us(Xi)

mp(X;) — mpg (Xi) ~ Ul(Xy) + Ua(X;) + Us(Xs) — Us(X;) — Us(X5)

as before. Therefore,

(Dl ~ n_l il {Ul(XZ) + UQ(XZ) — U3(XZ) — U4(XZ) — U5(XZ)} UZTF(XZ) +

The leading stochastic term is n=* % | Uy (X;)u;w(X;) which has mean n! 3% | wy;02(X;)7(X;)
and variance 2n™* 3 3 w30 (X;)0?(X;)m(X;)m(X;). The other ("new”) terms satisfy
]
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™ Y A{U(X) = Us(Xo)wim(X) = Op(hin™"%) + Op(hifn~7%)

n_l Z U3(XZ)UZ7T(XZ) == Op(énn_l/Q)
TLil ZU4(XZ)UZ7T(XZ) = Op(hd/Qhal).
The other terms have been handled above: specifically,

nliUg(Xi) —62/>\2 (z)dz {1+ 0p(1)}.

Everything else is smaller order in probability.

(iii) We now deal with @y. We first substitute for @; to obtain

Wy = n21hd Z#Z K (Xi ; X5 wium(X;)m(X5)
+n22hd Ty K (XZ' - 4 ) {7ty (X)) = m(X,) Yy (X,)m(X,)
o S K (T {00~ ur()a()
i S K (T (000 06} ()
+n22hd Z;sz K <Xi ; Xj) {th(Xl) B mO(Xi)} {mO(XJ) - m(X
o I (F55) {0 (X = m(X)} {m?(5,) = ()} m(Xo(
= Zl+ZQ+Z3+Z4+Z5+Z

The leading term is
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(X = > wiuym(X;)m(X;) = Op(n~'h=4?).

Zy = n2hd ZZK

i#]

In fact, nh?/2Z; = N(0, V), see Zheng (1996, Theorem 1). The noncentrality term comes

from

X —X;

Zg = th ZZK(
_ 8 {/)\2 )dx—l—op(l)}

by a U-statistic law of large numbers. Everything else is smaller order in probability.

ProOOF or THEOREM 2. We prove the result for &f [with G = I] and omit the arguments
for the other tests since they are almost identical. The proof follows identical steps to those of

Theorem 1. Let

~ % — —x —~x 2
05 = n > {mi(X;) — g, (X5)} w(X;) (42)
=1
and write
iy, (X;) — M, (X;5) = M5, (X5) — Mng (X;) + g (X;) — g, (X5).
Using similar arguments to those used to derive (32), and noting that pj(x) = pn(z) (since

X=X, foralli=1,...,n), we obtain
@~ n S {UR(XG) + Us(X5) — Up(X;) — Uz (X)) Y (X)), (43)

where
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Ur(X;) = n '3 Kn(Xi — X;)uy /p(X;),
U;(X;) = %Mq(/ﬂ)bﬁlhs(){j)
Ui(X;) = n b0 kn (X5, Xo)u;,

* hg
Us(X;) = Eﬂq(k’)boﬁmhg (X5),

where bﬁ%hg(') is the (unrestricted) bias function b(-) with my: replacing m and b077lh5 is the

restricted bias function bo(-) again with my: replacing m. We do not have a U;(X;) ele-

ment corresponding to Us(X;) in the proof of Theorem 1 because Y;* is constructed so that

E*(Y;*|X;) = myp:(X;). This in turn implies that the bootstrap will approximate the distribu-
tion of the test under the null only.

Firstly, because u} are (given the data) mean zero, mutually independent and have variance

2

var(u}) = uz, we have

{mmlzm )m%ﬂ%wiN@m (44)

where

i = WYY W (X,) = o+ 0(1)

Vio = 2h* 3% phi i (Xi)m(X;) = Vao + 0p(1),
i7j

by the uniform consistency of my,. Similar arguments show that U;(X;) contributes terms to

&g like U;(X;) does to &y of order h%/2/hq in probability.
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We next calculate the contributions of the two terms U; (X;) and U7 (X)) using the approach
of Hérdle and Marron (1991). Note that b, . (X,) is a linear combination of the partial deriva-
tives of My (X;) up to and including the g th order, and is of the form ), w(Q) (hg)Y; for some
weighting sequence {wj(-g)(h(’;)} likewise, by ( )= ﬁ}égz(hf‘))}/; for weights {@éﬁ(hfﬁ)}.
As for m and m, both these quantities can be divided into an O(1) mean and a stochastic
term which is O, (n="/ 2py a1/ ?) as in Severance-Lossin and Sperlich (1995).1 These mag-

nitudes carry over to @§ using the same methods of Theorem 1: we get terms (in @g) of order

h2apd/? / RE@4TY and h2ape/? / R from the stochastic terms. u
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