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BAYESIAN ROUTES AND UNIT ROOTS:

DE REBUS PRIORIBUS SEMPER EST DISPUTANDUM

by
P. C. B. Phillips

Cowles Foundation for Research in Economics
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novo consilio nunc opus est!

ABSTRACT

This paper provides detailed responses to the following 8 discussants of my paper "To Criticize the
Critics: An Objective Bayesian Analysis of Stochastic Trends™: Gary Koop and Mark Steel; Edward Leamer;
In-Moo Kim and G. 8. Maddala; Dale J. Poirier; Peter C. Schotman and Herman K. van Dijk; James H.
Stock; David DeJong and Charles H. Whiteman; and Christopher Sims. This reply puts new emphasis on
the call made in the earlier paper for objective Bayesian analysis in time series; it underlines the need for a
new approach, especially with regard to posterior odds testing; and it draws attention to a new methodology
of Bayesian analysis developed in a recent paper by Phillips-Ploberger (1991). Some new simulations that
shed Light on certain comments of the discussants are provided; new empirical evidence is reported with the
extended Nelson-Plosser data supplied by Schotman and van Dijk; and the new Phillips-Ploberger posterior

odds test is given a brief empirical illustration.

*All of the computations and graphics reported in this paper were carried out by the author in programs
written in GAUSS on a ZEOS 386 20 mhz PC. My thanks go to Glena Ames for keyboarding the manu-
script of this paper and to the NSF for research support under Grant No. SES 8821180.



1. INTRODUCTION

My original motivation in writing an essay "to criticize the critics” (hereafter, simply "Critics*) was to con-
front some rather strident published criticisms of classical econometric methodology, with special reference
to the problem of testing for the presence of stochastic trends. It hardly needs to be said that one does not
bother to mount a critique of work that one considers worthless. Indeed, the Bayesian critiques of Sims
(1988), Sims-Uhlig (1988/1991) and DeJong-Whiteman (1989a) raised issues of Bayesian doctrine and
practice that were important and sorely in need of discussion. "Critics” provided a convenient vehicle for
initiating that discussion. The paper also provided an opportunity to illustrate an alternative Bayesian
methodology and perform a fragility analysis of the influence of different priors and lag specifications on |
posterior inferences with a well-used empirical data set. The discussants have now carried the debate and
the empirical work further. I thank them all for their responses to "Critics,” for their thoughts and reactions
to my work and for their various empirical contributions. The updated Nelson-Plosser data set prepared by
Schotman and Van Dijk is especially valuable in the present context and will be useful to all macro-
economists interested in historical time series.

No doubt the debate itself will help to clarify the ground that divides classical unit root econometrics and
Bayesian alternatives and in so doing should help to reduce the confusion that this division seems to have
spread. Of course, it is unrealistic to expect that all of the issues will be resolved. Some of them are par-
ticular to the Bayesian paradigm, like the formulation of priors, alternative routes to Bayesian inference and
difficulties in constructing objective Bayesian tests of point null hypotheses such as a unit root. On such
matters therc is certainly plenty of room for dispute. Hence, one of the themes that I have selected for this
response is carried in the title, viz, "de rebus prioribus semper est disputandum™ (about priors there is always
disputing). In short, subjective Bayesians can be expected to disagree.

The second theme of this reply puts new emphasis on the call that I made in "Critics" for objective
Bayesian analysis in time series. After reading the responses to "Critics” I am now even more convinced of
the need for objective methods of Bayesiar time scries analysis. With the sole exception of James Stock, the
discussants put forward an array of competing subjective analyses that seem to please them more than the
objective analysis of “Critics.” Taken individually, their subjective altcrnatives are of some interest. Taken
collectively, they demonstrate the striking fragility of subjective analysis and its consequent failure to be
scientifically convincing. To me the call for objective analysis is now even more urgent. I put the matter

bluntly in the header to this reply: novo consilio nunc opus est! (now there is a need for a new approach!).



In replying to the comments of the discussants I have the opportunity to offer some further thoughts on
Bayesian inference and to draw attention to new research that I have underway with Werner Ploberger that
contributes directly to the second of the themes mentioned above and responds to the charge of the header.
In addition, I shall report new simulations that shed light on certain comments of the discussants and new

empirical evidence with the extended Nelson-Plosser data set.

I1. RESPONSES TO THE DISCUSSANTS

In order to appreciate the proper context of the discussants’ remarks it will be helpful to recall the main
elements of the "Critics” paper. It will be convenient to list these as numbered items for subsequent refer-
ence as follows:

Ti(i) A rebuttal of the Sims and Sims-Uhlig critiques that classical methods are logically unsound
and Bayesian methods inherently superior;

I(i) A critique of the use of flat priors on the coefficients as uninformative in the context of
parametric time series models;

II(iii) Arguments that data conditioning principles are not innocuous in models with time series
regressors;

I(iv) Construction of invariant Jeffreys priors that allow for stochastic nonstationarity and purport
to represent ignorance in time series models (hereafter, "Critics"-priors);

H(v) Use of the Laplace method to reduce multidimensional posteriors, and illustrations of its use
in models with time trends and multiple lags;

II(vi) Simulation exercises to evaluate the performance of flat-prior and Jeffreys-prior Bayesian
analyses in models with time trends, multiple lags and various error structures when there is a sto-
chastic trend in the data;

M(vii) A comparative Bayesian analysis of stochastic nonstationarity under flat-priors and "Critics"-
priors applied to the Nelson-Plosser data set.

The discussants’ comments deal almost exclusively with the issue of the priors used in “Critics” (item
1I(iv)), the simulation experiments (item II(vi)) and thc empirical study (item H(vi)). There is little said
about the other items and this is no doubt explained by a desire to join battle on the central front of the
empirical methodology as it was implemented in "Critics." Nevertheless, even in that restricted context, items

I(iii) and II(v) are also of great importance: II(iii) because data conditioning is a vital element in all



Bayesian methodology and, as we shall reemphasize below, has major consequences in terms of the proper
interpretation of empirical results; and I1(v) because it provides a convenient analytic short-cut to manage-
able posteriors, because it has until now not been used in Bayesian econometric exercises and because, by
virtue of the huge reductions in computation time that it offers over alternative Monte Carlo integration
methods, it opens the door to a proper frequentist evaluation of Bayesian methodologies.

I shall deal with the discussants’ comments in the order in which they were assembled and presented to

me for response.

(a) Gary Koop and Mark Steel (KS)

KS start their comments with some general issues of prior selection and conclude that the priors in
“Critics" may disturb some Bayesians, This is hardly surprising. De rebus prioribus semper est disputandum.
The comments of the other discussants, notably Edward Leamer and Dale Poirier, readily confirm this. KS
argue that for a prior to be reasonable it must be acceptable to "a wide variety of researchers.” They indi-
cate their own subjective beliefs about what is acceptable, viz. all prior probability on stationary, unit root
and mildly explosive models. (What about explosive models with floors and ceilings, threshold models,
models with intermittent breaks and so on?) In short, they view the "Critics" priors as stacking the odds
against stationary models.

Subjective reactions such as these are to be expected. One of the main classical objections to the
Bayesian approach is that priors often do matter (the results of "Critics” certainly confirm this) and that if
Bayesian methods are to be "scientific” (i.e. reproducible by other researchers who are working with the same
model and data) then objective methods of generating priors are required. Hence, the interest in objective
Bayesian analysis, priors that represent ignorance and model-based reference priors. Unfortunately, it is now
apparent that, despite intense interest in this approach, no widely accepted procedure has emerged. Instead,
one often encounters in practice what I characterized in "Critics,” I believe quite justly, as the rather mechan-
ical use of flat priors on the cocfficients. Unfortunately in my view, it is this latter practice that has caught
on in econometrics in recent years. No doubt the practice stems from convenience and from the knowledge
that the procedure produces sensible results (equivalent to those of classical methods) in regression contexts
with fired regressors. Moreover, as it might be argued by the proponents of this practice, even in the most
general context the procedure simply involves scaling the likelihood and who can say that is bad practice?
After all, examination of the likelihood function is recommended practice in classical statistics and behavior

of the likelihood function asymptotically determines the properties of that most revered of estimators the



maximum likelihood estimator (MLE). However, to counterarguc the point, classical theory recognizes that
the MLE is not always a good estimator, is often badly biased in finite samples and that compensation to
account for its sampling properties is always required. Bayesian analysis, because it conditions on the data,
does not permit this. In effect, the likelihood function becomes a prison whose window may sometimes
afford only a limited view of the parametric landscape. "Critics" showed that this is exactly what can happen
in time series Bayesian analysis with flat priors, where the posterior inherits the poor sampling properties of
the MLE (notably its biased location). The Jeffreys prior provides some way of compensating for this defi-
ciency. 1 never claimed in "Critics" that it was perfect or even adequate. 1 simply argued that the mechanical
use of flat priors in time series models was questionable practice, and that the Jeffreys prior often leads to a
wider landscape of parametric possibilities (i.c., greater posterior uncertainty). The simulations in *Critics”
document the poor sampling properties of flat prior Bayesian inferences in models with a unit root and show
those based on Jeffreys priors to be superior but still biased. The upshot is that Bayesian nferences can
indeed be fragile in this context, that sensitivity analysis is required and that moderation and qualification are
needed in reporting empirical results obtained with these Bayesian methods. Hardly a radical conclusion and
one that I am glad to see that other discussants accept!

KS are disconcerted that under the “Critics” prior the posterior is not proportional to the likelihood and
that the method of generating the "Critics" prior violates the likelihood principle (LP) and makes the prior
sample size (T) dependent. The "Crities” prior functionalizes the prior on the sample size and for good
rcason. A priori we know that the amount of information in an autocorrelated time series trajectory will
depend on its length, It will also depend on other parameters like the sampling interval (here # = 1). This
would naturally be accommodated in a general way if we were to embed the model in a continuous time
system, which would lead to the representation p = exp(h6) where A is the sampling interval and 0 is the
continuous time autoregressive coefficient. Thus, the model-dependent features of the *Critics™ prior can be
construed as advantages.

It is easy to forget that parameters themselves are model-dependent. In a classical approach parameters
are selected becanse they represent entities of inherent interest (like savings propensities or elasticities),
because in the construction of the model it is believed that they represent guantities which are close to being
fixed (i.c. inherently less variable than the data) and because they are a convenient mechanism of achieving
data reduction for inferential purposes. Bayesian methods treat the parameters as random and once the like-
lihood is constructed sample space considerations are subsequently ignored (via the operation of the LP).

Much has been written about the LP and its validity as an operating principle. Econometricians who wish to



see many of the different statistical perspectives on this topic will find the collection of essays by Basu in
Ghosh (1988) and the references therein a valuable source of information and debate. Unfortunately, much
of the discussion on this topic does not relate to time series data. A notable exception is an important early
article by Barnard, Jenkins and Winsten (1962), hereafter BIW, which is seldom referenced by econometri-
cians. BIW arguc persuasively for looking at the whole course of the likelihood function in empirical work, a
message many applied econometricians will agree with. Even though BJIW do not argue for a full Bayesian
approach with random parameters, their suggestion of conditioning on the data and using only the likelihood
function for inference meets with intense debate in the resulting discussion with contrary positions being put
forward by most of the discussants, both classical and Bayesian. Many (e.g. Durbin, Whittle, Bartlett and
Kendall) emphasize that sampling properties are especially important in the time series examples given by
BIW and these are neglected when one’s attention is restricted to the likelihood alone. Stein points out that
the likelihood is not a probability density and that no Jacobian enters as a factor when coordinates in the
paramcter space are transformed. (One of the objects of the Jeffreys prior, of course, is to introduce the
Jacobian and thereby ensure that posterior probability statements are preserved under a change of coordin-
ates.) Even a cursory reading of this literature will persuade many that the LP is fraught with complications.
Thus, if the "Critics" prior is found by KS to violate the LP than I can only say that I do not find this disturb-
ing. In time series models, especially, I believe it is important in inference to compensate for the fact that
the likelihood tells only part of the story. In a very recently completed paper, Phillips and Ploberger (1991)
make a strong case for a different conceptual framework in Bayesian inference from time series that
explicitly recognizes this deficiency and shows how to compensate for it in inference. I shall have occasion to
refer to the results of that paper later in this reply.

KS state that the "Critics” prior impacts on the posterior "even asymptotically." Only brief orders of
magnitude arguments are sketched in their comments, and their reasoning is undeveloped and unclear. 1
believe that they are quite wrong on this point. Let us look at the problem more fully. Take the case of the
AR(1) studied in Section 3.2 of *Critics." The marginal posterior for p is given by equation (11) of "Critics”
and, as pointed out in remark (3) following that equation, the asymptotic behavior of the posterior when

pg = 1 depends on that of
1 A2 (15,217 7/2
&) i+ T sy w "

(Here and elsewhere in this reply I use the same notation as that of "Critics.”) Note that § = 1 + op(rl)

and (1) is of O,(T) for p in a neighborhood of # of O(T™) and of smaller order for p outside such a



neighborhood. Thus, behavior of the posterior asymptotically is determined within such a neighborhood. Let
p = p + h/T, say. Then, noting that I;éz ~ T/2Y? and standardizing so that (1) has a proper limit as

T — =, we find the following Limit behavior for the "Critics" posterior:

@ exol- 112w}

A similar argument yields identical limiting behavior for the posterior from a flat prior. Moreover, ui)on
appropriate scaling the likelihood function also has a limit that is proportional to (2), as shown in a much
more gencral setting in Phillips and Ploberger (1991, Theorem 5.3). Thus, the "Critics™ posterior, the flat-
prior posterior and the likelihood all have identical limiting behavior, contrary to the assertions of KS.

Many of the remaining criticisms in KS rely on their assertion that the "Critics" prior is not dominated by
the likelihood asymptotically. Since the assertion is false I will give no further attention to those aspects of
their comment.

KS make some brief final remarks about the empirical results in "Critics.” They interpret those results
differently from the interpretations given in the paper. They find the results to be "robust to prior selection”
and the use of the "Critics” prior to lead only to "a slight increase in the probability of the explosive model
holding." I can only conclude that either their criteria for evaluation are very different from mine or that
they have read this section of "Critics” very quickly. I draw attention to the fact that for five series (industrial
production, consumer prices, velocity, bond yields, and stock prices) the differences in the posterior probabil-
ities of p = 1 are substantial in both absolute and relative terms (for four of these series the "Critics”
posterior gives a value over 100% greater than that of the "flat™ posterior). I see no way in which such
results can be regarded as robust. Even a cursory look at the figures shows evidence of fragility in these
posteriors.  Would KS have to see 300%, 500% or even greater differences before they began to suspect
sensitivities to the prior? Clearly such matters are subjective without the use of some agreed loss function.
For myself, I think the evidence of fragility is strong for some of the series (like stock prices, velocity and
industrial production). For others (like real gnp and real gnp per capita) robustness is certainly evident.
Both sets of outcomes are interesting and deserve recognition. “Critics” tried to put this perspective forward
in a moderate way. KS are unconvinced. Obviously, more dramatic results are needed to shift some subjec-

tive Bayesians off their own posteriors.



(b) Edward Leamer (EL)

EL’s warm welcome to the small but growing circle of Bayesian econometrics enthusiasts is appreciated.
In econometrics, like other realms of academe, it is important to resist the phenomenon of the "invisible
college.” The invisible college grows up to serve a school of like-minded researchers but ends up protecting
that school in a dangerously defensive way from the very outside influences that can nurture it in new direc-
tions and thereby help it to prosper. While "Critics" was not expressly written to challenge the invisible
college of flat-prior Bayesians, it was certainty written to offer new perspectives, alternative resecarch direc-
tions and to point out the most egregious shortcomings of that school of rescarch.

Treating "Critics” as an outside influence precisely in this intended fashion, EL has responded in a most
positive way. He takes on board what he deems useful, viz. (i) the demonstration that priors do matter in
time series models, and (ii) the evidence that uniform priors are not always a satisfactory fall-back prior. He
discards what he dishkes, deems unreasonable or views as irrelevant, viz. (i) concern over the property of
invariance, (ii) the dependence of the "Critics” prior on the sample size and (iii) issues of objectivity in
Bayesian inference. He then outlines his own principles in determining a prior and suggests the major steps
that are needed to characterize the way in which inferences ultimately depend on prior information.

EL’s framework is useful and, if one accepts his subjective orientation, I see no reason for disagreement.
(Note that his comment on sample size dependence is dealt with in II(a) & (h) and was, of course, already
recognized in "Critics.”) That being the case, let us see how results change under Leamer-type priors. To do
the analysis I shall use the following family of modified ignorance priors (called e-priors) based on those
developed in ongoing work by Eric Zivot and myself (1991):

®) 7,(6) = 0 ag(py ! Zexpl-p% )]
where ay(p) is the same function of p as that in "Critics™ (see equation (14)) and
“ c(e) = -1/4e + (1/4e)(1 + 4eT)V/2

is a function selected to ensure that (3) attains its modal value around p = 1+e after which the prior
density falls away rapidly. The parameter ¢ may be set to correspond to the investigator’s prior beliefs.

I shall employ two such priors. The first I shall call Leamer (i) and it is based on (3) above with
e = 0.001, ie.

Leamer (i) - prior = ®g00:(P)-



This prior captures Leamer’s suggestion of a suitable prior for the unemployment rate series, viz. a prior that
rises smoothly until around p = 1 and then falls away smoothly forever. It has two deficiencies in relation to
Leamer’s description: it does not fall discontinuously at p = 1 (before smoothly declining thereafter); and it
does not start at zero at p = 0, Neither difference scems very important and they could if necessary be cap-
tured with some further modification to %y g0:(p).

Leamer’s description of his prior for the series real stock prices (= stock prices/CPI) is more difficult to
capture and is not well represented by (3) as it stands. Leamer requires the prior to fall steeply on either
side of p = 1.03 but "steeper to the left than to the right." To capture this shape I suggest the use of a
reverse g-prior that produces the mirror image of (3). This is achieved by defining a new function as

follows:
‘K'(Z(l'i-t) - p)s P = 2(1+z)

%, (p) =
%, (2(1+¢£)), p > 2(1+e).

Setting ¢ = 0.03 we have my formulation of Leamer’s prior for the real stock price series, ie.
Leamer (ii) - prior = mgg(p).

This prior has ®go(p) = Toea(p) at p = 1.03 while Toa(103 + x) = mg3(1.03 - ), thereby giving
1:6_03(-) the mirror image form of %y4;(7) around p = 1.03. In this way 1:6_03(-) falls away steeper on the

left of its peak than it does on the right.

The Leamer (i) and Leamer (ii) priors are graphed against the "Critics™-prior in Figure 0(i) in levels-
density form and in Figure 0(ii) in log-density form. As is apparent from these graphs, the Leamer (i) prior
is very similar to the "Critics"-prior untii around p = 0.95 after which its rate of increase falls and then after
p = 1 the prior declines rapidly. The Leamer (ii) prior is very different in shape from both the Leamer (i)-
and "Critics"-priors. It falls away very rapidly oo the left from its peak around p = 1 but much less rapidly
on the right, thereby capturing the right skewness of the prior that is implied in Leamer’s description, We
could move the peak of Leamer (ii) further to the right by changing ¢ in the = (2(1+¢) - p) representa-
tion. But this bardly seems necessary as %go,(p) has all the essential elements in Leamer’s description,



TABLE 1
Posterior Probabilities of Stochastic Nonstationarity

Model = AR(1) + trend

Prp21) Pp(p21) Pp(p21) | PHp20975) Pg(p20975) P (p20975)

Unemployment 0.126 0.001 0.001 0.129 0.002 0.002
Real Stock Prices 0.288 0.024 0.148 0.346 0.065 0.453

Using the AR(1) model suggested by Leamer for this analysis but allowing also for a deterministic trend,
we have computed and graphed the marginal posteriors of p under the critics-, F- and Leamer-priors. The
results for the unemployment rate series are shown in Figure 1 and those for real stock prices in Figure 2.
Posterior probabilities for the sets {p 2 1} and {p = 0.975} are given in Table 1 for the three different

priors.

For the unemployment rate series the F-posterior and L-posterior are very close in shape. Neither
posterior attaches any weight to the nonstationary region. Thus the Leamer (i)-prior and flat-prior give
nearly identical results. There is no fragility here. Only the J-posterior attaches any weight to nonstation-
arity and this takes the form of a minor mode around p = 13. As discussed in "Critics,” such posteriors
lead to disjoint Bayes confidence sets and are often simply indicative of a greater uncertainty about p than is
immediately apparent in the MLE p and the F-posterior which is centered on 6.

For the real stock price series the three posteriors are very different. The L-posterior is shifted signifi-
cantly to the right of the F-posterior and is centered on a value of p close to but less than p = 1. The
L-posterior gives an appreciable weight to the nonstationary and near nonstationary sets, in contrast to the
F.posterior. The J-posterior is again bimodal but Bayes confidence sets would not be disjoint. From the last
row of Table 1 it is clear that these three posteriors attach very different weights to the region {p 2 1}. The
largest is Py(p = 1) = 0.288, which is nearly twice that of Py (p 2 1) = 0.148, while P(p 2 1) = 0024 is
negligible. Here is a case where the prior density does matter and inferences may indeed be fragile in

consequence.
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These results corroborate the "Critics" finding that prior information matters in assessing the evidence in
support of stochastic trends. Leamer’s "sacrament of sensitivity analysis™ deserves more converts, especially

among those who already kneel at a Bayesian altar.

{¢) In-Moo Kim and G. S. Maddala (KM)

KM focus on the "Critics” prior and argue that it gives too much weight to values of the autorcgressive
parameter p higher than 1 and thereby distorts sample evidence. They extend the Monte Carlo analysis of
"Critics” to other values of p and find that for stationary models with p = 0.95, 0.50 the upward bias in the
posterior is greater in magnitude for the "Critics” prior than the corresponding downward bias is for a flat
prior. Since writing "Critics” I have performed some comparable simulations and found related results for
the AR(1) model (but see below for some important qualifications). Note also that in Section 3.4 of "Critics”
I reported some simulations for a model with a unit root and moving average errors and found a similar bias
towards the unit root model when the true model had a large negative serial correlation coefficient giving a
structure that was close to stationary.

Subject to the important qualifications below, the point is a good one and 1 am glad that KM have
emphasized it. However, their simulations are distorted for reasons I shall explain and their results do not
tell the whole story. I shall therefore report some further results that are of interest in assessing the impor-
tance of their findings. Let me start with some preliminary remarks before moving on to discuss the new
simulations.

1. The "Critics* prior was constructed explicitly to allow for nonstationary p and to assist in a Bayesian
analysis of evidence in support of nonstationarity, That framework may be expected to be less relevant for
models with p ~ 0.50 than it is for models with p ~ 1.0. Moreover, most macToeconomic time series in
levels or log levels have first order serial correlations well in excess of 0.50, so that KM’s results are probably
less relevant empirically as well.

2. As p — 0 the model steadily loses its time series structure and the arguments given in "Critics"
against the use of flat priors lose their force. Also the bias of the MLE $ (and, hence, that of the
F-posterior which is centered on p) reduces in magnitude with p. So we must expect better performance
from the F-posterior as p — 0.

3. Regarding KM’s simulation design and specific results my comments are as follows:

(i) KM’s Tables 1-3 report posterior means under both the flat-prior and the "Critics™-prior. As
pointed out in "Critics” in Remark 1 following equation (11), the J-posterior has no finite integer



i1

moments. KM’s tables, therefore, report calculations of quantities that do not exist! Finite integrals like
those given in KM can always be found by truncation of the limits. The problem is, of course, that the
results are quite arbitrary and depend entirely on the chosen limits. Their posterior mean calculations
and comparisons should therefore be ignored, together with the attendant discussion in their paper.
Unfortunately, much of the discussion in KM does focus on the mean and mean/mode comparisons
between the F-posterior and "Critics"-posterior. In consequence, the thrust of their critique concerning
the bias of the "Critics"™-posterior can be dismissed as groundless.

(ii) The posterior probability calculations in KM’s tables do show evidence of an upward bias in the
"Critics" posterior, But this evidence is much less dramatic than their (invalid) posterior mean calcu- .
lations. As we shall see below, there is good reason to question the relevance of these posterior
probability calculations also.

(i) KM compute the sampling characteristics of the statistics |mcan-mode| for the F-posterior
and find sample mean values that are substantially different from zero. Yet the F-posterior is symmetric
and has finite mean so that we should have mean = mode for every replication! Thus, no computation
is required. Clearly, the nonzero values given by KM must result from their unnecessary computations
and thercfore give some idea of the computational or approximation errors involved in the KM
simulations.

(iv) In their conclusion KM tells us that the "Critics” paper

(KM,) "shows that funder an ignorance prior] most US economic time series have a unit root
1 under the Bayesian analysis as well."

This conclusion is a plain misreading of "Critics.” Even for the AR(1} + trend model, which is more
generous to stochastic nonstationarity than the AR(3) + trend model, "Critics™ found P{p > 1) 2 030
for only seven series. Thus, even under the most liberal reading of the "Critics™ results we would find
evidence of stochastic nopstationarity for only one half of the time series. This does not come close to
supporting the statement KM;.

(v) Also in their conclusion, KM state that

*.recent work, even along classical lines has shown that the evidence for unit roots is
(KM,) weak,"

and cite work of Kwiatkowski, Phillips and Schmidt (1990) (hereafter, KPS) in support of this statement.
KPS show how to test a null of trend stationarity in place of the more usual null of a unit root. The
empirical work of KPS which is undertaken with the same data set as that uscd in *Critics” indicates that

the pull hypothesis of trend stationarity can be rejected at the 5% level for five series (industrial



production, consumer prices, real wages, velocity and stock prices). These empirical results are, as KPS
state, in accord with those of "Critics" (with the exception of the outcome for real wages) and do not, in
my view at least, support the statement KM,.

(vi) *Critics" argued that a good prior should reflect the prior knowledge we have of the AR(1)
model that when the true value of p is larger the data will be more informative about p. KM object to
this argument and state in their Introduction and Conclusion that

"...this is a property of the likelihood function and should have nothing to do with the
(KM;) prior.”

Actually, it is a property of the model that the regressor in the AR(1) carries information about p and
this is the source of the generic information that is employed in the "Critics” prior. Since the Bayesian
paradigm relies on the LP and conditions on the lagged regressor variable the effective role of the
*Critics” prior is to compensate for the delimiting effect of the LP (viz. the neglect of sample space con-
siderations) by incorporating this generic information in the posterior. KM seem to have missed this
point entirely.

4, The model used in KM’s simulations is the AR(1). While I certainly gave attention to the AR(1) in
"Critics” the main thrust of the work centered on models with trends, and models with trends and transient
dynamics. As shown in "Critics,” the F-posterior inherits the bias characteristics of the MLE §. Since these
are well known to be exaggerated by the presence of additional regressors like polynomial trends and further
lagged regressors, we expect the bias to be worse in such cases. This is precisely what occurs and the simu-
lation exercises in "Critics" provide ample evidence. How does this consideration affect the point about the
"Critics” posterior being biased upwards in models with stationary p? To investigate this issue I ran further

simulations, this time with the AR(1} + trend model
&) Yy =8+ Bt o+ py_y +e,e =iid N, 02)
as in equation (13) of "Critics." Setting B = 0.025, p = 0, 0 = 1 and sample size T = 50, I computed

expected posterior probabilitics of the same sets used in KM’s Tables 1-3 for several values of p. The

results are based on 10,000 replications and are shown in Table 2.



TABLE 2

Simulation Estimates of Expected Posterior Probabilities
of p in AR(1) + trend (p = 0.0, B = 0.025, 0% = 1, T = 50)

True value Range F-Posterior "Critics™-Posterior
of p Expect. Var. Max. Min, Expect. Var. Max. Min
P(0.90 < p < 1.00) 0.183 0031 0.817 0.000 0.157 0.018 0774 0.000
p =095 P(p 2 0.95) 0.101 0018 0986 0.000 0350 0.059 0999 0.000
P(p 2 1.00) 0.033 0003 0865 0.000 0.285 0050 0999 0.000
P(0.75 < p < 0.85) 0220 0019 0476 0.000 0.166 0010 0451 0.000
p = 0.80 P(p = 0.30) 0231 0049 099 0.000 0.428 0065 0999 0.000
P(p 2 1.00) 0.007 0000 0365 0.000 0239 0.031 0994 0.000
P(0.45 < p < 0.55) 0197 0008 0314 0.000 0.175 0006 0.297 0.000
p = 0.50 P(p = 0.50) 0340 0.070 0998 0.000 0404 0082 0999 0.000
P(p = 1.00) 0.000 0.000 0.018 0.000 0.098 0013 0966 0.000

Table 2 tells a story that is very different from KM. Both the F-posterior and "Critics"-posterior are
biased downwards but the former much more so than the latter. Thus, when the true coefficient is p = 0.50

we find:

E(Pe(p 2 0.50)) = 0340, E(P{p = 0.50)) = 0.404.
For p = 0.80, the corresponding figures are:

E(Py(p 2 0.80)) = 0231, E(P{(p > 0.80)) = 0.428.

These results show that the downward bias of the F-posterior is substantial, even for p as low as p = 0.50.
Far from being biased upwards, the "Critics"-posterior is also biased downwards, but to a much lesser degree.
These findings strongly corroborate the results of "Critics." While specific results are always model depen-
dent, I find it encouraging that one of the major arguments in "Critics," is vindicated even in tread stationary

systems, viz. that F-posterior inherit the poor sampling properties of the MLE, notably its bias.
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(d) Dale J. Poirier (DJP)

DIP’s welcome to the Bayesian journey is hearty and sincere and I thank him for it. The itinerary he
describes has intellectual scencry that intrigues me and I like the scope for controversy em route. If the
debate over "Critics” is a representative journey then the future beckons to the itinerant Bayesian. 1t is surely
not fitting for peon’s like myself to entertain the prospect of a subjective Bayesian passage and I am person-
ally committed to objective modes of transport. But possibly some future Yale students will qualify for these
tantalizing upgrades that DJP dangles before us.

DIJP correctly interprets the central message of "Critics” and the spirit in which it was written. He
recognizes the two key issues that affect Bayesian reasoning, viz.

(i) res priores; and

(if) data conditioning principles.
Decisions that are made on these issues can and do affect inferences as we saw in "Critics" and again in the
simulations and empirical exercises of II(a) and TI(b) above. “Critics" gave its main attention to res priores.
In later work with Werner Ploberger we have been studying the implications of data conditioning. Phillips
and Ploberger (1991) examines the effects of data conditioning principles on inference in terms of the prob-
ability mcasures that are implied by the operation of Bayes theorem. In the context of time series data, the
implications are of great importance. They ensure that the Bayesian analyst lives on a particular trajectory,
as DIP and KS emphasize. The implicd Bayes model (in Phillips-Ploberger terminology) is a time varying
parameter model and the Bayes model measure is a conditional predictive measure, giving the predictive
probability measure of the next period observation given the past history of the data and the MLE of the
model’s coefficients that this data implies, Phillips-Ploberger scems to be the first general treatment of this
feature of Bayesian analysis, providing a new "frame of reference” for thinking about Bayes methods. The
Phillips-Ploberger analysis shows the following:

(i) Bayes models and classical models differ in fundamentally important ways, including their prob-

ability measures.

(i) Bayes model likelihood ratio tests can be constructed to evaluate the evidence in support of a

Bayes model against an alternative refercnce measure, including alternative Bayes models.

(ili) Posterior odds analyses are also possible and enable an investigator to compare different Bayes

models in the light of the observed data and against a background of prior odds.



The upshot of this analysis is that rigorous attention to the data conditioning principles of Bayesian analysis
in time series settings forces one into a new frame of reference that delivers a new geometry of inference.
When DJP enjoins me as follows,

(DIP;) "In shor, I recommend Fhillips worry about the data he sees along the road he
1 travels and not worry about the data he might see along roads he does not travel,"

he is appealing, in effect, for the use of the Phillips-Ploberger geometry. If one intends to follow the
Bayesian route then I wholeheartedly agree. But in accepting that geometry one must also accept the refer-
ence measure that the new coordinates imply. As Phillips-Ploberger (1991) shows, the cost of living on a
particular trajectory leads to a measure in which there is explicit compensation (i.e. weighting) for the chosen
parameterization. In the construction of a posterior odds test of p = 1 in the AR(1) the compensator is the
square root of the martingale conditional variance, ie. (X h?_,)!/? which is a form of conditional Jeffreys’
prior suited to this time series example. This compensation has a major effect on posterior odds inferences.
I shall briefly illustrate the use of the new criterion in the next subsection, II(d).
If, as DJP argues,

(DIP,) "..conditioning is at the hean of most differences over the appropriate way to conduct
statistical inference,”

then the Phillips-Ploberger geometry helps to reconcile those differences because it makes explicit the
reference measures associated with Bayes and classical models. This geometry also bears on the "conditional
frequentist™ approach suggested in the Hinkley (1983) paper cited by DJP. By conditioning the information
content of a trajectory of data at a fixed level the “frequentist” can avoid many of the inferential difficulties of
classical procedures, ending up with nice Gaussian sampling distributions, as pointed out in “Critics." But
there is a cost that is induced by the latent sampling variability of the compensator and this too needs to be
factored into the accounting. More work on this issuc with Wemer Ploberger is presently in the pipeline.
DJP draws attention to concerns in the literature about the use of J-priors and reference priors in gen-
eral. Regarding the "Critics” prior he points to its dependence on the likelihood, the sample size and the
sample space mathematical expectation. Unlike other discussants (especially KM), DJP discusses the issue of
dependence on the form of the likelihood, noting that other priors in regular use, like conjugate priors, have
similar dependencics. But he does object to sample size dependence. I have already partially responded to
this point in II(a), but more needs to be said here. DJP gives the following illustration of incompatibility

that he argues the "Critics"-prior induces:



16

"Phillips’ prior (9) depends on (b) [= the sample size]. Hence, in the face of T
observations, using prior (9) based only on the first m (0 < m < T) observations and
(DJP3) then using the resulting posterior as the prior for the next T-m observations gives a
different posterior than arises from using prior (9) based on all T observations. Why
should the way the data are processed affect the answer?”

In fact, there is no such incompatibility. To explain why, take the case where o? = 1is known and let
x7(p) = ay(p)"/* = Critics"prior
based on a sample of 7 observations. The corresponding posterior is then proportional to
'(p) = ="(p)pdf1 e y0),

where y{ = (¥p ¥ - y7) and pdf(-ip, yo) is the conditional density given p and y;, (ie. the likelihood).

We now decompose I/ (p) as follows:

="(p)

T
I(p) = [ﬂ'"(p)pdf(y]"'lp, yo)l1t ) pat(y,r. 110, 0™
p

- [ )Ty (o)t 1o, 3

= T (p)pdt(y, .1 b, 3o

Here T™(p) = =™ (p)pdf(y’T |p, yo) is the posterior based on the first block of data y7 and the "Critics"-
prior =&""(p) for the sample of m observations. We now use this posterior as the prior for the next Bayesian
analysis with the second block of data yf,:ﬂ. However, recognizing that the second block has T-m observa-
tions (giving a fotal sample size of T consecutive observations) we scale the new prior I"(p) by the factor
27 (p)/x™(p) to adjust for the expected information content of T observations relative to that of the m
observations upon which I™(p) is based. Note that under a flat-prior the ratio x7(p)/x™(p) would be a
constant and I™(p) would equal T™(p). Under the "Critics™prior it is recognized that the information
content of data is different between a consecutive sequence of T observations and two independent sequences
that sum to T. Again, the "Critics™prior takes the model and time series nature of the data into account
whereas the flat-prior does not.

In cases where the number of observations T is random and ancillary, like DJP’s coin toss that deter-
mines whether there are 7 = 100 or T = 50 observations, we could indeed condition on T as its distribution
contains no information about p. The conditional expected amount of information in the data about p
would then depend on the realized value of 7, Such an approach would be in keeping with more traditional
Bayesian thinking (c.f. also Barnard Jenkins and Winsten’s (1962) treatment of the LP). The Lkelihood
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would not depend on the sample stopping rule for T, just its actual realization. Likewise the prior would be
conditional and represent the conditional anticipated amount of information in the data. We could also, of
course, build the sampling principle for T into the prior and it would then reflect the average anticipated
amount of information in the data. Then for trajectories with T = 50, the prior would overcompensate in
the explosive range and correspondingly undercompensate when T = 100. Note that the Phillips-Ploberger
(1991) posterior odds criterion would not suffer this ambiguity because it is trajectory based and would there-
fore be conditional on the outcome for T.

DIJP gives an interesting case study of conventional posterior odds analysis applied to case (a) of Table 1
of "Critics." He attaches a point prior mass of 1/2 at p = 1 as hypothesis H; and a N(1, 12) prior density as
H, with P(H,) = 1/2. Thus, prior odds arc equal and DJP’s Table 1* reports the posterior probability of H,
for various values of the prior standard deviation v. For large values of t (corresponding to a "noninform-
ative” alternative H,) the data clearly support H; and DJP rightly concludes that
(DIPy) "Assigning a point mass to p = 1 has a big impact.”

Let us now consider the use of the Phillips-Ploberger (1991) posterior odds test of H;: p = 1 against
H,:p # 1. Unlike DJP we do not need to set up an arbitrary prior for H,. Indeed, H, in the Phillips-

Ploberger geometry is the Bayes model:

Hp Yna1 = ﬁnyn t Upyq
where §, = 2’{)@_1/2'{}%_1 is the classical MLE of p. The Bayes model measure of B is denoted Q;'; in
Phillips-Ploberger notation and the Bayes model posterior odds criterion is based on the likelihood ratio

dQB/apP, which is the Radon-Nikodym derivative of Qﬁ with respect to the reference measure P, for the

random walk that applies under H;. The decision rule is then

B
d T
O > L decide in favor of Hp

n L™

if

B
d T
Qs < _1 decide in favor of H,

n “p

if

where x;/n, is the prior odds ratio (see equation (71) of Phillips-Ploberger). As in DJP, set x;/x, = 1.
Using equation (70) of Phillips-Ploberger and the data of Table 1 of "Critics” we obtain by an easy calcula-

tion
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B
ag,

n

- cxp{%(l - 0.304)2)78}/781/2 = 0506 < 1

thereby conclusively deciding in favor of Hy, or p = 1. Recall from Table 1 of "Critics” that in this case the
flat prior gave a posterior probability of Pr{(p = 1.0) = 0.02. Clearly DJP, Phillips-Ploberger and "Critics" all

dominate the flat prior approach in this case!

(e) Peter C. Schotman and Herman K. van Dijk (SVD)

SVD present a thoughtful and productivé commentary on "Critics.” I thank them for these comments
and I am sure the profession will join me in thanking them for the extended Nelson-FPlosser data set.

Like the earlier discussants their comments focus on res priores. But they offer us new thoughts on the
effects that different model specifications and parameterizations have on invariant priors, they argue a case
for the use of a posterior odds test of the sharp null hypothesis p = 1 and they present numerical results
with these methods for the original and extended Nelson-Plosser data sets.

As pointed out in "Critics," the J-posterior is biased downwards in models with a fitted intercept and
trend in the sense that E{P{p > 1)} is substantially lower for that model than it is for the simple AR(1).
SVD notice this bias and start their comments with an investigation of the interaction between intercept,
trend and autorcgressive coefficients in F- and J-priors and their associated posteriors. They choose to work

with the components model
©) Y=y + 8 +u,u, = pu_y + ¢, ¢ =iid NO, )

for this analysis. As discussed recently in Schmidt and Phillips (1989) this mode! formulation has the
advantage that it has no surplus parameters (or variables) under the null hypotbesis p = 1 and thereby is a
convenient vehicle for the construction of an LM test of this hypothesis.

Note that {6) can, of course, be written in the earlier form (5) i.e.
(5) y, =+ Bt + py_q + £, £, = iid N(0, 0%)
with the explicit parameterization
(7 p=vy(l-p) + 8p, p = 8(1-p).
In "Critics” I used the following prior for the parameters of (5):

x(p, o, 4, B) = 0 3{ay(p) + ay(p, B, B)/0*}/2
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and showed that this prior leads to results that arc gencrally well approximated by using the simpler

expression

(8) n(p, o, 1, B) = o 3ay(p)/?,

which implies a flat prior for p and B. Next note that for the parameterization given in (7) and a flat prior

on (4,B) we have the following implied prior for (y,8):

©) w(v,8) = n(w,B)[3(k,B)/a(v.8)] = (1-p)>

Combining (8) and (9) we deduce the implied prior for the parameters of (6), viz.
(10) m(p,0,1,8) = a7X(1-p) ag(p)*.

This is a simpler and more revealing derivation of SVD’s equation (4). As is apparent from (10), the prior
density is degenerate at p = 1. The above derivation shows that this is a consequence of the degeneracy in
the prior (9) for (y,3) that is implied by the parameterization (7). The degeneracy in n(y,8) at p = 1 is

explained by the fact that when p = 1 the model is simply
(11) Ay, =8 + ¢,

i.e. ¥ does not occur at all and there is no surplus parameter under the null. Thus, for the model (6) we
have only three parameters (p = 1, 8, %) under the null p = 1 but four parameters (p, v, 8, az) under
the alternative p » 1. It follows that the degeneracy in the Jeffreys prior (10) at p = 1 that is emphasized
by SVD is a simple consequence of the attempt to force a four parameter model, ie. (5), to accept a param-
eterization that is degenerate at p = 1.

By contrast, suppose we insist on dealing with the components model (6) and also insist on a flat prior
for (v, &, p, tn(o)). Since the data generating mechanism (i.e. the reduced form) is (5), with the explicit
form (6) requiring the parameterization (7), we deduce that a flat prior for (¥,8) necessitates the prior for

(u,B) of the form
(1,8)  (1-p)?

which involves a singularity at p = 1.

None of these apparent "pathologies” is anything other than a consequence of forcing a degenerate par-
ameterization, ie. (7), on the data generating mechanism (5). The reason this parameterization (i.e. the
components representation (6)) works so well in the classical analysis of Schmidt-Phillips (1989) is that the

model is estimated under the null and only the efficient score is used in constructing the LM test. A



Bayesian analysis requires that we define a prior distribution for the full parameter space. If we insist, as
SVD do, on working with a structural model like the components representation (6) then there will always be
a degeneracy of some form due to the mapping to the reduced form (5). The pathologies they discuss are
the consequence of this mapping and are not inherent weaknesses in any of the prior densities. Similar
problems can be expected in any Bayesian analysis of structural models.

The second concern of SVD is to mount explicit Bayesian tests of the sharp null hypothesis H; : o =1
They rightly argue that this null is of sufficient importance to warrant an explicit Bayesian test and correctly
point out the limitations of the analysis in "Critics,” which concerned itself with stochastic noastationary sets
(viz. {p 2 1)) against stationary sets (viz. {|p] < 1}). SVD encounter two problems in setting up a
Bayesian test of H. First, as DJP remarked in his commentary, there is no general objective procedure for 7.
mounting posterior odds tests of sharp null hypotheses presently available in the Literature. SVD also tell us
this in their conclusion, saying that
(SVDy) "Objective Bayesian methods for testing a sharp null hypothesis do not exist"
and they refer us to Berger and Delampady (1987). This is therefore a good point at which to draw the
reader’s attention to new methodology in the recent paper by Phillips and Ploberger (1991). The Phillips-
Ploberger (1991) Bayes model posterior odds test is objective, allows one to test a sharp null hypothesis such
as Hy, is available for use in the present context and, indeed will be briefly illustrated below. Phillips-
Ploberger is a direct response to the call "novo consilio nunc opus est” in the header to this paper.

Second, SVD encounter difficulty in the computation of the posterior probability of Hj because the
surplus parameter (y) under the null p = 1 in the components model leads to a divergent integral. SVD
overcome this difficulty by using a normal prior on y of the form N(y, oz/(l-pz)). With this prior on y
the posterior probability of p = 1 is finite and can be computed. The posterior odds calculation then pro-
ceeds as usual once a prior for p on the stationary set is specified.

In dealing with these difficulties SVD follow the treatment (of the same problem) given in their earlier
work (1991) on real exchange rates. While applauding their efforts to resolve the difficultics of the usual
approach in this case, I am troubled by the rather arbitrary choices that arc involved. First the prior on ¥y is
one of convenience. It has some relevance for stationary models, but is unjustified under the null. Since the
pull is where it is critically needed, this seems most unfortunate. Second, the prior on the alternative
stationary set [a,1) is arbitrary. Any choice is possible. SVD seem to follow their earlier work (1951) and
use a uniform prior on [a,1) but I could not find this clearly stated in their paper. Also arbitrary is the
choice of a, which will certainly affect the posterior probability of stationarity and the odds ratio. These
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arbitrary elements go beyond the setting of prior odds and, at least to me, are disturbing. No doubt, many
subjective Bayesians would be quite content to proceed with intelligent and reasonable choices of a and the
priors on ¥ and p. But how do we assess what is rcasonable? To give but one example SVD’s choice of &
is « = 0.8. No doubt this depends on the time unit or sampling interval, which is one year for the Nelson-
Plosser data. But should the choice be the same for stock prices, money and gnp? Is a sensitivity analysis
warranted? Should we consider alternative priors? And so on. The posterior probability results in SVD’s
Table 1 also illustrate the problem. Against what values do we calibrate the posterior probabilities of p = 1
given in the final coiumn. Some of the results like those for unemployment (P(p = 1) = 0.11) and stock
prices (P(p = 1) = 0.968) lead to clear decisions. Others, like employment where P(p = 1) = 0.614 are
less conclusive. Some objective correlative would be useful here but is not provided. While the posterior
probability calculations in "Critics” suffer to some extent from a similar weakness, the situation is more
critical here because an odds ratio test is being employed. The point of a posterior odds test is to perform a
test and for this we need a clear criterion, When there are too many arbitrary choices in the construction of
the posterior odds and no clear decision criterion then it strains credibility to say there is a test. Herein lies
the rub and the reason why there is a need for an objective basis for Bayesian tests of a sharp null hypoth-
esis.

Now let us consider the Phillips-Ploberger approach. All of the basic ideas and metheds are laid out in
the recent Phillips and Ploberger (1991) paper. A full development and application of the methods is
presently in progress and will appear elsewhere. 1 shall give a brief illustration to whet the reader’s appetite

here. Suppose we allow for a general time series model with trends and multiple lags, ie.

k
(12) Ay, = hy_y + Zyp Ay, + p + Bt + ¢,

with £, = iid N(0, 0%). We wish to cmploy a posterior odds test of & = 0, Le. a unit root in (12). In
Phillips-Ploberger this is achieved by using the Radon-Nikodym derivative of the Bayes model measure Qf
(i.e. h unrestricted) with respect to Qf“ (ie. h restricted to & = 0). Calculations in Phillips and Ploberger
{1991b) show that

O'Qf" ) exp{(1/2)5;2f’:2)’-1'Qx}’-1} _
R

Our decision rule with equal prior odds is then simply

(13)




B
d h

(14) if Q’; < 1 accept the hypothesis Hy : k = 0 in (12).
dg,’

Table 3 shows the results of this objective posterior odds test applied to the Nelson-Plosser and extended
Nelson-Plosser data sets. The tabulated results refer to model (12) with &k = 3 lags, as in the original
Nelson-Plosser study. The outcome of the Phillips-Ploberger test is quite decisive for both data sets. For
the 1970-sample we accept the presence of a unit root in the following 7 series (asterisked in the table):
nominal gnp, gnp deflator, CPI, nominal wages, velocity, bond yields, stock prices. For the 1988-sample we

accept the presence of a unit root in 8 series (again asterisked in the table): these are the same series with a

TABLE 3

Phillips-Ploberger Bayes Model
Posterior Odds Unit Root Tests

Posterior Odds = de*/de“
Series
1970 Sample 1988 Sample

Real gnp 2.9846 8.1780
Nominal gnp 0.2945* 0.1375*
Real gnp per capita 4,0038 12.6481
Industrial production 14.1071 18.5256
Employment 10.2765 18.1569
Unemployment rate 64.6225 2233859
Gnp deflator 0.8465" 0.0831*
CP1 0.1306* 0.0337*
Nominal wages 0.5970* 0.3258*
Real Wages 3.0919 0.1330*
Money stock 2.7962 13877
Velocity 0.1232* 0.0705*
Bond yields 0.0463* 0,2879*
Stock Price 0.5365* 0.2662*

Decision rule: reject unit root if dQE’*/dQE“ > 1; number of lags k = 3




unit root accepted for the 1970-sample plus real wages. If we use a criterion of "accept a unit root if
P(p = 1) 2 0.75" in SVD’s Table 1 then the SVD results for the 1988-sample agree precisely with those of
the Phillips-Ploberger test. Table 3 also shows that there is a strong rejection of the presence of a unit root
for 5 series viz. real gnp, real gnp per capita, industrial production, employment and the unemployment rate;
and there is a marginal rejection of a unit root for the money stock series. Note also that the strongest
rejection is for the unemployment rate series and that, with the exception of the money stock series, the
rejections are stronger for the 1988-sample than the 1970-sample. Furthermore, with one exception (bond
yiclds) the evidence in support of the presence of a unit root in the series is also stronger with the 1988-
sample. Thus, our results corroborate SVD's finding that the extra data have a noticeable impact. Finally,
we observe that the only decision rule change between the 1970-sample and 1988-sample is the decision to

accept the presence of 2 unit root in the real wage series.

(f) James H. Stock (JHS)

It is a pleasure to sce a fellow classical among the discussants and I welcome Jim Stock’s comments,
JHS expresses broad agreement with the central message of "Critics” and it is apparent from his comments
that we see the material issues of both Bayesian and classical modes of inference from a very similar
perspective. His discussion of the difficulties with the Bayesian approach is characteristically lucid and
informative. His views on the likelihood principle come close to my own (ref. my earlier response to KS)
and I strongly endorse his position that the classical alternative is a viable and productive one.

Since there is so much common ground between us, I can keep my reply brief. There are two points
that deserve discussion.

1. The conventional view is that it is necessary to declare one’s inferential philosophy at the outset.
That is, either one adopts a Bayesian or a classical approach to inference. Sims (1988) and Sims-Uhlig
(1988/1991) tried to use the big differences between Bayesian and classical methods in nonstationary models
to force this choice into the open and suggest that the classical approach was in some way logically unsound.
While certainly not accepting the later proposition, JHS has given some ground to this view and he clearly
feels that the issue of choice is inevitable. Thus,

"Second, as Sims (1988) and Sims and Uhlig (1988) emphasized, because of this
JHS discrepancy between the Bayesian and classical results, researchers must take a stand
1 ay
on whether they are classical or Bayesian statisticians."

I believe that it is far too pessimistic to put the choice in those stark terms. Bayesians, and now it seems

econometric Bayesians, often try to force a choice in this way and then, like Sims (1988), try to show that
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there is something very inadequate in the classical apparatus. One of the reasons we usc the term "classical
methods" is that they are truly classic in the sense that they have endured while other approaches have fallen
by the wayside. Note that I resist the terminology "frequentist” and other terms like “Berkeleyan® (Lindley,
1990) even more strongly.

In time series applications, the ideas that underlie classical inference seem closer to those of the likeli-
hood principle and consequently Bayesian inference. After all, n time series we are always confronted with
a given trajectory and much asymptotic theory in this case (such as ergodic theory) is concerned with how
much we can hope to learn if we lived on a given trajectory indefinitely rather than had the opportunity to
sample alternative histories. Of course, the critical difference comes when in classical inference we admit
that alternative histories are possible, inducing the essential notion of *variability" that distinguishes sampling
theory. By contrast, in the Bayesian world we live forever on the given trajectory that we condition on in
seiting up the likelihood. However, having said this, it is possible to work out a Bayesian infercntial frame-
work with the usual tools of probability still alive and well. The trick is to work conditional on the data of
the trajectory up to the present observation. The apparatus of semimartingales enables us to do this in a
rather general way. Following this gepera! idea, Phillips and Ploberger (1991) show that it is possible to
bring together in a cohesive way the classical and Bayesian approaches. Interestingly an entirely new
approach to testing emerges from this cohesion, one that has the objective elements of classical theory and
the "decision making” apparatus of Bayes theory. This is a topic in which Werner Ploberger and I are
presently do much more research.

2. 1 was interested in JHS’s construction of asymptotic confidence intervals using local nonstationary
processes and his empirical application. 1 have not yet seen Stock (1990) but I can understand the general
proposition that the ADF f-ratio has asymptotics that rely only on the localizing constant “c” in JHS notation.
The result here should parallel that of the Z, test given in Phillips and Perron (1988) and my earlier work in
Phillips (1987b) where this originated. Now JHS makes the interesting suggestion of constructing classical
confidence intervals by inverting the ¢-ratio interval to find the corresponding interval for "c.” 1 have one
difficulty with this idea. The localizing constant "c" cannot be consistently estimated. For instance, using the
diffusion process notation of Appendix A of "Critics” we have (cf. Phillips and Perron, 1988, Theorem 3):

(-1 = [ 2) ([ 2]

or
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where J, is the L, projection residual of J_ on a constant and linear trend. While the confidence sets for ¢
can be constructed from the second set of asymptotics above for given £ or Z(f), the first set of asymptotics
for p show that ¢ is unidentified in the limit. Unless I have missed the point here, this means that confi-
dence sets for "c" produced in the JHS manner will not contract as T — =, ic. they do not have good
asymptotic properties. We may therefore expect the confidence sets to be rather wide for finite 7. This
does indeed seem to be the case in the empirical application discussed by JHS.

(g) David DeJong and Charles Whiteman (DJW)

"The first casualfy when war comes is truth” (Hiram Johnson: speech to the US Senate,
1917).

g.l. DJW declare war

In their earlier work (DeJong and Whiteman (1989) -- hereafter, DYW!), DIW joined Sims (1988) in
strident criticism of classical analyses of stochastic trends, advocated a Monte-Carlo based Bayesian
methodology they saw as superior and implemented that methodology with strongly worded conclusions that
summarily turned around the empirical results of Nelson and Plosser (1982). Their comments on "Critics,"
which are entitled "The case for trend stationarity is stronger than we thought,” (hereafter, DJWZ), put them
again on the offensive. Where earlier discussants see the perspectives of "Critics™ to be useful, informative
and stimulating, DJW see "Critics™ as simply "an attack on their work." Where other commentators correctly
interpret its central message, DJW choose to ignore that message and dismiss its results. No doubt DJW are
cager to defend the ground they believe they won in DIW!. But the combative posture and military lan-
guage of DIW? seem to invite further engagement. DJW clearly want to wage war.

Unfortunately, the first casualty of war is truth, Not only do DJW seriously overreact to a very small
part of "Critics” (only three paragraphs of Section 4 of "Critics” and one paragraph of its introduction actually
deal with DYW!) but in doing so they produce a litany of false citation, imputation and allegation. To wit:

(i) DJW assert
(DIW,) "He claims to adopt an "unbiased" procedure (featuring an "ignorance prior...."

Yet nowhere in "Critics” do I make such a claim or anything that remotely approaches it and the citation
"unbiased" is demonstrably false. On the contrary, in fact, I repeatedly point out that the procedure I suggest
itself suffers from bias. The downward bias of the "Critics™-posterior is well illustrated and discussed in the



simulation sections of the paper. Other commentators (SVD, for example), have noted it and remarked on
it. And in the conclusion of "Critics," I went to some effort to emphasize the ambiguities and limitations of
the objective Bayesian analysis that the paper presented (see PCBP4 quoted below). The evidence, therefore,
strongly rejects the validity of (DJW;).

(i) DIW repeatedly claim that my description of their prior is incorrect. For instance they state:

(DIW "Phillips refers to our prior as truncated and flat. Here we argue that truncation is
2 irrelevant and flatness untrue....”

Yet DIW! does employ a flat prior on the autoregressive coefficients! The latter qualification in italics is
important and is mentioned on every occasion that I discuss their prior. In Section 4 of "Critics® I go to con-
siderable lengths to emphasize this fact. In spite of their repeated claims like DJW, about the invalidity of
my description DJW pever attempt to quote me directly. And for good reason. I well understand and
repeatedly state in "Critics” that their implied prior on the largest root A is not flat when the lag length
k > 1. The point of this evasion by DIW eludes me. If they wish to avoid the criticisms I level against the
mechanical use of flat priors, they have not succeeded.

(iii) DIW twice assert, unjustly, that "Critics" ignores the cost of approximating the Jeffreys prior by the
prior that is actually used in "Critics” for the model with trend and transient dynamics. I shall deal with this
allegation (see DJW; below) at a more appropriate point in the technical discussion later on.

DJW retreat into silence on many of the key issues raised in "Critics." With reference to the central
items listed earlier in this section, they have nothing to say about II{i), II(ii), (i) and II(vi). Most surpris-
ing is their failure to address II(iii). DIJW! leans heavily on the likelibood principle (LP) for its methodology
and, indeed, LP figures prominently in its title, Yet DIW! makes no mention of the large body of divided
opinion of the relevance and applicability of LP, more especially in the time series setting in which they
unquestioningly recommend its use. DIW? adopts a similar silent posture. 1 have said much on this topic
already and given some relevant references in my earlier responses so I shall say no more of it here. Econo-

mists who read DIW! alone will unfortunately be exposed to only one very limited perspective on the topic,

g2. Technical engagement

DJIW join battle with "Critics” on four fronts. Here engagement is rejoined on each front in turn.

(1) Issues of specification

In "Critics” I illustrated the effects of model specification on inference by giving posterior distributions of
p in the general model (12) for two different choices of k (k = 1, 3). As I emphasized in "Critics,” the

analytic methods that I employed made it easy and convenient to compute posteriors for different empirical
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model specifications. The choices k = 1 and k = 3 seemed to cover the leading cases of inferest and helped
to achieve comparability with earlier work, as indeed did the model specification (12). Other choices could
easily have been made, but as we shall show below they would generally have been less relevant. One of the
objectives of "Critics" was to encourage such sensitivity analysis by showing how easily it could be done (item
II(v)). It scems that DJW do not like this message but prefer the rigiditics of a sharp prior model specifica-
tion. At a more general level, Bayes model selection procedures could be employed for discriminatory and
inferential purposes. I even indicated in "Critics” how this might proceed. DIW choose to ignore this
message also.

Both the simulations and the empirical results of "Critics” show that there is ofien substantial sensitivity
to model specification. The simulations went further than specifications of the form (12) and considered
models with moving average errors in which the sensitivities to specification are known to be strong in clas-
sical methods (cf. Schwert (1987) and Phillips-Perron (1988)). 1 believe such exercises are very important.
DIW! gave no hint of possible fragility to model specification and, now that the evidence has been presented,
DIW? prefer to ignore it.

DJW do make a strong objection to my use of k = 1. But here their objection is on very weak ground.

As indicated above, DJW! performed no sensitivity analysis with respect to lag length and uvsed k = 3
throughout, so that readers have no grounds for believing the results in DJW? are robust. On the contrary,
the results with flat priors in “Critics" make the fragility to lag specification all too clear. To support their
earlier use of k = 3, DJW? now estimate (12) by OLS with k = 1 and compute the first order serial correla-
tion cocefficient of the residuals from their regression. They tell us
(DIW3) With few exceptions, the estimates are meaningfully positive."
They perform no tests, no residual analyses, give no Bayes model selection criteria, no posterior model prob-
abilitics, and make no meantion of order selection methods. In short, they give us nothing but the summary
statement DJW,. And what a howler DJW, is! I leave it to the reader to assess for himself the statistical
import of their phrase "meaningfully positive."

Let us now see what a statistical analysis produces. Suppose we employ AIC and BIC order selection
criteria in fitting versions of (12) for different values of k. Table 4 gives the value of k sclected by these two
methods for each of the Nelson-Plosser series.



TABLE 4

Results of Model Order Selection Criteria

Series Value of lag length k
AIC BIC

Real GNP

Nominal GNP

Real GNP per capita
Industrial Production
Employment
Unemployment
GNP Deflator

CPI

Nominal Wages
Real Wages

Money Siock

Veloai

Bond Yields

Stock Prices
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It is apparent that standard order selection methods actually favor the model (12) with & = 1 for many of the
series. Indeed, BIC selects k = 1 for 11 of the 14 series. Clearly, the choice made in "Critics” was relevant
as an objective correlative and is justified by formal selection criteria. DJW? are on even shakier grounds
here in disputing the choices of model specification that were made in "Critics” than they were in DJW!
when they presclected k = 3 and kept rigidly to that specification.

DIW? argue that the presence of serial correlation of the errors in simple AR(1) models tends to bias
classical tests in favor of the unit root hypothesis. They cite the development of general unit root tests (such
as those in Phillips (1987a) and Phillips-Perron (1988)) as a remedy for this and speak of their AR(3) as "an
obvious remedy” in the same spirit. What they neglect to mention is the critical fact that empirical test
results with classical methods have shown a remarkable robustness to model specification. By contrast, as
"Critics” demonstrates, there is real sensitivity in Bayesian analyses. Classical methods compensate for the
increasing downward bias in the MLE § that occurs as we add more lags because these methods take the
sampling distribution of § into account. Bayesian methods do not compensate in this way and thereby
inherit the bias. The Jeffreys-prior approach goes some way in compensating for this but is generally not up
to this task in models with many lags and deterministic trends. Hence, there are major problems of bias and
fragility to model specification in the routine use of Bayesian methods in this context. “Critics® made this

warning loud and clear. DJW choose to ignore it and do so in the face of the evidence.
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DJW point to model specifications they have employed in other work as evidence of robustness. In
particular, they point to the structural components model representation used in DeJong and Whiteman
(1989b, 1991), hereafter DIW>*. Yet in that work they again use a rigid lag specification (in effect, k = 3
again) and make no attempt to examine sensitivities to the choice of k. Thus, arguments identical to those
made in the preceding paragraph continue to apply. In fact, in recent work with Denis Kwiatkowski and
Peter Schmidt (1991) we have found that choice of lag has a major impact on classical tests of stationarity
(ie. a,z, = 0 in DJW? notation) in such structural components models. This indeed bodes ill for the Bayes-
ian approach employed in DJW>4,

(i) Priors

DJW’s repeated false claims that my description of their prior is incorrect have been rebutted earlier in
this response. They make two additional points about the "Critics™prior. First they evoke a strong subjective
sentiment against the shape of the "Crnitics™prior.

"Fhillips’ prior assigns relatively enormous weight to explosive roots. The apparent
(DIW,) degree of certainty his prior assigns to very rapid exponential growth seems excessive to
us."

DJW tell us that

"We cenainly are not completely ignorant of p or A explosive oscillations (p
and A < -1) or rapid explosive growth (p and A > 12, say) do not warrant consid-
eration for real economic time series like the unemployment rate and industrial
production. Friors ought to reflect such knowledge; Phillips’ prior does not."

(DIWs)

In other words DJW do not wish to profess ignorance. As subjective Bayesians, they may employ priors that
reflect whatever information they believe to be relevant. No doubt it is based on knowledge of typical time
series trajectories for these economic data (including, of course, the inevitably well known information about
the behavior of these US series over the given period!). But what of the trajectories that might have been?
Explosive and explosive oscillatory behavior are not totally excluded possibilities especially over subperiods of
data. If such behavior were to occur we know a priori that tbe data would be much more informative.
Hence, the form of the "Critics™-prior. Subjunctive reasoning such as this seems not to sit well with DJW,

To my reading, their own position as articulated in DJW; is simply a dogmatic assertion. It is curious to
find this degree of intolerance in Bayesians who by their very actions are subjective. If one elects to take the
subjective Bayesian route one should also accept that others are entitled to their own priors, more especially
when they are supported by good reason. Edward Leamer in his comments provides a good example in this
regard. DJW are eager to get this principle established when it works in their favor, asserting as they do in
their leading footnote of DIW!



(DIW¢) "The priors, and any errors, are ours.”

Apparently, as subjective Bayesians, they are happy with their own priors. But not only are they unhappy
with my prior, they insist in DIW that their knowledge ought to be reflected in it as well. Such double
standards inevitably lead to a loss in credibility. To repeat but with a new twist: de rebus prioribus ad
nauseam est disputandum!

DJW’s second objection under this heading is that "Critics” employs approximations to extract analytic
posteriors. They are right on this point and I am quite unashamed about it. Approximations are often said
to be the soul of science. The approximations used in "Critics” are all well explained with full supporting
arguments and references. Little more needs to be said here. But let me remark:

1. The Laplace approximation used in (19) and elsewhere in "Critics” has very good analytic proper-
ties -- see, for example, the detailed treatment in Bleistein and Handelsman (1976), a reference given in
my earlier work (1983) on this method. The method is also known to work well in practice and I have
had past good experience with it both in the (1983) paper and in Holly and Phillips (1979) where the
quality of the approximation is numerically evaluated. I have no doubt that it is entirely satisfactory in
the present application.

2. The confluent function ¥ in (20) is approximated by the simpler analytic form (22). This form is
especially valuable because it produces a direct comparison with the posterior for the simpler AR(1)
model. Contrary to the following assertion in DIW

(DIW,) "Phillips’ approximation is a good one to the extent he is certain that p is large,”

I numerically evaluated the ¥ function representation (20) and found it to be well approximated by (22}

except for a small region around p = § where the ¥ function is very difficult to compute accurately. I

reported on this matter briefly in "Critics,” saying that

(PCBP,) "..computations comparing (20) and (22) show that (22) is quite satisfactory for
our present purposes.”

Over and above this, one can show (but I certainly will not attempt it herc) that the approximation (22)
holds analytically for the very complex case where all of the arguments of the ¥ function are large. In
short, I am content to stand by my earlier comment PCBP,.

3. In the multidimensional case the "Critics™prior is not based on the determinantal form but on the
product of the diagonal elements of the information matrix. This is a procedure used by Jeffreys (1961)
also and is an acceptable simplification, except in some cases where there are strong interactions

between the parameters (as there might be in components models of the type (6) discussed above). In
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the case of a model with transient dynamics (k¢ > 1) I approximate the diagonal elements corresponding
to the transient dynamic coefficients by 1/0%. Again, this seems a satisfactory simplification. In both
instances the reaction of DJW is to boldly allege

(DIWg) "..the cost of this appraximation is ignored.”
But “Critics" does recognize that approximations like these have consequences -- see the full paragraph
of discussion on this very issue following equation (28). That paragraph ends with the statement

"An adequate methodology for dealing with this extra degree of complication is

(PCBF) now under development and will be reported elsewhere.”

This is hardly tantamount to ignoring an issue! “Critics” is a long paper that requires a sustained effort

by the reader. But statements like PCBP, and the paragraph that precedes it in "Critics” are amongst

the easiest to read. I submit that if anyone deserves the allegation leveled in DJWy of ignoring issues it

is DJTW not 1.

(ili) Bias and parameterization

DJW claim that my arguments about the bias of flat-prior analyses are misdirected as criticisms of
DJW!, They give two reasons.

1. First they insist that their prior on A is not flat. Then they argue that because of bias in their
decision rule they employed a new "5% prior” to compensate for it. Ciearly there is a nonseguitur here.
First of all there is flatness. DJW! starts with a flat prior on the autoregressive coefficients. When
k= 1 (an empirically important case as our model sciection results show) the prior on A is also flat.
When k > 1, A is a nonlinear function of the coefficients and the prior is not flat. But the bias that is
revealed in "Critics” is still present. Otherwise DIW would not have had to make recourse to their so
called "5% prior." Unfortunately the "5% prior” is totally arbitrary and fails to deal with the uaderlying
problem. It is a prior on the trend coefficient "8" not p, it is based on a small scale (1000 replication)
Monte Carlo study with specific values of the parameters and is constructed only to make a coarse
adjustment to a tail posterior probability. As shown in "Critics” the bias involves a locational shift that
seriously misplaces the entire posterior distribution. For the model with a fitted trend the expected pos-
terior probability of {p = 1} is less than 5% -- see equation (24) of "Critics.” A much more profound
adjustment is necessary to compensate for this bias than DJWs 5% prior. Let me observe, in addition,
that discussants who object to the dependence of the *Critics™prior on the sample size should have a
heyday demolishing the "5% prior" -- it depends on specific choices of T = 50, 8 = 0.05 and e’ =10in
model (6) and relics on Monte Carlo estimates of the single tail probability PpymAp 2 0.975) from 1000
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replications. It is such a victim of specificity that there seems to be little point in giving it further serious
attention.

2. DIW claim that the results in "Critics™ are biased towards integration because of the parameteri-
zation chosen for (12):

"Second, it is in fact Phillips’ procedure which is biased, in favor of integration.
(DIW,) The bias results from the use of p, which is a poor approximation to A when higher-
order AR coefficients are important.”
When k = 1, we have p = A and the parameterizations are equivalent, so that the DIw! procedure
suffers all of the bias problems that are raised in *Critics.” When k > 1, DJW insist that A is the key
parameter, that p is "a poor approximation to A" and that "estimates of p are substantially larger than
estimates of A" (reference Table 2 in DIW?),

First let us address the question whether A is indeed the key parameter. For this is the premise on
which the rest of DJW’s assault is based. Since parametric models are all best viewed as approxima-
tions, the most sensible way of dealing with this issue in a general way is to look at the behavior of the
spectrum (of the series) at the origin, what I have called in earlier work the long-run variance. If f(3) is
the spectrum of an integrated series, then its behavior in the neighborhood of the origin is characterized

by
fA) ~¢/A% A o0

for some constant ¢ # 0. Now consider the AR(k) model

4 k-1 .
(12) Ye=aL)y, + € =0y 1 + Ej.l @Ay, ; + e, 8 ® 1id(o, o?).
The spectrum of y, has the following equivalent representations
> . . -2
(15) ) = (1/2u)ozL - pe'* - E] peth(1-e)
) -2
(16) = (1/2%)0q (1 - 2e™)| ,
where

M) = T - A2) = 1 - a(2)

and A = ma:5-|lj|. Observe that the long-run variance of y, is given by
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trvar = 2nf(0) = oX(1-p)2 = oz{l];-‘_l(l-lj)}-z.

Thus, the key parameter that determines the behavior of the spectrum at the origin is p not A. In fact,
it is not A itself but the behavior of all of the roots Ai, j =1, .., k that influence f(0) and the long-run
variance of y,. The premise underlying DIW, is therefore a colossal blunder and their criticism of
"Critics" on this ground is without foundation. On the contrary, it is the DJW! choice of parameteriza-
tion that is inappropriate.

Let me take the algebra a little further and explore the densities of A; induced by flat priors on the
autoregressive coefficients. In transforming to latent roots the jacobian is typically a linkage factor of the

form |II(A; - A;)|. Let us take the case k = 2 with roots A = 4; > 1,, say. The joint density of the
J=i

roots is
T(Ap, Ag) = (Ag = Ap).
Suppose we now truncate the distribution of these roots, as in DYWY, between limits c. and ¢’ ie.
c.512<).1<c'.

Then the marginal densities are given by

w(hy) = [M =)y = A=) - A/2AT-¢) = (/D3 -c),
and

m(g) « [ =2ddhy = (/22 - Myl -2) = (/D" -4

As is apparent from (18) the density of A = A, riscs like a quadratic over the range from c. to ¢’ reach-
ing its maximum at the upper limit ¢’. In this respect it is entirely analogous to the DIW! prior for A
(implied, as here, by a flar prior on the autorcgressions cocfficients). Note that an extensive Monte
Carlo study is not needed to determine this behavior. By contrast, the density (19) of A, falls like a qua-
dratic over the range from c. to ¢~ reaching a minimum at the upper limit,

The upshot of this analysis is straightforward. The so-called informative upward sloping prior on A
which DJW? makes such a strong point about is obtained at the cost of a downward sloping prior for
the second root A,. The second density, in effect, compensates symmetrically for the first and the net
effect is flatness, with which the analysis started. In consequence, the suggestion in DYW? that their

prior favors nonstationarity is purely illusory.



Note also that p = X; + 1, — A;A; and thus p > 4, = A provided A, < 1 and X, > 0. This
explains all the outcomes in Table 2 of DIJW2. For all series except bond yields we have § > A. For
bond yields we have A = 1.051 > 1.0 and then § < A. Again, the results obtained in DYW” numerically
are the consequence of some simple algebra.

To sum up, DIW, and often repeated similar statements in DIW? are the consequence of a fundamental
blunder concerning the parameterization of long-run behavior. In pomt of fact, DJWq should be turned on
its head! The key parameter is p, A is sometimes a poor approximation to it and the results of DIW! are
therefore biased even further in favor of stationarity.

(iv) Inference

DIW express surprise that the inferences in "Critics” do not differ more substantially from theirs. I
suspect this impression is gained by eyeballing the posteriors shown in Figures 4(i)-4(xiv) of "Critics” and by
neglecting the posteriors for the AR(1) + trend model (which as I have discussed earlier is unjustified). No
doubt they did expect bigger surprises, given the form of the "Critics” priors to which their strong opposition,
DIW, has already been recorded (see DJW,) and discussed.

Notwithstanding their interpretations of the empirical results in "Critics,” the differences are substantial
in both absolute and relative terms for many of the series, as I pointed out earlier in response to KS. For

instance, we have

TABLE §

Posterior Probabilities from "Critics"

Series Pip 2 0.975) | PpmdA > 0.975)
*Stock Prices 0.278 0.040
*Nominal GNP 0.141 0.020
*Consumer Prices 0.652 0.196

Industrial Production 0.192 0.001
*Nominal Wages 0.100 0.018

For four of these series (asterisked above) the inference of stochastic nonstationarity is strongly confirmed by
the Phillips-Ploberger test (see Table 3 earlier in the paper).

DJW find the “Critics" posteriors for the unemployment rate and for industrial production to be "absurd.
These posteriors have a strong dominant mode around p = 0.70, 0.80 and a minor mode around p = 1.25,

1.15. It is the latter that DJW find absurd. As I said in "Critics”
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"..objective Bayesian analysis of stochastic trends will sometimes produce
(PCBP,) outcomnes that are quite ambiguous due to a widely dispersed bimodality in. the
3 posterior distribution. In these cases, Bayesian methods reproduce in their own way a
type of uncertainty that we normally associate with low discriminatory power in
classical statistical tests."

No doubt disjoint Bayes confidence sets are as disconcerting to some, as disjoint classical confidence intervals
were disconcerting to Sims (1988). With respect to these two series much of the posterior probability is con-
centrated about a point (around p) that is well into the stationary region. The density goes virtually to zero
as p — 1 and then slowly increases to a low additional mode for p > 1.0. My interpretation is that the
dominant mode attaches a substantial probability to values of p comsiderably below 1 and the second mode
indicates that there is some smaller probability that the data could have been generated by a model with a
much larger p, without being at all specific about its possible value (due to the elongated, platykurtic shape
of the second mode). Thus, bimodality of this form is a signal that there is more uncertainty about p than
the usual F-posterior (which is centered on p and very close to the primary mode of the "Critics” posterior)
would indicate on its own. In other words, the objective analysis is helpful because it signals a possible
fragility that would not otherwise be apparent!
This interpretation of the empirical findings of "Critics” is in accord with Berger (1985, p. 125) who

states:

".. in attempting to achieve objectivily, there is no beiter way to go than Bayesian analysis with

noninformative priors. We will not repeat the arguments here but should mention the other

side of the coin — when different reasonable priors yield substantially different answers, can it

be right to state that there is a single answer? Would it not be better to admit that there is
scientific uncertainty, with the conclusion depending on prior belief?"

g3. Termination
"4 hit, a very palpable hit!" (William Shakespeare: Hamlet)

DJW chose two epigraphs to lead their comment DJW? one by T. S. Eliot from the same source as the
header I selected for "Critics™; the other, a well known line by Winston Churchill. Churchill was used to
signal their contention that "Critics” was wide of its mark. Far from losing the ground they believed they had
won in DJW!, DJW became exhilarated by a mistaken belief that they had consolidated their victory. To wit:
the case for trend stationarity seemed stronger than they had thought.

The engagement in (g.2) should quickly disabuse DIW of these fancies of triumph. As Shakespeare
would have it, they have sustained some very palpable hits. DJW leave the war that they initiated suffering



the indignity that they have committed misquotation (DJW,), false imputation (DJW,) and unjust allegation
(DJW,). Their flat prior methodology has been shown to suffer substantial and irrefutable bias, which is
exacerbated by their own poor choice of parameterization. In DIW1234 they persist in imposing rigid model
specifications, they elect to ignore the substantial evidence of sensitivity to lag specification and they resist
strong arguments for fragility analyses that would alert readers to the shortcomings in their work. In disput-
ing the value of reporting results from AR(1) specifications, they fly in the face of statistical evidence from
model selection criteria and they commit statistical howlers like DJW, in an attempt to muster a last ditch
defence. In short, their scholarship is questionable, their flat prior methodology stands in ruins and their
parameterization is discredited. I can only explain their illusion of Churchillian exhilaration with the thought
that the nervous system of their atrophied methodology is now dysfunctional and incapable of registering the
shock of a direct hit. In such a state as this ignorance is indeed bliss.

In finale, let us turn to the first epigraph of DIWZ, written by T. S. Eliot. No doubt the purpose of DJW
is to take some of the sting out of my own criticism by being seen to strike me publicly with my own stick
(viz. an Eliot header). Leading off DIW?2, Eliot tells us that when he comments on authors whose work he
dislikes, his views are to say the lcast highly disputable. Throughout DIW?2, DJW project an unmistakable
dislike for my work -- the comments that they have turned in are indeed a polemic. The inescapable exege-
sis is that it is their own views that are highly disputable, not mine! Of course, I wholeheartedly agree.
Their epigraph from T. S. Eliot becomes the epitaph by which we are invited by them to commemorate their
own misunderstandings. This is surely a malapropism of colossal proportion that sinks the remaining credi-
bility of their polemic like a stone!

{h) Christopher A. Sims (CAS)

Sims (1988), hereafter CAS?, and Sims-Uhlig (1988/1991), hereafter SU, were strident in their criticism
of classical unit root econometrics and unqualified in their claim that Bayesian methods offers a superior
alternative. In his comments (hereafter, CAS?) on "Critics,” CAS is less judgmental about classical methods
and now openly recognizes weaknesses in Bayesian methodology, especially as it has been applied in the
debate over trend versus difference stationarity. This is a shift of ground that I welcome.

Notwithstanding this shift in position, CAS expresses disagreement with many of the explicit suggestions
in "Critics” concerning the conduct of Bayesian inference and he reasserts some claims made in CAS! and
SU concerning the clash between the likelihood principle (LP) and conventional sampling theory asymptotics.

Taking an overview of CAS?, I believe onc major reason for our continuing disagreement is now quite clear.
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Like many of the earlier discussants, Sims’ point of departure is subjective. Sims’ priors are the embodiment
of his personal beliefs and his disagreement with the "Critics™priors stems from this perspective. On this
point of dissension my reply is a simple one. Subjective Bayesian analysis is an admissible mode of personal
statistical inference but if the results of such analysis are to be considered seriously by others, efforts must be
made to calibrate the results against some objective correlative. Readers of scientific research are entitled to
this type of sensitivity analysis. If it is not undertaken, the results of a Bayesian analysis are, like the prior,
entirely subjective and must be treated as such. They are then of much less relevance to others and their
scientific value is correspondingly diminished. "Critics™ showed that in time series models Bayesian posteriors
have an endemic bias that is inherited from the MLE. Subjective analyses of the type considered in CAS!?
and SU make no effort to compensate for this bias and should therefore be treated with even more caution
than usual.

The second source of our continuing disagreement concerns the use of the LP in inference with time
serics. CAS is content to apply the LP in time series models with no attention to any of the implications of
living on a particular time series trajectory. In doing so, he conforms with traditional Bayesian thinking and
inference proceeds in a mechanical way by the application of Bayes theorem. In "Critics” 1 questioned the
mcchanical usc of this apparatus in a time series setting and pointed out that conditioning on sample
moments that carry information about the parameters is not innocuous. Phillips-Ploberger (1991) fully
explores the effect of this conditioning and shows that Bayes inference along these traditional lines implies
the existence of a model, what we call the Bayes model, that is very different from the classical model with
which the analysis started. This change of reference frame must be taken into account in comparing Bayes
and classical methods. CAS'? and SU do not, of course, do so and on this point our disagreement is a
fundamental one. Since the technical arguments in Phillips-Ploberger are rigorous, there is no doubt which
is the correct position on this point. [ shall take the issue up again below.

Like earlier discussants, CAS gives attention to only part of the “Critics" paper in his comments, notably
items II{i), II(iii) and I(iv). The other items are either ignored or addressed only tangentially. I find the
omission of II(v) and II(vi} most surprising. II(v) is surely rather uncontroversial -- the Laplace approxi-
mation is a useful device and has many potential applications in Bayesian econometrics. II(vi) is also
uncontroversial. The sampling properties of Bayes procedures are of interest and “Critics” documents the
poor sampling performance of flat prior Bayesian methods in time series models with a unit root. We need
to take such findings into account when we assess the merit of different methods. I am puzzied why CAS?

has nothing to say on this evidence, yet still argues the advantages of a flat prior methodology.



To organize the remainder of this reply to CAS, I shall respond to the points raised in the order in
which they appear in CASZ
1. CAS? reasserts the point made earlier in SU that

".. reporting of statistical results ought to be conceived of as communicating
information about the shape of the likelihood.”

(CASy)
This is a very old perspective on inference and one that was forcefully argued in the Barnard, Jenkins and
Winsten (1962) paper (BYW) that I referenced and discussed earlier in response to KS in I(a). BIW is
uncited in CAS' and SU, yet I believe it is the original source of this approach to inference in time series.
BIW tell us:

" . when, on the evidence of a given set of data, the plausibilities of various
hypotheses are to be compared, then the primary inference is provided by the like-
lihood function. The suggestion is made that the practice of looking at the whole
course of the likelihood function should receive much more attention.”

(BIW,)

Bayesians, of course, automatically follow this advice under flat priors. CAS certainly follows the maxim
when he tells us in CAS? that
"4 scientific-reporting perspective suggests that the aim of statistical research
(CAS,) reports is to summarize the likelihood. Since a flat-prior posterior is just the likeli-
hood normalized to sum to one, it has direct appeal from this perspective.”
In this sense there is nothing new in CAS!? and SU about likelihood-based foundations of inference.

I think it fair to say that the latter suggestion in BJW}, at least to the extent that it is practically feasible,
is mow also considered to be good practice by classical researchers. The essential difference between the
Bayesian and classical approach is that classical hypothesis testing theory does not accept the first maxim of
BIW,, viz. that the likelihood function itself is the basis of assessing the plausibility of different hypotheses.
Classical theory recognizes the importance of trajectories that might have been and thereby gives weight to
such possibilities in the future. Classical theory recognizes weaknesses in the sampling properties of the
MLE and suggests procedures that compensate for these. Flat-prior Bayesian methods ignore these issues
and this is the major reason why the BJW prescriptions found little support amongst that paper’s many
discussants at the time. It is notable that BJW’s prescriptions for time series have received few followers in
statistics. Their recrudescence in recent cconometrics work is, therefore, something of a curiosity, more
especially since BIW and its attendant debate have been left unmentioned!

2. CAS? repeats the argument in SU that there is no prior that will rationalize classical p-values as
posterior probabilities for all sample trajectories and then makes the often-repeated claim:

(CAS,) This means that treating p-values as probabilities is incoherent.”
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It is a very old argument that is put forward in support of the Bayesian approach that to be rational or
coherent (with underlying axioms of individual preference) any statistical amalysis must correspond to a
Bayesian analysis. Readers will find a detailed discussion of the matter in Berger's (1985, Ch. 4) text and a
recent treatment and discussion in Berger and Sellke (1987). I do mot see that CAS!? or SU add anything to
the preexisting debate on this topic and I find their position unpersuasive and somewhat contradictory given
the advice of Sims (1989) concerning suitable critical values in unit root tests.

Note first that CAS'? and SU all omit reference to important recent work that shows it is possible to
reconcile evidence from Bayesian and classical approaches in one sided testing problems. Cosella and
Berger (1987), for instance, show that for classes of impartial priors in one sided iocation tests there is
equality between the infimum of Bayes posterior probabilities that Hj, is true and the classical p-value. Thus,
for a certain class of problems the classical p-value is on the boundary of the Bayesian posterior evidence.
Some related arguments were put forward earlier by DeGroot (1973). This work contradicts the thrust of
the argument behind CAS; because it provides a very clear sense in which Bayesian and classical measures of
evidence can be reconciled. The one sided tests that are used in assessing evidence for the presence of a
unit root against stationarity make this theory of reconciliation very relevant to unit root tests. 1 personally
find this theory much more persuasive than the simulation exercises conducted in SU.

Notwithstanding the above arguments, there is of course no reason to insist on a Bayesian interpretation
of a classical p-value. In classical theory the concept of a probability that the null hypothesis is true has no
meaning, whereas the interpretation of the p-value as a sampling error rate is objective and well understood.

One further point on this matter should be made. Bayesians often argue that p-values are misleading
measures of evidence provided by the data against the null hypothesis. In particular, it is often argued that
p-values overstate the evidence against the null hypothesis. Berger and Sellke (1987) give a recent discussion
of the matter and quote Jeffreys (1980) as saying

".. that differences up to twice the standard error usually disappear when more or
J) better observations become available and that those of three or more times usually
persist.”

In other words, p-values of around p = 0.05 for a t-ratio of 2.0 overstate the evidence against the null and
that in J;’s assessment a f-ratio of 3.0 is more realistic for the purposes of rejection of the null. Note that as
far as tests of a unit root are concerned, classical unit root asymptotic theory puts the ¢-ratios required for
rejection around 3.0, as distinct from classical stationary asymptotics which put the value at the more usual
20. In this context, Sims (1989) recommendation to economists to use critical values around 2.0 in unit root

tests seems curiously at odds with his views about the irrationality of p-values. Given the evidence provided



by Berger and Sellke (1987) and others on the misleading nature of p-values and the recommendation of
Jeffreys in Jy, it would be natural to expect Bayesians to be bappier with critical values of 3.0 rather than 2.0.

Finally, on this matter of the rationality of Bayes methods let me quote Berger (1985, p. 121) who tells
us that

"4 Bayesian analysis may be ‘rational’ in the weak axiomatic sense, yet be termble in a
practical sense if an inappropriate prior distribution is used.”

In short, even Bayesians themselves are sensitive to the inferential distortions that can ensue from the use of
poor priors. The blessing of rationality seems to be of little practical advantage when the maxim for the
practitioner is: De rebus prioribus caveat emptor!

3. CAS? repeats the claim made in SU that "classical methods in a sense ignore information® about
8, = 8(Z%72_)"V/2. I rebutted that claim in Section 2(d) of "Critics,” pointing out, inter alia, that certain
classical tests actually depend on &2 and are known to be most powerful in a neighborhood of the alterna-
tive, I see no argument in CAS? against this point.

CAS? does confront the argument made in "Critics" that Bayesian conditioning is not innocuous and
CAS? also suggests that my arguments about the effects of conditioning on the sample moment 4, = E’btf_l
lead to a "semantic confusion.” CAS? tells us that

"Uhlig and I tried to provide some intuition for how it can be that, despite the
(CAS,) downward bias in the OLS estimate p of p, the likelihood for p tums out to be
symmetric about p."

The real reason for the symmetric Gaussian shape of the likelihood for p (and hence that of the flat prior
posterior considered in SU) is that the density from which this likelihood is obtained is taken with respect to
a different probability measure, one that arises specifically because of data conditioning, The argument is
laid out in full in the Phillips-Ploberger (1991) paper cited carlier. But I shall bring attention to the central
issues here. For the AR(1) model as in equation (1) of "Critics," let k = p-1, P; be the probability

measure of ¥, = {y,}] and P, = Pl. Then, the likelihood function given Y, can be written in terms of h as

(20) L, = dP?/dp, = expl(1/2 A, Jexp-(1/2)(p - )4,

(see equation (39) of Phillips-Ploberger (1991)) where 4, = p, - 1 and B, is the OLS/MLE of p based on
Y,. From (20) it is apparent that only the second factor for L, is important for likelihood-based inference
about p and this is the factor that produces the symmetric Gaussian shape about §,. Note that L, may be

written in a more revealing manner as follows:
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21 L, = P; Y zem{(l/z)ﬁfﬂn}l"’(ﬁm A

@) * N(py A;).

In (22) we get the direct Gaussian posterior for p about $,, that applies under a flat prior. Note from (20)
and (21) that deviations of p from $, are measured in units of 4, = E]y;_;. This changes the gcometry of
inference. Conditional on 4, the likelihood for p and the posterior is Gaussian, but the conditioning under
which this is truc is certainly not innocuous, The passage to the posterior via the proportionality sign that
appears innocuously in (22) eliminates the first factor of (21). This factor, as the Phillips-Ploberger paper
shows, changes the reference measure from P, (the measure of the unit root model) to a conditional Bayes "

model measure in which p,, figures prominently, viz.

(23) Yn+1 = Pp¥n t Upe
There is no "semantic confusion” here. Bayes methods involve implicitly a change in the model and a change
in the underlying probability measure. This is certainly not innocuous and, as Phillips-Ploberger show, has
major implications for inference.

When CAS says

"I assume Phillips accepts Bayes rule as a formula for calculating conditional
(CASy) distributions from a given joint distribution — this formula is not what is af issue
between Bayesians and frequentists”

my response is this: Yes I accept the formula but T also accept what the operation of Bayes rule involves in
terms of the implied model and the reference measure. One major import of the Phillips-Ploberger analysis
is to make these implications of Bayes rule in time series models explicit, it would seem, for the first time.

Finally, the artificial expeniment described in SU where values of p are drawn at random from a uniform
distribution is, in my view, irrelevant for conditional inference, If p is truly random and its distribution
known to be uniform then data like Y, can tell us no more about p. By contrast when nothing is known
about p, Bayes inference is entirely trajectory based on Y,. The Bayes model that is implied by the opera-
tion of Bayes rule is then evolutive and has its own probability measure. In other words, when the true
mechanism that generates p is unknown, the Bayes approach is to continually revise the model as the
trajectory evolves, just as in (23) above. This is the reason why the conditional distribution of p in Bayes
inference is symmetric about §, and this is why conditional inference is fundamentally different in the prob-
abilistic sense. From my reading of CAS!? and SU I see no appreciaﬁon of this point at all. On this matter,
then, we remain fundamentally divided.
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4. In "Critics" I pointed out what 1 saw as the many disadvantages of using levels VAR’s in empirical
research. CAS says be is unconvinced by these, while accepting that the points made have some validity. He
concludes that my own suggestions amount
(CASy) ".. to @ recommendation in favor of rose-colored glasses.”

These issues over VAR’s are tangential to our main methodological debate over the specifics of good
Bayesian inference. 1 stand by the statements I made in "Critics” and shall therefore confine myself in this
reply to a few additional points.

(i) VAR’s in levels are known to perform poorly even in forecasting exercises unless they are
heavily restricted by prior information that includes unit root priors. Such prior information is, in my
perspective, at least as arbitrary as the identifying restrictions in structural models claimed earlier in
Sims (1980) to be incredible. Amnalysis of impulse responses requires further identifying information.
Moreover, impl.ementation of VAR priors is usually very mechanical (e.g. the first order autoregressive
coefficient is typically pulled towards unity for all variables in the model) and therefore almost certainly
wrong, ignoring for instance the presence of some degree of cointegration in most macroeconomic data.
Thus, levels VAR’s inevitably pay a penalty for overparameterization (in terms of additional variability)
and another penalty for misspecification (insistence on an excessive number of prior unit roots). Finally,
when VAR'’s do implicitly estimate long run structural relationships they do so with bias and that bias is
known to be nonnegligible in finite samples.

(i) Levels VAR’s provide an unsatisfactory basis for classical causality tests. Sims, Stock and
Watson (1990) originally pointed out some of the difficultics here and a recent paper, Toda and Phillips
(1991), provides a complete study of causal inference in this context, ending up with the conclusion that
causality testing in levels VAR’s is not to be recommended.

(i) ECM’s do offer consistent testing procedures for unit roots, the dimension of the cointegration
space and optimal estimation of the cointegrating vectors. These systems also commence from an
atheoretical unrestricted format that is actually identical up to parameterization to a levels VAR. In the
face of this latter correspondence, the decision to work with levels VAR’s and their induced impulse
responses is, in effect, a decision against statistical inference. If to use ECM’s and more parsimoniously
parameterized structural models is to be regarded as a recommendation in favor of rose-colored glasses,
as stated in CAS,, then I much prefer this to the alternative that CAS seems to embrace of ignoring sta-
tistical inference issues altogether. The half way house of Bayesian inference in multivariable time series

models would be a desirable meeting place between these two alternatives.



43

(iv) Structural ECM models are now known to be capable of parsimoniously encompassing VAR’s,
as recent work of Hendry and Mizon (1990) shows. In such cases the arguments in favor of using
structural ECM models in empirical work rather than unrestricted VAR’s seem to me to be compelling.
5. CAS? is critical of the "Critics™prior (= (p) in the notation of I(d) above) telling us that

(CAS,) "From a likelihood-reporting perspective the sample-size dependence of these
priors is perverse."

and

"The heavy weight placed by the prior on exremely explosive models is also
unreasonable.”

(CASy)
This opposition is grounded on subjectivist Bayesian principles, whereby the prior is deemed to represent the
prior beliefs of the investigator. I have dealt with similar subjectivist comments from other discussants
earlier (see, especially, my comments on KS, EL and DJP). The need for objective Bayesian inference in
time scries to which "Critics® responded is given little attention in CAS?Z.

CAS is especially critical of the sample size dependence of x1(p), telling us that

"... since no reader will have a prior that varies with the sample size, it must be
rare that the Jeffreys prior is close to a reader’s beliefs."

(CASg)
But the prior =1 (p) is not intended to represent a reader’s belief in any conventional sense and it is certainly
not subjective. So the attempt in CAS? to force the approach within subjectivist Bayesian thinking is certain
to fail. Note that I made no attempt to de this in "Critics,” but instead argued strongly in favor of its impar-
tiality as a model-based reference prior that provides an objective correlative for other priors like the flat
prior,

Why does =’ (p) depend on T? CAS, KS, DIP and others are genuinely puzzled by this. The answer is
simple. A priori we know that the information content of autocorrelated data depends on the number of
observations and does so in the special way that this information increases nonlinearly with the value of p.
The sample size dependence of nl(p) reflects precisely this idea. In models with independent observations
information about a parameter collects uniformly as T — = and objective priors are independent of T, In the
AR(1), however, we know that the rate of accumulation of information is explosive in T for p > 1. This
knowledge is incorporated in the "Critics” prior and it compensates for the fact that the unscaled likelihood
converges at the same rate in T in local neighborhoods of . Thus, from (21) we have the following unscal-

ed likelihood for T = n



24 L, = exp{~(1/2)(p -8,)4,}
Now let
(25) p = p, + hla, with a, = x"(py)

where p, is the true value of p. For p in the neighborhood (25) we have the following (weak) Limit on L,
(26) L = exp{-(1/20 %K)

where K is the (weak) Limit of a;°4,. Equation (2) is a special case of this for py = 1 and with K, =
JsW2. Under a flat prior I:,, delivers the posterior directly with a scaling that is uniform in p. Under the
*Critics" prior the likelihood is rescaled as n”(p)f,,. This scaling compensates for the symmetry of I-:,, about
p, and incorporates the knowledge that as n increases information about p accumulates much more rapidly
on the p > p, balf line than it does for p < p,. The limit, however, is still proportional to L because the
information in the data (or likelihood) dominates when 7 — =,

The above argument shows that CAS? is wrong in claiming that the likelihood does not dominate as
T — = Thus, CAS? telis vs that

"Whatever the subjective prior, so long as it is characterized by a continuous pdj,
the posterior will under usual regularity conditions come to resemble the likelihood
" function (the flat prior posterior pdf). This argument applies 1o Jeffreys priors in usual
applications as well, since in the usual context Jeffreys priors do not depend on
(CAS,y)  sample size. The Jeffreys priors for this time series application, however, depend so
strongly on sample size that this justification for them fails — posteriors from these
Jeffreys priors have infinite variance in every sample size, whereas posteriors from any
proper subjective prior with continuous and bounded pdf eventually have finite
variance that shrinks to zero with sample size.”

But finite variance is not a necessary condition for convergence! It is a common phenomena for classical
estimators {¢.g. FIML) to have no integer moments in any finite sample size but still converge. The fact that
the "Critics" posterior bas Cauchy like tails for every finite # does not destroy its convergence properties.

6. 1 agree with CAS? that issues of time aggregation are important. The simplest and most coherent
way to deal with such issues is to embed the model in a continuous time framework. Then the sampling
interval becomes a parameter in the likelihood and prior, just as the sample size. I raised this possibility
earlicr in responding to KS and will say no more about it here. Note that if one really does want to use a
subjective prior that drops away sharply for p > 1 the e-priors given in (3) give a nice way of doing this.
Zivot-Phillips (1991) have a very extensive analysis that utilize this type of prior,
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7. In models with trend terms CAS argues that

".. the Jeffreys priors retain their same general shape while the classical distri-
bution theory shifts dramatically. When p and B in Phillips’ model with trend are
non zerg, classical asymptotic theory yields Gaussian distributions for the estimated p
even in the presence of a unit root."

(CAp)

The critical hypothesis in CASy; is that B » 0. When B # 0 in a model with p = 1 there is a quadratic
trend in the model, which is quite different from the lincar trend that applies for p < 1. In considering the
possibility of a model with deterministic trend and a umit root, it is now conventional to set B = 0 but retain
the trend term in the regression. This is then equivalent to taking a deterministic trend out of the data prior
to the analysis of the presence of a unit root. In that case the usual unit root asymptotics apply but with
detrended Brownian motions.

An alternative is to employ the more parsimonious componcnts representation (6) in which case we
again get nonstandard limit theory, as shown in Schmidt-Phillips (1989). Bayesian theory runs into some
difficulty when we employ the components representation because of the degeneracy in the explicit param-
eterization (7) at p = 1. The singularity that is induced in the flat prior at p = 1 by this parameterization is
mentioned in CAS? and I have discussed it earlier in II(e) in response to SVD. This singularity takes the
form |1-p]¥ (¢ = 1, 2) and produces a nonintegrable improper prior and nonintegrable improper
posterior. This anomaly is the consequence of forcing an overparameterized reduced form to accept a
degenerate parameterization. The approach I adopted in "Critics™ avoids these difficulties. The solution to
these difficulties suggested by CAS? and SVD is the same -- a proper normal prior on the intercept. This is
clever but arbitrary, and sensitivity of the posteriors to this choice is warranted. Figure 3 of CAS? shows the
marginal posteriors for p for two choices of this arbitrary prior against the posteriors for a flat prior and for
stationary Jeffreys prior. The graphs demonstrate a striking fragility to the choice of prior. Although they
are not given, the tail posterior probabilities for near nonstationarity, i.e. P(p z 0.975), clearly differ enor-
mously for the different priors, with those from the flat prior being the smallest. I take this as confirmation
of the conclusion in "Critics® concerning fragility and an endorsement of the theme of this reply concerning
the need for an objective correlative in assessing fragile posteriors.

8. CAS? concludes that

"The argument that flat priors are unreasonable when the model contains constant

¢ 12) and trend is stranger than I had realized,”

but asserts that

(CAS,5) "In the homogeneous model, with no constant or trend term, a flat prior seems sensible.”



Apparently, we still differ on CAS,;. There is no doubt that the simulation evidence in "Critics* shows up
the poor sampling properties of flat prior Bayesian methods in the homogeneous model as well as the model
with deterministic trend. Some procedure that compensates for the bias in the MLE § is required. The
*Critics” prior seems to me to be a good objective mechanism for doing this and, even in a subjective
approach, there would scem to be no real argument for not using it as an objective correlative in assessing
the fragility of posteriors that are based purely on subjective priors. I see no argument in CAS? against this
proposal.

To sum up, 1 think there is good reason to believe that this debate has narrowed the ground that divides -
us on some aspects of Bayesian inference. CAS has offered his comments on "Critics” in a productive spirit
that is characteristically thoughtful and I welcome his further contribution. Much of the ground that still
separates our thinking concerns the foundations of Bayesian inference and the operational implications of the
likelihood principle and Bayes rule. I hope that we will have a further opportunity to address these diffcn;-
ences once the ideas and methods of the Phillips-Ploberger (1991) paper have been assimilated.

III. CONCLUSION

There can be no dispute that scientific interest in Bayesian methods has grown sharply in recent years,
The phenomena has affected many disciplines besides econometrics within the larger statistics community.
And Bayesian methods of modeling learning mechanisms have begun to attract interest amongst economic
theorists as well. The challenge to the applied econometrician is to find good methods of implementing the
Bayesian approach in practice and objectively assessing the findings so that they are useful to a wider scien-
tific audience. Time series models and data present special difficulties in this regard. The *Critics" paper
pointed out these problems, raised some new perspectives and offered some solutions. The comments of the
discussants have added further thoughts and evidence on these issues. I thank them all for their comments
and I thank the Editor and the Joumal of Applied Econometrics for supporting a productive exchange of

ideas on this important topic.



47

IV. REFERENCES

Barnard, G. A., G. M. Jenkins, and C. B. Winsten (1962). "Likelihood inference and time series,” Journa! of
the Royal Statistical Society, A, 125, 321-372,

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. New York: Springer Verlag (2nd
Edition).

Berger, J. O. and M. Delampady (1987). "Testing precise hypotheses," Statistical Science, 2, 317-352.

Berger, J. O. and T. Sellke (1987). "Testing a point null hypothesis: The irreconcilability of p-values and
evidence,” Joumal of the American Statistical Association, 82, 112-122,

Bleistein, N, and R. A. Handelsman (1976). Asymprotic Expansions of Integrals, New York: Holt, Rinehart
and Winston.

Cosella, G. and R. L. Berger (1987). "Reconciling Bayesian and frequentist evidence in the one-sided testing
problem,” Jounal of the American Statistical Association, 82, 106-111.,

DeGroot, M. H. (1973). "Doing what comes naturally: Interpreting a tail area as a posterior probability or
likelihood ratio,” Joumal of the American Statistical Association, 68, 966-969.

deJong, D. N. and C. H. Whiteman (198%a). *Trends and random walks in macroeconomic time series: A
reconsideration based on the Likelihood principle,” Working Paper No. 89-4, Department of Economics,
University of lowa. To appear in Journal of Monetary Economics.

(1989b). "Trends and cycles as unobserved components in US real GNP: A Bayesian perspective,”
Proceedings of the American Statistical Association, Business and Economics Section, 63-70.

(1991). "The temporal stability of dividends and stock prices: Evidence from the likelihood func-
tion,” Working Paper No. 89-3, Department of Economics, University of Iowa, to appear in Amenican
Economic Review.

Ghosh, J. K. (1988). Statistical Information and Likelihood: A Collection of Critical Essays by Dr. D. Basu.
New York: Springer Verlag.

Hendry, D. F. and G. Mizon (1990). "Evaluating dynamic econometric models by encompassing the VAR,"
mimeographed, Oxford University.

Hinkley, D. V. (1983). "Can frequentist inferences be very wrong: A conditional ‘Yes’,” in G. E. P. Box, T.
Leonard and C.-F. Wu (eds.), Statistical Inference, Data Analysis and Robustness. New York: Academic
Press.

Holly, A. and P. C, B. Phillips (1979). "A saddlepoint approximation to the distribution of the k-class esti-
mator in a cocfficient in a simultaneous system,” Econometrica, 47, 1527-1547.

Jeffreys, H. (1961). Theory of Probability, 3rd Edition. London: Oxford University Press.

(1980). "Some general points in probability theory," in A. Zellner (ed.), Bayes Analysis in Econo-
metrics and Statistics. Amsterdam: North Holland, pp. 451-454.

Kwiatkowski, D., P. C. B. Phillips and P. Schmidt (1990). "Testing the null hypothesis of stationarity against
the alternative of a unit root: How sure are we that economic time series have a unit root," Cowles
Foundation Discussion Paper No. 979.



Lindley, D. V. (1990). "The 1988 Wald Memorial Lectures: The present position in Bayesian statistics,”
Statistical Science, 5, 44-89.

Nelson, C. R. and C. Plosser (1982). "Trends and random walks in macroeconomic time series: Some
evidence and implications," Jounal! of Monetary Economics, 10, 139-162.

Phillips, P. C. B. (1983). "Marginal densities of instrumental variables estimators in the general single
equation case,” Advances in Econometrics, 2, 1-24.

(1987a). "Time serics regression with a unit root,” Econometrica, 55, 2T7-301.
(1987b). *Towards a unified asymptotic theory for autoregression,” Biometrika, 74, 535-547.

(1991). "To criticize the critics: An objective Bayesian analysis of stochastic trends,” Journal of
Applied Econometrics.

Phillips, P. C. B. and P. Perron (1988). *Testing for a unit root in time series regression,” Biometrika, 75,
335-346.

Phillips, P. C. B. and W. Ploberger (1991). "Time series modeling with a Bayesian frame of reference:
1. Concepts and iltustrations,” Cowles Foundation Discussion Paper No. 980.

(1991b). "Time series modeling with a Bayesian frame of reference: II. General theory and appli-
cations,” in preparation.

Schwert, G. W. (1989). "Tests for umit roots: A Monte Carlo investigation,” Journal of Business and
Economic Statistics, 7, 147-160.

Schmidt, P. and P. C. B. Phillips (1989). "Testing for a unit root in the presence of deterministic trends,”
Cowles Foundation Discussion Paper No. 933.

Schotman, P. and H. K. van Dijk (1991). "A Bayesian analysis of the unit root in real exchange rates,”
Joumnal of Econometrics (forthcoming).

Sims, C. A. (1980). "Macroeconomics and reality,” Econometrica, 48, 1-48.

(1989). "Comment on S. Durlauf, ‘Output persistence, economic structure and the choice of stabil-
ization policy’,” Brookings Papers on Economic Activity, 1989:2, 125-129.

Sims, C. A., J. H. Stock and M. W, Watson (1990). “Inference in linear time series models with some unit
roots,” Econometrica, 58, 113-144,

Sims, C. A. and H. Uhlig (1988/1991). "Understanding unit rooters: A helicopter tour,” Federal Reserve
Bank of Minneapolis Institute for Empirical Macroeconomics, Discussion Paper No. 4. To appear in
Econometrica.

Stock, J. H. (1990). "Confidence intervals for the largest autoregressive root in US macroeconomic time
series,” UC Berkeley manuscript.

Toda, H, and P. C. B. Phillips (1991). "Vector autoregressions and causality,” Cowles Foundation Discussion
Paper No. 977.

Zivot, E. and P. C. B. Phillips (1991). "A Bayesian analysis of trend determination in economic time series,”
manuscript, Yale University.



density

20 30 40 50 60 70 80

10

Prior Densities

T

critics—prior. - / \

Leamer(i)—prior.. __ . __ . p

Leamer(ii)—prior—_ _ _ _

0.9 0 1.1
Figure O(i): Prior Densities

1.2



Prior Densities

18

1 I ¥ | o
critics—prior. -
N Leamer(i)—prior. — . — .
Leamer(ii)—prior_ _ _ _
>N
a4
= w -
n
_
Q
-
Dot
©
/
ol r \ i
; .
I \
! \ "
! \
) .
S} A l ; 1 ! 13 1 ] et \ i
0.6 0.7 0.8 0.9 1.0 1.1

Fi‘gure O(ii): Prior Densities

1.2



Posterior Densities

w L 1 T T L T T | T |

critics—prior. model = AR{(1) + trend

F—prior. . . .

Leamer—prior. _ _ _ _

density

A 1 |

04 06 08 10 12 T4 1.6
Figure 1: Unemployment rate: 1890-1970

o




Posterior Densities

16 20

density
12

8

L 1 1

critics—prior. o model = AR(1) + trend

F-prior. . __ . __. |

Leamer—prior. _ .. _ _

1.4

L i

0.6 ‘0.8 o 12 .
7. Real Stock Prices: 1871—-1970



	Bayesian Routes and Unit Roots: de rebus prioribus semper est disputandum
	Recommended Citation

	tmp.1623960708.pdf.kxFQB

