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ABSTRACT

This paper analyses whether inclusion of a statistically independent random walk in a vector
autoregression can result in spurious inference. The problem was raised originally by Ohanian (1988). In
a Monte Carlo simulation based on the VAR's estimated by Sims (1980b, 1982), Ohanian found that
block exogeneity of the genuine variables with respect to an artificially generated random walk variable
was rejected too often. In the present paper we attempt a full analytical study of this problem. It can
be shown that if the genuine variables are nonstationary, the Wald statistic for testing the block exogene-
ity hypothesis does not have the usual asymptotic chi—square distribution. This result is consistent with
Ohanian’s finding. Furthermore, the derived asymptotic distribution is free of nuisance parameters so
that we can unambiguously determine the effect of including the random walk. Interestingly, it can also
be shown that if the genuine variables of the model are stationary, the asymptotic distribution is still chi-

square in spite of the inclusion of the random walk.

Original draft: September,1890

Completed version: March, 1991

JEL Classification: 211

*The authors thank Glena Ames for typing the completed version of the manuscript of this paper.



1. INTRODUCTION

Vector autoregressions (VAR's) have been used in a wide variety of econometric applications.
Although most economic time series are belicved to be nonstationary and difficulties in dealing with
levels of such time series are well known (e.g., Granger and Newbold, 1974 and Phillips, 1986), several
recent studies in this field have analysed potentially nonstationary data without detrending or differenc-
ing. Some prominent examples are Lawrence and Siow (1885), Litterman and Weiss (1985), and Sims
(1980, 1982b).

Ohanian (1988) questioned whether the use of nonstationary data in VAR’s can result in spuri-
ous inferences, and he conducted a simulation study based on the empirical VAR'’s estimated in Sims
(1980b, 1982). Ohanian added an artificially generated random walk (RW) variable to the Sims®' VAR
model of money, real output, aggregate prices and interest rate, and estimated the resulting five variable
VAR. Ohanian's simulations showed that block exogeneity of the genuine variables with reepect to the
independent RW was rejected too often. This study uses actual data in conjunction with the generated
RW and therefore suffers from two potential drawbacks: (i) The model is not necessarily the true data
generating mechanism; and (ii) The observed effects are conditioned on the particular realization of the
empirical time series.

A general asymptotic theory for inference in multiple linear regressions with integrated processes
(i.e., processes generated by ARIMA type models) has recently been developed by Park and Phillips
(1988, 1989), Sims, Stock and Watson (1990), and Tsay and Tiao (1990) among others. (See Phillips,
1988, for a review of methods and results on this topic.) Sims, Stock and Watson (1990) concentrated on
VAR’s and derived, as an example, a nonstandard asymptotic distribution of the Wald teat statistic for a
Granger noncausality hypothesis in a trivariate VAR model. Though it is closely related to Ohanian’s
problem, their expression for the distribution is complex and involves nuisance parameters in general so

that we cannot see either the direction or sise of the bias caused by nonstationarity from their results.



This paper provides a full analytical study of the problem raised by Ohanian (1988) using the
methodology developed by Park and Phillips (1988, 1989). In fact, it can be shown that the Wald statis-
tic that is of central interest in testing block eﬁ:ogeneity has an asymptotic distribution which is free of
nuisance parameters. This distribution can be computed numerically and the effect of the generated RW
on inference can be determined unambiguously. Indeed, some simulation results of Nankervis and Savin
(1987) that are already published shed light on the problem.

The plan of this paper is as follows. In Section 2 the model for analysing the Ohanian’s exogene-
ity test is presented. We consider two cases: (i) the case in which the genuine variables are I(1) i..,
integrated of order one, and (ii) the case in which they are I(0), i.e., stationary. The derivation of the
asymptotic distribution of the Wa]ld statistic is given in Section 3. The required treatment and the
results will differ in each of the above cases. Some concluding remarks are made in Section 4 and the

proofs of the lernmas we need in the body of the paper are given in the Appendix.

2. THE MODEL

Following Ohanian (1988), consider the n—vector time series {yt} generated by the p—th
order VAR mode]
) v, = o+ AL, +u,

where A(L) = E?_IAJ.LJ_I ) {ut = (ult' - unt)’} is an ii.d. sequence of n dimensional random
vectors with mean gzero and covariance matrix Eu such that Eluitl 246 <o forsome 6>0. Eu is
a;suined to be a positive definite matrix. y, may be I{0) or I{1), and if I{1), it may be cointe-

grated. Let {{t} be a RW1 generated by

@) GE gt

i does not change the results in this paper if we take {Et} to be a general vector I(1) process with
innovations that are stochastically independent of u, . However, we shall assume £t to be a scalar,

t
independent RW following the Ohanian model.



where {et} is a sequence of ii.d. random variables with mean sero and variance arf such that

Elet|2+6 < o for some § > 02.
Suppose that an econometrician estimates the regression equation
(3) y, = a+Al)y,_, + ALK, +u,

where t=1,..,T, Bl)= Elj)_lﬂjLJ_l , and the symbol " " " pignifies "estimated". The lag
length (p) is assumed to be specified correctly. Suppose further that the econometrician wants to know

if A is block exogenous in the n+1 variable system (y ;, ft)' and tests the hypothesis
(4) ﬂ1=---=ﬂ =0.

This is equivalent to the lagged §'s not "causing" Y, in the Granger sense.

Our question is whether this econometrician can correctly infer block exogeneity of ¥, with
respect to { X by appealing to conventional asymptotics for Wald tests. In order to answer this question,
QOhanian generated ft by a Monte Carlo simulation and used for A the post—war U.S. data on
money, real output, price level and interest rate. He found that the null hypothesis (4) was rejected too
often.? Here we shall provide an analytic study and derive an asymptotic distribution of the Wald sta-
tistic4 for testing the hypothesis (4).

Define

a7 o + ’
xt - (yt—l’ ey yt__P: t—1" " ft—p) '

which is an (n+1)p—vector, and write (3) as

iAgsumptions on the innovations u, and A could be weakened by allowing for martingale differences.

Subsequent analysis would differ only in terms of the central limit theory we utilize in our asymptotics.

3He also found a moderate effect on the system’s relative variance decomposition. But since the least
squares estimators of the coefficients and the covariance matrix in nonstationary regressions arc consis-
tent, this observation is best interpreted as & small sample or data conditioning effect.

4Ohanian used the likelihood ratio test statistic, which is asymptotically equivalent to the Wald statistic
that we consider in our setting.



where I = [Al, vy Ap, ﬁl, ey ﬂp] . Then, the hypothesis (4) becomes
(5) IIR=0 or (In @ R')vec(H) =0,

where Ig is a g x g identity matrix for any integer g,
0
R= { ] (n+1)p x p
I
p

and vec(-) is the vectorization operator that stacks the rows of the argument matrix. Since inclusion of
constant terms in the regressions is equivalent to demeaning the data prior to estimation, the Wald sta-
tistic of interest with respect to testing (4) can be written as
i .4 -1 X
¥= vec(Il)’(I_® R) [(In e R’)[Eu ® (X'Q,X) ](1n ® R)] (1n ® R/ )vec(Il)

-1

=u[ﬁR[R'(ifqli)‘ln] R'ﬁ'f:j] ,

where Ql = IT - TuliTi,]’:. ( ig is a g—vector of ones for any integer g), 2‘1 is the least sguares
estimator of Eu , and X’ = (il, vy ET) .
The asymptotic distribution of the Wald statistic and its derivation will differ depending on

whether A is I{1) or I(0) . Thus, we need to consider the two cases5 separately:

1 IIn — A(L)L| = 0 has at least one unit root and the rest of the roots are greater than

unity; |

2. All of the roots of |In - A(L)L! = 0 are greater than unity.
Once the asymptotics for case 1 are derived, however, it is a straightforward task to obtain the corres-
ponding results for case 2. Hence, we shall discuss the former case in detail first and later give only a

brief explanation for the latter case. Note that case 1 allows for cointegration among the variables in the

vector A fn22.

5We exclude by assumption the possibility that ]In - A(L)Ll = 0 has a root smaller than one.



3. LARGE SAMPLE ASYMPTOTICS

3.1. The Nonstationary Case

In this subsection we assume that the sequence {yt} is I(1) and may be cointegrated with k
linearly independent cointegrating vectors where 0 (k< n—1. Let C be an n x k matrix of the
cointegrating vectors, We may assume that C‘'C = Ik without loss of generality. We can write (1) in

an error correction model format as

— * ’
(6) Ayt =z=a+ A (L)Ayt’_1 +IC Vi1 +u,
where

p—1 . p
@)= B AT with At=— 3 A
j=1 4 i=j+1

and T isan n x k matrix of full column rank such that I'C’ = A(l) — In . If k=0, thereis no
C and {yt} has a VAR representation in first order differences.

We assume that a ¢ B(T) where T(:) denotes the range space of the argument matrix. This
implies that some or all of the variables in A have a time trend component® as we see shortly. By

assumption Ayt is I{0) with some mean u and there exists 8 Wold representation such that
(M Ayt =p+ O(L)ut

where ©(L) = E?_OGJ.LJ . Define A7 0 = G(L)ut with 1_10 =Y Then we have for each t
(8) ¥, = pt 4+ 7, -

Note that C’pg must be equal to sero for C’ ¥ to be stationary (unless there is only stochastic
common trending). Since i € I(C)J' (i.e, C'p=0) where T(-)l is the orthogonal complement of
%(-), there is an n x (n—k—1) matrix G such that G) = UC)" and G'G= I where

G = [G, u(p’ P)—1/2] . Next, substituting (7) and (8) into (6) gives

’ - * * - ’=
(6”) p+ 87, =a+ AYp+ AYL)AR,_, +TC’q_, +u,,

6If a€ R(T), then A does not possess a time trend, and the asymptotics for this case will differ

slightly as we discuss later.



from which we have
p=a+ A*l)p+Tr

since Aﬁt has mean sero by definition, where r is the mean of the vector C’ ?;t = C'yt (for any t)
which is stationary by assumption. Define an n x (n—k) matrix S of full column rank such that

1(8) = 1(1‘)"' . Then we have from the last equation
S/(L, = A% =8"a.
Furthermore, since CC’ + éé’ = In and C'u=0,
51— A*(1))GG’p=S’a,
ie.,
Gu=[5"(1 — A*(1)G S a.
Premultiplying G on both sides and noting that p= (CC’ + GG’ Ju = GG’ 6, we have
b= f}[S'(Irl - A*(l))é]_IS’a . Note that if a € B(T), p=0 and A does not have a drift or a
deterministic trend. We also deduce that
r= (DT 7T/ — AXD)GIS (1 ~ AH1)E] TS e~ (0'T) e
Now we have from (6/)

A?]t = A"‘(L)Aﬁt_1 + I‘((.‘.’?;t'_1 -7+ u, .

Next, define the vector n, = ?]t —Cr. Then C’qt has mean sero and A?;t = Aqt . Thus, the I(1)

process 7, satisfies

— * ’
(9) Af]t = A (L)Ar‘pt_1 + I'C 7, tY, -
and

Note that C is a matrix of the cointegrating vectors of (A also,



Unlike regressions with stationary regressors, T_IETiti; does not converge to a positive defin-

ite matrix. Hence, we need the following transformation to separate each component in :-r.t of different
stochastic order of magnitude, so that the sample moment matrix converges properly when it is standard-

ized appropriately.

We define the matrices:

1 0
-1 1
-1 1
D= e exe
-1 1
- 0 _1J
Hla 0
H = ,mxm, with B, =[D®&I ,i ®C(]
1 1 la n’p
0 D
H2 0
B = | “® , mxm, with H, =i G
2 . 2 2" p
0 i
L P
F. , ._1
i ®p(pp)
h3= P , mx1
0
where m = (n+1)p, m, = (n+1)(p—1) + k, m2=n—k, and H=[H1, H2’ h3] is nonsingular.
= re (T ’ ’ H
Next define zt_H xt_(zlt, By zSt) , le.,

-

B+ A”t-—l

Bt Ay o

= _grs pT + ¢
slt_Hlxt.— . t
t—1
! et—p-i-l

Where Ct = C'(ﬂt——l + e + ﬂt—p) L]



— 'y = -— M 4 _1 ’ )

Here we have used the fact that AqtzAﬁt, G'C=0, C'’u=0 and G'g=0. We also define

F -— ’ ’ ’
T G HINTERES RTR SO NI TR WE)

and 3, = (zu, 29 zat) . Note that lel = lel where Z1 = (511, ey le) and
ii = (311, ery ilT) . Note also that in (11) the first term dominates asymptotically. 3 By and

g, are the basic components that appear in the calculation of the asymptotic distribution of ¥ .

3t
Define
Yy
w, = IR
. Az2t
and set
Y- Ewtwt .
m
A=Y Eww’ .,
i=1 t i+
and
(12) O=E+A+4A".
We partition 1, ¥ and A conformably with w, - For instance
00 901 002
=10, 0 8y
Y i 0



Let " — d " gignify "convergence in distribution" and let [s] denote the integer part of the real
number s. Here and throughout the paper all limits are taken as T tends to . We start our

asymptotic analysis with the following preliminary lemma: .

LEMMA 1
'Bo(r)q n
VT =1 Wy B(r) Bl(r) m
) -, = 1
1 E'f=1(’1t ®u,) ’ By} |
L v J om

’ 1

where B(r) = (Bo(r)’, Bl(r)', Bz(r)’) is an (0 +m, + m2)—vector Brounian motion with covari-

1
gnce mairiz £}, v is an nm, dimensional normal random veclor with mean zero and covariance
matriz 21 @ Eu , and B(r) is independent of v.

(i) Write
Bza(r) n—k-—-1

B,(r} =
2" By ()| 1

Then sz(r) is independent of (Bo(r)’, Bza(r)’ ) , and B2a(r) = K’Bo(r) where K 1is some
n x (n—k—1) matric of full column rank.

(iii) Apy=E

=00

0= EO = Zu which is positive definite, and 92 is positive definile. O

The assumptions made so far do not ensure the positive definiteness of El , Wwhich will be required
below. Hence, we here assume that Sl is positive definite. Since 21 corresponds to the covariance
matrix of the stationary components in Yy this is a standard assumption. The next lemma follows

from Lemma 1 above and Lemma 2.1 of Park and Phillips (1989). Let " --Op " and "= " denote

fconvergence in probability" and "equivalence in distribution," respectively.
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LEMMA 2

lT
(i)(a) TE LI 34 E

(b) =151tu; —+ . N, where vec(N) = v = N(0, El ® Eu)

1 T
VI d
L1 3 !
(ii)(a) ﬁ.ilut —3 JodBo(r) = Bo(l)
T
{b) Vf X 3, J dBl(r) 1(1)
. B, (r)d
(<) T3/ z d Jo o{r)dr
1 1
(iii)(a) T_E zztu; — JoBz(r)dBo(r)’

1
(b) ,}E B8], = J.OBz(r)dBl(r)’ + 5, + Ay

"-]r--

L3 'B,)8, ()4
(4)(a) T_,_f?-*’?* a | Baomytoyer

T 1
(v)(a) 3 /2 0t g pJOrdBo(r)’

i
( ) 3/2 2 z3t51t JordBl(r)r

1 T 1
() —==Y s, 2/, — pJ- B, (r)’dr .
T2, "2 e P P

Joint convergence of all the above also applies. D

Now we are ready to analyze the asymptotics of ¥ . Since I-I= U’Qli(i’Ql}—()_l where

U/ = (ul, oy uT) and Qlil = Q121 , we have
¥=tr [U'Qli(i'Qli)‘ln[n'(i'Qli)‘larln'(irqli)‘li'qluﬁj]
=tr [U'QIZ(Z'QIZ)‘IP[P'(z'QIZ)‘lp]‘lp'(z'QIZ)‘lz'QIUS};l] ,

where P/ =R’‘H and Z’ = (sl, - :T) . Note that P’ = ’ 2, ps} where
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P1=R’H1=[0,D], pxm,,

PR ) — :
P2—R Hz‘—[ovlpln p"mzv

p3=R’h =0, px1,

3

Define further the matrices

] ] ]
D’ P:.' 0 !0 P/, 0D
P’ = pr= | M C | o |-
—1-, 0 : ] : 0 0 : =
P p | Pag | P2
where
Pil = D’Pi =[0,D’D], (p—1) = m, ,
g _1'1 r
Py =P 1PP2 =(0,..,0,1), 1% m, ,
and
ﬁé:((}, wy 1,0), 1x (m2+1).
Note that each of l';i1 ) f’é2 , and ]'55 is of full row rank. Define also
/% 0 0
™y
TT = 0 TIm2 0 )
0 o T2
and
™
T = p—1
T 0 T
Then we have
— ’ ’ =15 apyapery, -1 t_l *pr(rrs -1, g1
(13) »'—tr[U QIZ(Z le) PTT[TTP (Z le) PTT] 'I'TP (2 le) y/ QIUE; .

We need the following lemma:



LEMMA 3
) 0
-1 -1 1
(i) T'I‘ Z’QIZTT -4 1~ -
I 0Bz,.,(r)Bz“(r) ‘dr
N
-1
(ii) TT Z’QIU —al .i-
JyBgs(r)dBy(r)’
where
N 1
Bz*(r) = Bz,,(r) —J.oBz,,(s)ds .
and
B, (r)
Bz,,,(r) = .
pr

From Lemma 3
= 15 ~ 1 17
DIy - * D/ iy —
'I‘TP (Z le) PTT =P [TT A QIZTT] .P
. 1,_
PLE Py 0

- ol =~ PR g
0 pé [IOth(r)BTv(r) dr] p2

l

and

. -1
£p7 e —1 ’ D -1 ’ —-1 -1 R
TAP’(2'QZ) 2'QU="P _TT 2'QIT | T Z'QU
..’ 1
PL,I N
=, rpln = ra.1—1pls ,
| p2UOBZ*(r)BZ*(r) dr] IOBZ‘(I)dBO(r)

-

Thus, taking account of the consistency of Eu7 , the continuous mapping theorem gives

.W—»d171+»’2

where

7See Park and Phillips (1989) for the consistency of least squares estimators in this context.

12
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and
1 . 1, . -1 . 1_ - -1 o
14) Y, =t [jodaocr)sz..(r)' UDB,,(r)Bz.(r)'dr] 5, {pz [| BB, pz]
Ol 1.1 )
by ] Barbpye] | Bpumamer |

In the above ”’1 and »'2 are independent because N is independent of (Bo(r)', Bz(r)’)’ by Lemma
. . s el m el e 5 yels :
1(i). Note that, since vec(PnE; N) = (PHEI ® In)vec(N) = N(0, Pu}:; P,® 21.:) by Lemma

2(ij(b), we have

2

-1
~ el [=, 1z R T
My = veelPEy N)[PHEI Pn® Eu] veelPi T N E Xy

Furthermore, since 1'55 =(0,..0,1,0) and Q 0= Eu by Lemma 1(iii), we can write (14) as

1 1 =1rl
_ -1/2 - - 2 - La-1/2
(15) ”2 =tir [Joﬂo dBO(r)§2b(r) Uogzb(r) dr] JU§2b(r)dBo(r) ﬂo ]
where
. - 1_ - ) 1, . , -1
§2b(r) = sz(r) - JOsz(s)Bza,(s) ds UOBZa*(')BZa*(') ds] B2a,,(r)
B, () =B, () jl ()
«)=B, (r)—1| B, .(s
2a 2a 0 2a
and
B, (1)
B2a*(r) = 22
Pr

Now from Lemma 1(ii),

B2a(r) =1 inall 2Bo(r)

1/2

0 - Multiplying (J iJ 1)#1/ 2 on both sides,

where Ji =K'
ey v—1/20, o-1/2
Wl(r) = (JlJl) JIQO Bo(r)

where Wl(r) = (JiJl)ul/sza(r) . Let il2 be an n x (k+1) matrix such that I3, = 0 and define
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. 1/2.,
e @3 g
- ’ _1/2 ’
(3l 7775

where J’J = In and JJ’ = In by uniqueness of the inverse matrix. Then write

W, (r)
LOERR 1/2g B,(r) = 1
W, (o)

where W2(r) = (J 2)_1/ 2

o(r) Note that W(r) is an n—vector standard Brownian motion
and hence Wl(r) and Wz(r) are independent.

We also write

V@) = 6y 2B, ()

where V(r) is a scalar standard Brownian motion independent of W(r) since sz(r) is independent

of Bo(r) by Lemma 1(ii), and w

2 is the variance of sz(r) . Hence we have .

o ~
JI Bza*(r) = wl*(r)

!B, () = Vi)
where
o apt i
= |-t
0 | P
) 1
(16) W1a) = W0 - | W,
W, ()
wlt(r) = ]
I
and
. 1
17) V(r) = V(1) —J V(s)ds .
0

Combining the above results (15) can be written as
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[ 1 . 1_ —1.1_ _
¥, =t J ¥ a7 /%8 (1B, (x Uoﬁzb(r)zdx] Jogzb(r)dso(r)’ﬂolf 2J]
[ o1 1 a—1¢1
-~ - 2 -
= tr| | dW(r)V ()| | Va(r) dr V (r)dW(r)’
I.'LJ’() I v, T Uo_ ) ] Jo_ T T ]
=¥y + ¥y
where
o1 1 -1.1 |
- - 2 - R
(8) Wy =t _Jodwl(’)x*(” || vela] | Gerw, |
1 - 1 —1p1_ 1
”22 =tr Jodwz(r)l,(r) Uo\_{*(rﬁdr] JOE*(r)dwz(r)' ,
and -
(19) 7,0 = (o) jlﬁ()w()dulv?()ﬁf()d]_lﬁ()
(1) = V() — s)W_,(s)"ds «(8)W_ . (s)’ds «) -
AL 0 1 o L 1 1

Now we write

-1
1 . ’ 1, 1 -
sz = vec [Jodwz(r)x,(r)] [Ik+1 @ ’[0!*(1-)2&] vec [J-odwz(r)z*(r)] .

Let the symbol " " gignify the conditiona! distribution given realizations of Wl and V. By

IWI,V

the same argument as that of Lemma 5.1 of Park and Phillips (1989), we have

L ~2 )
[Ik+1 ® Joy_‘(r)zdr] vec [J'odwz(r)_\[*(r)J

Since this conditional distribution does not depend on W1 and V, it is also the unconditional dis-

= N(0,1
W,V

k+1)

tribution. Thus, we deduce that ¥

0y = xi I Furthermore, ”22 is independent of Wl(r) and V(r)

and, hence, »’21 .

Therefore, we have obtained the following theorem.



16

THEQREM 1. If |I11 —A(L)L| =0 hes n—k (0 { k< n—1) wunit roots and the rest of the roots are
greater than unity and if o £ UT), then
1

f’_*(r)dwl(r)’} :
0

¥—y JQ":(p—l)+1:+1 + tr[.[ :dwl(')i‘(r) U:i'(r)zdr] _1.[

Here, the first and the second terms on the right hand side are independent, Wl(r) is an n—k—1
dimensional siandard Brownian motion, and i,,(r) is defined in (16), (17), and (19), where the scalar

standard Brouwnian motion V(r) ir independent of Wl(r) . 0

Observe that ¥ converges in distribution to a sum of the usual chi—square distribution and a
unit root type distribution. ¥ k =n—1, ¥ converges in distribution to x:p , because then there is
no »'21 term. This is because Yy has only one stochastic trend in that case and it i= dominated by a
deterministic trend. In fact, one can show that if A is trend stationary, ¥ converges to xﬁp .
though we do not report the derivation since it is somewhat obvious given the methodology and the
results proved in this paper. If k { n—2, however, the »’21 term comes into pl-ay and causes a bias In

the block exogeneity test (4). The bias of the test thus depends on the ”2 component of the limit dis-

1
tribution. Since ”21 depends only on the number of the variables, n, and the dimension of the
cointegration space, k , we can determine the size and direction of the bias unambiguously by comput-
ing the distribution numerically in any specific case.

Before proceeding to the stationary case, we note that if o € B(T') (including the case of a
being equal to sero), then we have a different asymptotic distribution since in that case A does not

contain a time trend. It should be apparent from the above derivation that r, the component corres-

ponding to a time trend, in Wl.(r) in (16) will be replaced with a Brownian motion. Thus, we have:

THEOREM 1’. If Iin —A(L)L| =0 has n—k (0 < k< n—1) unit roots and the rest of the roots
are grealer than unily and if a € UT), then

. 1 T ST
¥— d xn(p—l) +k + tr J.odwl(r)y_(r) UOX(I') dr] Joz(r)dw l(r)r

Here, the first and the second terms on the right hand side are independent, Wl(r) it an n—k
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dimensional Broumian motion,
¥(r) = V() Jl‘-f()w- ()'dﬂ| IIW- ()W ()'d-] IW- (r)
- o . 1 0 1 1 AN

) 1
W, () = W, () - Jﬁwl(.)d.

and V(1) is defined in (17) where the scalor standard Brownisn motion V(r) is independent of
Wl(r) . o
Note that Theorem 1’ implies that if Y, is I(1) and does not have a deterministic trend, the Wald sta-

tistic ¥ always converges to a nonstandard distribution. Unlike Theorem 1, the second term in the

asymptotic distribution does not disappear even when k = n-1.

3.2. The Stationary Case

‘We now consider the case in which the sequence {yt} is atationary. Since the derivation of the
asymptotic distribution is similar to that in the nonstationary case discussed above, we shall give only a
brief explanation in the present case.

We can write for each t

(20) y, =6+,

where u = (In — A(l))_la and m, = (I]1 — A(L)L)_lut . The H matrix is now defined as

]
1 10
H = B
0 !'D
]
0
hy=1,
1
P

and H = [Hl, h2] , which is clearly nonsingular. Note that, since Y, is I(0) with the fixed mean p,
we no longer need h3 to isolate the time trend component. Accordingly, we define the new il L' Zogo

and 2 as follows:
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= — =R ’ ’ ’
5, = Hlxt = (yt—l’ wouy yt—p’ IRTRSY tt—p) s

i = R T AR

5 = (ﬂt—l’ - ";.—1' ‘t—p' veny ct-—p)
Note that Qlil =Q,2, , a8 before.

Now it should be apparent that, for the redefined 5., and s

1t above, Lemma 1(i) and (iii)

2t

still hold with obvious changes in the dimension of the Brownian motions and the covariance matrices.

In the stationary case, we have no = and s, corresponds to Sobt of the nonstationary case.

2at ' i

Hence Lemma 1(ii) now becomes

LEMMA 1(ij)’. Bz(r) is a scalar Brownian motion independent of Bo(r) . D

Thus Lemmas 2(i)—(iv) also hold (with obvious modifications) for the redefined z,, and By -

With the present definition of H above we now have

Pi = [O!D] » P X [(n-l-l)p—-—l] ’

and there is no Py - Hence
P{, =1[0,D'D], (p—1) x [(+1)p~1]
Py = 1.

Redefine the normalization matrices TT and T,;\ accordingly, and Lemma J becomes:

LEMMA 3/
¥ 0
. -1 -1 1
(i) T Z°Q.ZT, . —
T 17T d 1= . .2
0 foBz(r) dr
-1 N
(ii) TT Z QIU —q

];ﬁz(r)dBo(r)’
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- 1
where B2(r) = Bz(r) - .[OBz(u)ds . 0O

Since 1';2 =1, it follows from Lemma 3’ that
(21) TP/ (2/Q,2) PTx = B/ (102/Q 2" F —
T 1 T~ T 17T

; (125,

and
@) TP (z'Q.27 QU = B [Tz Q 21 _l'r‘lz'q U
T 1 V=P Ip Q%1 | Ip 2
) .
PLEN

[/ gB,()%dr 17} 1B, (x)dB (r)"

Substituting (21) and (22) into (13) gives

)V---»d Wl + »’2
where
15 (5, vis | s, ylogel
W =tNE Pn[PilEI Pn] P1s3 Nz;] '
[ 1 - 1. 4 11l )
(23) ¥, =tr JodBO(r)Bz(r) anz(r) dr] JDBz(r)dBo(r)’E;] .

. . . _ .2
and »’1 and )72 arc independent by Lemma 1(i), as before. We can easily show that »’1 = xn(p—l) .

As for ¥, , write

2
1 I 1 -1 [el _ "
1, = vee “0951/2&30(:)32(:)] [InOJOBz(r)dr] vec [Jlonolldeo(r)Bz(r)] :

since Eu =y . By Lemma 5.1 of Park and Phillips (1989),

| 1. -2 [ :
In @ J.OB2(r)dr vec Joﬂo dBo(r)Bz(r) = N(0, In)
since ﬁz(r) is independent of Bo(r) by Lemma 1(ii)’. Therefore ”2 E xi .

Thus, we have obtained:
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2
THEOREM 2. If |In—A(L)L| #0 for |L| €1, then ¥—, Xgp - O

Interestingly, the inclusion of an independent RW variable in a stationary VAR estimation does not

cause any bias in the exogeneity test at least asymptotically.

4. CONCLUSIONS

Since macroeconomic time series such as those used in Ohanian’s experiment are generally
regarded as nonstationary, Theorem 1 (or 1/) would be more relevant than Theorem 2 in practice. The
former are consistent with Ohanian’s findings that: (i) inclusion of an artificially generated RW in Sims’
empirical VAR's resulted in overrejecting the exogeneity hypothesis; whereas (ii) bias did not arise when
a white noise process was included in the model. Conversely, Ohanian's simulation results together with
our Theoremn 1 and Theorem 2 imply that those macroeconomic variables have stochastic trends (if Sims
VAR mode] is the true data generating mechanism) for otherwise there would be no bias in the exogene-
ity tests, at least in large samples. Moreover, as was noted earlier, it is easy to see that if these variables
had only deterministic trends, the ¥ statistic would converge to the usual chi—square distribution.

Although we do not actually compute the asymptotic distribution derived above, closely related
distributions are tabulated in Nankervis and Savin (1987) and Johansen and Juselius (1890). The latter
authors’ Table Al report simulated disiributions of the trace of a stochastic matrix representing a limit
unit root distribution that is similar to our ”21 in (18). Their statistic is not exactly the same as ours,
but the table shows clearly a significant deviation from the usual chi—square distribution.

In addition, Nankervis and Savin (1987) happened to compute one special case of (the square
rc:;ot of) the ”21 distribution in Theorem 1/. They call the statistic $(§) and it is tabulated in the
first row of their Table 3. In our notation, t(§) corresponds to the t—statistic for the coefficient ﬂl in

a simple bivariate model:
Vmetay ALty

=4t
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where the true values of the coefficients are such that a=0, 8= i and ﬂl =0, and u ; and A
are independent normal random variables. In fact, the asymptotic distribution of the t—statistic is by

Theorem 1/
1. —1/2,1_
U Holer| [ Feaw,
0 0

where Wl(r) is a scalar standard Brownian motion independent of V{r). The Nankervis—Savin Table
3 shows that the asymptotic distribution (their sample sise is 500) has much more dispersion than the
N(0,1) , which is of course the asymptotic distribution of the t—statistic in regressions with stationary
regressors. This implies that the null hypothesis that ﬁl =0 would be rejected too often using a
nominal asymptotic N(0,1) critical value, confirming our theory.

In this paper we have concentrated specifically on the spurious inference problem for exogeneity
tests that was raised by Ohanian. This is, however, only a special case of the problems that arise from
using nonstationary data. In general, as Park and Phillips (1988, 1989) show, commonly used test statis-
tics such as the Wald statistic not only converge to nonstandard distributions but also the asymptotic
distributions typically invelve nuisance parameters. These problems make inference under nonstationar-
ity difficult, although as the Park—Phillips analysis shows it is still possible to transform the test statistic
go that it has a nuisance parameter free distribution. In this sense, the fact that our ¥ statistic has a
limit distribution that is free of nuisance parameters is itself noteworthy.

One might hope that this property would carry over to a more general case. Unfortunately, this
is not the case. Indeed, the possibility that the variables may be cointegrated is a substantial complica-
tion, as suggested by the analysis of the trivariate system in Sims, Stock and Watson (1990). A related
paper by the authors (Toda and Phillips, 1991) studies the general case and shows that the Wald statis-
tic for the Granger noncausality hypothesis test in a general VAR framework has a limit distribution
which, in general, has a nonstandard component that is commonly dependent on nuisance parameters.
However, the limit distribution is the same as the usual asymptotic chi—square distribution if the system

has sufficiently many cointegrating vectors.
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APPENDIX

PROOF OF LEMMA 1

(i) Define

p— 7 ’
v, = (ut, et)

= {n’ ’ ¢
xt = (qt_.ll =iy qt—p’ Et—-l’ ey Et—p) .

Then (10) and (2} together can be written in the VAR(1) representation

(24) xt+1=§xt+th
where
Qa 0
¢ = R
-0 Qb
[ A A I A
1 p—li P
Qa: “”I“--““:—O_ '
n(p—1) |
1
1 0 - o!o0
¢ =|——— = = = = e ,
b I t o
[ o S
Fa 0
F= )
0 e
L P

ep =(1,0,..,0)

G with G in the definition of E, ad H

2 ¥
define
. i | -, Hix,
£ = =H’x =
t E t H!x
2t 27t

Since H is clearly nonsingular, we can write (24) as

1 H’Fv

5, = EoelE R +

(25) t+1

which is a p—vector, and F =e @I . Define H, and hence H
a P n 2a

t

9 by replacing

respectively. Let H= [Hl, ﬁzl accordingly and



Using the fact that C’G = 0 and hence (In — A(1))G =0, we have
@1 0

2y L4

(A =

where

¢

#2b |
’ ’ -1
Qla - Hlaéaﬂla(ﬂlaﬂla) !

’ ’ -1
&, =D'8 D(D'D) ",

g ’ -1
§2a - HZaQa.Hla(Hla.Hla) '

Y I -1
43, =178, D(D'D) " .

Furthermore

where

Thus, from (25) we have

(26) fie1 = B0 Y

and

23
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27n A’2t+1 = §251t + szt .

Since 5. is I{0) by assumpiion, the eigenvalues of il must be all less than unity. Hence we can

write (26) as
'I’la(L) 0 Flaut-l

(28) =¥, (L)Fy, =

0 ¥ lb(L) ep”_1 €1
where (L)

_z"; S"’ &JLJ o (L) = E"? o¥1a 1.J Y 31 and ¥, (L)
_ .i
L _$?=0 1b . Then

j=0"1a

=T,

i’
21 Ez .87, = JEOQFEFQ

where E = Evtvt

Now by the same argument as that of Theorem 2.2 in Chan and Wei (1988),

(29) T Elsltzlt —#p Sl
and
- R
1 E[Tr]\'
T t=1 ¢t B (1)
(30) —al .
VTEEEI-](’ v v

=t

where Bv(r) = (Bu(r)’, Be(r)) is an (n+1)—vector Brownian motion with covariance matrix Ev .
is an ml(n+1)—dimcnsional normal random vector with mean sero and covariance matrix 21 @ Ev )
and Bv(r) and v are independent. Note also that Bu(r) and Be(r) are obviously independent.

From (27) and (28) we have

(31) A’2t+1 = W2(L)vt

where \IV2(L) = F2 + §2\P1(L)F1L . Write (31) as

Ay i1 ¥p,(L) 0 ¢

Afobit1 RO K
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where @, (L) =G + &, ¥ (L)F, L and 9, (L)=1+ 45 %, (L)}e L. But recall that we

write An, = A%, = O(L)ut in (7). Hence, A;2at+1 can be also written as

N e

= G*(8(L) + O(LIL + -+~ + O(L)L” Ny, .

Ayttt

Therefore Tza(l) = pG’O(1). Since AG) = AC)* = 2(B()) , Th(l) is of full row rank. Similar-
ly we deduce that \bzb(l) =p.
Next, since in (28) 'I'I(L) is the inverse of (In - ‘I’IL) and Iln — §1L| = 0 has only stable
roots, we know by Brillinger (1881, p. 77) that forall g2 0
y &
(32) eyl <w
=0
where ||‘~I’1 j"a denotes the sum of the absolute value of the entries of ¥, i (32) in turn implies
(33) S i ||\Il ||
j=1
where ||'I'1 J" tr(W \I' ) Then, by a multivariate extension of Theorem 3.3 of Phillips and Solo

(1989),
[T:]
21 i lIrl(l)Fle(r)

1

and from (27)
[gr] [Tr] P 1 ['gr] .
ﬁt:lAs _Qzﬁtl g+ zﬁ v+o()

—4 £,%,(1)F;B (1) + F,B (1)

¥, (1)B_(x)

(34) = ¥,()B,(x) =
¥, (1B (1)
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To obtain result (i) of Lemma 1 we need only notice that

! —k—li
(35) = =TI iy
i

o | o
- o

i

and hence ot = [In 1 0]52“ 80 that we can set

(36) By() = B, ()
(37) B,(r) = ¥,(1)F,B (1)

(38) B, ()=, . 0%, (1)B ()

(39) B,, (1) = ¥, (1B (1)

(40) v= (Iml e fn); where in =[,0.

B(r) = (Bo(r)’, Bl(r)’, Bz(r)')’ is independent of » because Bv(r) is independent of ¥ . The
covariance matrix of B(r) is given by (12).

(i) sz(r) is independent of (Bo(r)’, Bza(t)’)’ from (36), (38) and (39) because Be(r) is
independent of Bu(r) . From (38) we can take K’ = [In T 0]‘1’2a(1) . Then K is of full column
rank as required.
is given by

(iii) DO = 20 = Zu is obvious. 02

K'EuK )]
n, =
2 2 2y°
0 \bzb(l) o,

which is positive definite because X is of full column rank and ¢2b(l) =p# 0. Since from (31) and

(35) A’2 ¢ is a function of only the past history of the innovations, i.., {v ..} , we have

=1 V12’

: EA’Ztut-p-j =0 forall j20.

Hence %

90 = Agp=0-0
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PROOF OF LEMMA 2

(i) was proved in the proof of Lemma 1(i). (ii)—{iv) follow immediately from Lemma 2.1 of Park

and Phillips (1989) noting that 220 = A20 =0 and 53 = pt + op(t) . 0O

PROOF OF LEMMA 3

. -1,, S T R TS S|
0  TpZQEYL =T 2210 —T T0 2T

-

[ —1 ., -3/2,,, -2 .,
T Ziz, T 7%, T Z{Z,
_ |=38/2,, -2 ., -5/2,,

= |T Z;z, T ° I,2, T Z,Z,
T2 g3 T‘5/2z'z T3 Z4Z,

31 372

T Z

1T

r: -l' Fl —3/2- ’ _2. ’
Z21T (T szl' T 1,1,22, T 1T23)
.T ZilT

0

.._.._{:..__.._..._._..________

[iBy(r)By() dr  pfgB,(r)rds

1 2,12
p]orBz(r)’dr P Ior dr

4

0

I;Bz(r)drféBz(r )‘dr p];'Bz(r)drférdr

p]tljrdrf(1)32(r)'dr pzférdrférdr

|
o

o,

by Lemma 2.



o =1,
(i) TpZ QU

by Lemma 2. O

-1, —l.=l,,. .,
TTZ U—-T T Z ITITU

T
[ =1/2.,.] [l ose ]
e 10| B a2
et —3/2,. |.—1/2.,
= |17t 50| - |1 g T A
—3/2,, -2 .,
_T Z3U.. ..T ZalT‘
: . :
N 0
— |18 (1B () | — |12B, (r)dzf dB ()’
a |/ oB2{¥)dB, 0B (F)dri¢dBy
1 , 1. 1,0 .,
p/ rdByr) | P J jrde | odB,(0)
N
" (118,048,
oBax(r)dBy

28
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