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O. ABSTRACT

This paper develops a complete limit theory for Wald tests of Granger causality in levels vector
autoregressions (VAR's) and Johansen—type error correction models (ECM’s), allowing for the presence
of stochastic trends and cointegration. Earlier work by Sims, Stock and Watson (1990) on trivariate
VAR systems is extended to the general case, thereby formally characterizing the circumstances when
these Wald tests are asymptotically valid as x2 criteria. Qur results for inference from unrestricted
levels VAR are not encouraging. We show that without explicit information on the number of unit roots
in the system and the rank of certain submatrices in the cointegration space it is impossible to determine
the appropriate limit theory in advance; and, even when such information is available, the limit theory
often involves both nuisance parameters and nonstandard distributions, a situation where there is no
satisfactory statistical basis for mounting these tests. In consequence, we conclude that there is no sound
asymptotic justification for the empirical use of Granger causality tests in unrestricted levels.- VAR's.

The situation with regard to the use of causality tests in ECM’s is also complex but somewhat
more encouraging. We demonstrate that Granger causality tests in ECM’s also suffer from nuisance par-
ameter dependencies asymptotically and, in some cases that we make explicit, nonstandard li.rnit theory.
Both these results are somewhat surprising in the light of earlier research on the validity of asymptotic
x2 criteria in such systems. In spite of these difficulties, Johansen—type ECM's do offer a sound basis
for empirical testing of the rank of the cointegration space and the rank of key submatrices that influence
the asymptotics. In consequence, we recommend an operational procedure for conducting Granger caus-
ality tests in the important practical case of testing the causal effects of one variable on another group of

variables and vice versa.

JEL Classification: 211

Key Words: Bessel function; error correction model; exogeneity; Granger causality; maximum likelihood;
nonstandard limit theory; nuisance parameters; vector autoregression; Wald test.



1. INTRODUCTION

One of the major potential applications of unrestricted estimation in systems of stochastic differ-
ence equations is to tests of causality between subsets of the variables. Such tests have become common
in the empirical Literature following their use in Sims (1980) to test the block exogeneity of the real sector
in vector autoregressions (VAR’s) fitted with real and monetary variables for both Germany and the
USA. Such tests are routinely performed using Wald criteria that are thought to be asymptotically chi-
squared, as indeed they are in stationary or trend stationary aystems. In recent work, Phillips and
Durlauf (1986), Park and Phillips (1988, 1989) and Sims, Stock and Watson (1990) (hereafter, SSW)
have all shown that the asymptotic theory of Wald tests is typically much more complex in systems that
involve variables with stochastic trends. In general, one can expect the limit theory to involve nuisance
parameters and nonstandard distributions both of which substantially complicate inference procedures, as
originally pointed out in the Phillips—Durlauf paper.

In their analysis of causality tests, SSW look specifically at trivariate systems and conclude that
the Wald test has a limiting chi—squared distribution if the time series are cointegrated and if the long
run relationship involves the variable that is excluded under the null hypothesis (SSW, p. 135, paragraph
3 and footnote 3). This conclusion was expressed in SSW by the following general statement:

In the causality test, the statistic has a x2 distribution if the process is

cointegrated; otherwise its asymptotic distribution is nonstandard and

must be computed numerically (SSW, p. 115).
Since macroeconomic time series for most countries display nonstationarity and at least some degree of
cointegration, many investigators are likely to see this broad conclusion of SSW as encouraging with
regard to the continued use of Wald tests for causality as asymptotic x2 criteria. Is this optimism
warranted? Given the important empirical role of causality tests in levels VAR’s, it seems reasonable to
us to ask the following questions in addressing this problem: to what extent are the conclusions of SSW
generally valid; what form do the qualifications on the nature of cointegration that apply in trivariate
systems take in the general case; are there other special cases of interest that are worthy of mention;

finally, is the optimism just referred to really warranted, i.e. are causality tests in levels VAR’ to be



recommended at all, given the inferential complications of a multiplicity of different asymptotics and
potential nuisance parameter dependencies?

One object of the present paper is to explicitly address these questions. We extend the treatment
in SSW of causality tests to the case of general VAR systems with an arbitrary number of cointegrating
vectors and we provide a complete analysis of the asymptotics of Wald tests for causality. In particular,
we are able to characterize those special cases where the limit theory is indeed x2 . We also provide a
breakdown of the general case where the limit theory has x2 and nonstandard components and may
depend on nuisance parameters. We point to other special cases where the limit theory has nonstandard
components but is free of nuisance parameters. We show that without explicit information about the
number of unit roots in the system and the rank of certain submatrices in the cointegration space it is
impossible to determine the appropriate limit theory in advance. Such information is typically unavail-
able a priori in much empirical work, more especially in empirical work conducted with VAR’s where tﬁe
emphasis is on unrestricted estimation unfettered by prior identifying information (Sims, 1980). But,
even if this information is available, the limit theory in VAR estimation will still often involve nuisance
parameters and then no satisfactory basis for mounting a statistical test of causality applies. In conse-
quence, our analysis of the general case leads us away from an optimistic conclusion. We submit that
causality tests in unrestricted levels VAR's are not to be recommended in practice.

A second object of the present paper is to develop an asymptotic theory for causality tests in
error correction models (ECM’s) estimated by maximum likelihood. In keeping with our earlier theme of
VAR estimation, we propose a general asymptotic theory for Wald tests of causality in ECM's formulat-
ed as VAR’s in differences with levels as additional regressor variables. Our framework is the same as
Johansen (1988, 1989) and therefore has the advantage that pretests can be performed relating to key
elements that drive the asymptotics, such as the dimension of the cointegration space and the rank of
certain submatrices of the cointegrating matrix. We demonstrate that, in general, tests for causality in
ECM’s also suffer from nuisance parameters dependencies asymptotically. Moreover, in certain important
cases, the limit theory of Wald tests for causality is also nonstandard and can be characterized in terms

of nonlinear functions of x2 variates. Both these resulis may seem surprising given the assumed general



validity of x2 asymptotics for Wald tests in such models. However, the situation is not as severe as it
is in levels VAR estimation. In important subcases (where either the icading c&ﬁcient submatrices or
the submatrices of cointegrating coefficients that are relevant under the null are of full rank) it is shown
that the limit theory of Wald tests for causality is x2 . We therefore suggest an operational procedure
for causality tests in ECM’s which is applicable in the most important practical case, viz. where we wish
to test causal effects of one variable on another group of variables and vice versa.

The plan of the paper is as follows. Section 2 details the models we shall consider, our notation
and some theoretical preliminaries. Section 3 studies Wald tests for causality in levels VAR estimation
and Section 4 extends this analysis to Johansen—type ECM'’s estimated by maximurm likelihood under
Caussian assumptions. Section 5 concludes the paper and an Appendix contains many of the mathemat-
ical derivations.

A summary word on notation. We use vec(A) to stack the rows of a matrix A into a column
vector, [x] to denote the smallest integer { x, and R(A) and iR(A)L to signify the range space and

its orthogonal complement, respectively, of a matrix A . We use the symbols "-i* ' w P, ," and

"="  to signify convergence in distribution, convergence in probability, and equality in distribution,
respectively. The inequality "> 0" denotes positive definite (p.d.) when applied to matrices. We ﬁse
I(d) to signify a time series that is integrated of order d , BM({l) to denote a vector Brownian motion
with covariance matrix 1. We write integrals with respect to Lebesgue measure such as éB(s)ds

more simply as [B to achieve notational economy. (All integrals in this paper are from 0 to 1.)

Finally all limits given in this paper are taken as the sample size T tends fo o .



2. THE MODEL, NOTATION AND OTHER PRELIMINARIES

Consider the n—vector time series {yt} generated by the kth order VAR maodel

(1) y,=#+IL)y,_, +u,
k i—1 '
where J(L) = X JiL and {ut} is an iid sequence of n dimensional random vectors with mean

i=1

zero and covariance matrix Eu > 0, such that E|uit|2+6 <wm forsome §>0 (i=1,..,n). We
shall initialize (1) at t = —k+1, ..., 0 and allow the initial values {yo, Y_gs o y_k+1]- to be any
random vectors including constants. In setting up a likelihood function for data generated from (1) it is,
of course, most convenlent to require the initial values to be constant, as in Johansen (1988, 1989).

We can write (1) in the equivalent ECM format
— *
(2) Ayt =p+J (L)Ayt__1 + J*yt—l +u,

where J, = J(1) —In , and

k—1 ie1 k
L) = I J*L7 with P=— X I, (i=1,.,k1).
i=1' =il
We assume that:
(32) |I_—J(L)L| =0 implies |L| 21.
(3b) Jy=TA’ where I and A are n » r matrices of full column rank r, 0<r < n-1.

(f =0, then we take J,=0.)

(3¢) I‘J’_(J *(1) —In)A.;. is nonsingular, where r, and A are nx (n—tr) matrices of full

column rank such that T'T' = 0=A"A. (If r=0, thenwetake T =A =1 .)
4 4 L L n

Under the above conditions {yt} is I(1), and is cointegrated with r cointegrating vectors if r2 1.
(See Johansen (1989).)

Condition (3a) precludes explosive processes but allows for the model (1) to have some unit
roots. Condition (3b) defines the cointegration space to be of rank r and A is a matrix whose

columns span this space. Condition (3c) ensures that the Granger representation theorem applies, so that



Ayt is stationary with Wold representation in terms of the process {ut — u*} where p* is some con-
stant vector, A’yt -is stationary and A is in general an I({1) process with a deterministic trend or
drift (see Theorem 3.1 of Johansen (1989)). In fact, if I‘ip# 0, the process ‘A has a deterministic
trend as well as a stochastic trend, while if I‘ip =0 (including the case where pu=0), there is no
deterministic trend in ¥, - As is well known, the presence or absence of a deterministic trend affects the
asymptotic distribution of parameter estimators and test statistics based on them.

We shall assume that pu= 0 in the following sections since this simplifies considerably the pre-
sentation and derivation of our results. Of course, the basic idea in the derivation of the asymptotics is
the same whether g =0 or p# 0, and since the effects of deterministic trends have been investigated
rather fully in the recent literature on regression with integrated processes, it is easy to see how the
asymptotic distributions derived in the next two sections should be modified if x # 0. Thus, we assume

that the true model is
or in its ECM representation:
’ —_ 1% ’

We shall report the results for the case where u# 0 only after the models (1)’ and (2) have been
analyzed in detall.
Suppose that we are interested in whether the first B, elements of y, are "caused by" the last

n, elements of this vector. Write

3
Y ™
Y= [Yor| "2
Y3t] "3

and partition J{L} conformably with Yy - Then we have under the null hypothesis of noncausality the

following levels VAR formulation:



J,(L) 3L 0
(1" W= Tl Il I8y gty

I3y (1) Tp(L) Tga(L)]

That is, the null hypothesis can be formulated based on the model (1) as

) Tidps="=%3=9
k . .
where J 1?‘(L) = ElJi,le“l . Equivalently, the noncausality null can be formulated as
(5) 'Xa : J;,13 == J]:—I,13 =0 and 3*13 =0
, 7 k—1 .
based on the ECM format {2)’, where 3I3(L) = 2 33’131..1_1 and 3,13 are the n, X n, upper-

i=l1
right submatrix of J*(L) and J,, respectively. ‘

To prepare for the analysis in the following sections we introduce some further notation and a

couple of lemmas. Define

- -

Yi—1

Yi—k

and we can write (1)’ as
(T y, = %x, +u,
where & = [Jl, ey Jk] . Define an nk x nk matrix H = [Hl' H2] with

H =[Del,e &4],
and

H @A
i

2= %

where In isan n x n identity matrix, e, is a k—~dimensional unit vector, i.e.,, (1,0,..,0)’, and D

k
isa k x (k—1) matrix such that



1 1] 0 0 0
—1 1 0 0 0
D= 0 -1 1 0 0
0 0 0 -1 1
0 1] 0 0 -1
Then define 2 = (zlt’ z2t) =({H xt) where
8y,
z. =H’'x = )
1t 17t Ayt—k-f—l
ATy

which is an m, = n{k-1) + r dimensional vector, and

which is an m, = n—r dimensional vector. With this notation we can write {(2)’ as
(8) Ayt = ‘I'zlt +u,

where ¥ = [J*, ..., ] l’:—l’ I']. These variates 2z, and g, are the basic components that will appear

1t 2t

in the large sample asymptotics developed in the next two sections.
Furthermore, since Ayt is 1(0) , we have the Wold representation
m .
(9) Ay, = C(L)u, where C(L)= 3 cL'.
i=0 !
(See (AS) in the Appendix for the explicit form of C(L).)

Now write Wi = (ut, 2y Az2t) and define for any ¢

E:Ewtw;,
o

A= ¥ Eww’ ,,
5=1 t t+;

and



We partition 1, ¥, and A conformably with w

with indices "0", "1" and "2" corresponding to the components of w

Q=E+A+A'.

%

1l = 010

020

0

0

i

01

1

21

f

n12

2

2

02

t

For instance, we write

.

Now we have the following lemnma:

LEMMA 1
_ - 1
| (el By(s)
VT oyt 4 [B®|  [B®
Rl e | By
1 g\®
ﬁti(z“‘@ut) ¢

where B(s) = (Bo(s)’, Bl(s)’, B2(s)’) isen (n+m, + mz)—uector Brouwnian molion with covari-

1

ance mairiz 0, { i3 an nml-——dimensional normal randem veclor with mean zero and covariance

matriz El 320, end B(s) and £ are independent,

(i) Bg(s) = ALC(l)BD(s)

(iii) 90 = 20 = Zu and Q2 are p.d. A20 = 220 =0.0
In the development of the theory below we will also require 21 to be p.d. Since the assumptions which
have been made so far do not ensure this, we now assume that 21 is p.d. Note that 21 is the covar-

iance matrix of the stationary component in Vi1 80 this is a standard assumption.

The next lemma follows from Lemma 1 above and Lemma 2.1 of Park and Phillips (1989).



LEMMA 2.

il 13
et
]

‘ 1 ,
()(2) Tt it n‘P" 1

A 4, NO where vec(No) = ¢

——
N
o=

-
Il a3
—

[

3] 91

.4, /BB

(i)(a) PILH 0

3
-

t

|e

®ot®1t [BydB] + I, + 4,

(b)

pary

.4
a9y~ IB

B! .
21 272

T
(i) 43
T t=

Joint convergence of all the above also applies. O

Now we are ready to analyze the asymptotic distribution of the Wald statistic for testing the

hypothesis (4) (or (5)).

3. CAUSALITY TESTS BASED ON LEVELS VAR ESTIMATION

Suppose we estimate the levels VAR model (1)’ by OLS. The estimated equation is

(10) yt=@xt+ut, t=1,..,T
where in this section """ signifies estimation by OLS. The noncausality hypothesis {4) can be written
as
(11) 10 15185 =0 or (Si ® S’ )vec(®) =0
where
In ™
S = 1
1 0 |ln—n
1
0" 7"
S=1k083 with 53= In ]
3173

Then the Wald statistic for testing (11) can be written
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R . _ -1 .
Fig = vec(2)’ (S, @S) [(si es)E, @ (x'X) 1](51 ® S)] (87 ® 5" )vec(d)

-1
Py ’ ’ —1 P + ¥ —1
=tr[S1‘DS[S (X'X) S] S‘@ SI(SlzuSI) ]
where f:u is the OLS estimator of Eu and X’ = (xl, ey xT) . Under the null hypothesis Si&S
= SiU’X(X'X)—IS where U’ = (ul, vy uT) and we have

-1
-1 vy eyl rp ey —ly s /3 -1
FLS=tr[SiU’X(X'X) s[s (X’X) s] §/(X/X) " XUS (815 S,) ]

-1
— /¥ _ilf 1_1 11—1 11_1/ /% _‘*
= tr[(slzusl) S:U’2(z’2) R|R’(Z’Z) R| R’(2°Z) Z Usl(sl}lusl)
where R/ = 8'H and Z/ = (zl, vy zT) . We write

R’ = [R!, R2]
with

R; =S'H =[D®S; ¢ 84,

k
Ry=SH,=¢ ®4

3
where A3 and A.L3 are the last ng rows of A and Al, respectively.
Let g= rank(Aa) . Since A3 is an ny X1 matrix, it must be that 0< g < min(ns, ).

Define a nonsingular matrix K= [I-{a, ﬁb] with

K =[DeI ,i
a n

e K
3

k

and

szlk@Kb.

Here ik is 2 k—vector of ones, and Ka. and Kb are ng x g and D, X (n3 — g) matrices, respec-

tively, such that

Rk ) = R(a,)

and

L . ’ —
|R(Kb) = fR(As) , it KbAS =0.
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Then define
. K’R! K'R:1 |R{ R/
R’ = K‘R’ = _a 1 ~a 2 - 11 -12
r ’ r r ’
‘Kle bR2 0 R22
where
- DDQSé €1 OAa
R11 =
0 KaA3
(%1 ® A
Ri,=
Ka.A13
and
Rya = Kbz
Note that ﬁil is of full row rank since DD @ Sé and K;A3 are of full row rank by construction,
and that f{éz is of full row rank since otherwise R’ could not be of full row rank. ( R’ must be of

full row rank because K’ is nonsingular and R’ is of full row rank.)

Define

Tp= diag(/T LT ),

1 2
 _ 2
T4 = diag(y/T 1n3(k_1) ¢ Tlns_g)
and
e _1/2 o
ﬁ_& _ R11 T 12
0 R.22
D/ _ R’
Note that TTR = TTT' Thus we have

F=tel(s'8 8 ) ¥s: U 2z 2y e | TAR (20 2) tRT* _l'r*ﬁ'(z'Z)‘lz'Us 58 sy
Ls = Wit %y T[T T T 1°1%0°1

-1_ .4 -l
i [f[rrizany) i)

-1 + % _";’
T 2/US(S1ES)) } .

- ¥ "'} {1/ —1 -1 ’ -1
(12) = tr[(slzusl) SIU'ZT . | Tp 22T
-1

- (=1, 1
-RT[TT Z ZTT]
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-1
o r 1 ‘ - ’ 1- ’ 7 t r 1
Frsqy = vee(Ri; %) NSy [anI R ® Slzusl] vee(Ry 5 NgSy)

_ 2
= *n[ng(k—1)+g] -

On the other hand, more calculation is necessary in order to reduce FLS(2) to a simpler expression.
The idea is to rotate coordinates and cast FLS(2) into a canonical form that eliminates as many
nuisance parameters as possible.

Define a nonsingular matrix

R’
a

Ry

R, =

where R; = ftéz and R'; is an [(n—r) — (n3 —g)] * (n—r) matrix of full row rank such that
R};ﬁ'22 =0. Let

B_(s) = R/B,(s) = ﬁész(s) ,

B, (s) = R{B,(s) ,
and

_}
W, (s) = [siEusl] S{B,(s) ,

which is a standard Brownian motion since {1 0= Eu by Lemma 1(iii). Then we can write F as

LS(2)

Frs()

-1
r L4 , ’ ’ _1
= tr [ de1B2R* [ fR*B2B2R*} RiR (R'R )
—~1 -1 17!
-{(RaRa) R'R, [IR;BszR*] RiR (R'R ) }
-1 -1
(R’R ) "R’R, []R;BzBéR*] jR;Bdei .
Noting that (R;Ra)—lR;R* = [Ina—g’ 0] , this expression reduces to

-1
(15) FLS(Q) = tr[[dWIE; [jgag;] ]Eadwi]

where
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Now we need the following lemma.

LEMMA 3
¥ 0
6 Tg'2’ ZTT 4 N
B,B)
() Tz
/B,B;

Since RT — dlag(RH, R22 we have from Lemma 3

-~ 1.-

. -1_ R/.Z R 0

(13) Ry xlgegyt| g 4, 101U
T T T 0 R:. (/B.B)) 'R
22\ BaPg)  Hog
and
-1 R TN

« (o, o1 =1, d 1110

(14) RT[TT z ZTTJ TL 20— |

Réz(!B2Bé) fBde{’)

Thus combining (12), (13), and (14), and taking into account the consistency of Eu (see Park and

Phillips (1989) as for the consistency of the OLS estimator), the continuous mapping theorem gives

Fis — Frsay t FLse)
where
17 (5, syl 1z, 5l -
Frsy = ¥ |S1N6% Rn[RilEI Rn] Riy% Nosl[sizus1] ] '
| —4 -1_ . —1_ =1
Frse =" [Sizus1] SideoBé[IBzBé] Rzz[Réz[fBzBé] Rzz]
! » 4
Réz[IBzBé] IBdel’}Sl[SiEusl] }
Note that FLS(l) and FLS(2) are independent because N0 is independent of (Bo(s)’, B2(s)’)l by
Lemma 1(i).

Since vec(R’ E_IN s )_ (R’ 2_1 @S )vec( O) = N(0, R’ E_IR OS 2 8 ) by Lemma

2(i)(b), we see that
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~1
(16) B (s) = B_(s) — jBaB;J [ ijB{)] B, (s) .
The covariance matrix of the (n—r)—vector Brownian motion (Ba(s)’ , Bb(s)') is R;ﬂzR* , which is

p.d. since 02 is p.d. by Lemma 1{iii), We partition this as

conformably with (B (s)’, b(s) ) . Then define

B, (s)=B,(s) -0, 0 Bb(s)

which is a Brownian motion independent of Bb(s) . Note that the positive definiteness of R;QzR*

o . . -1 S

implies that of the covariance matrix na-b = ﬂa - nabnb nba of Ba-b(s) . Substituting Ba(s)
-1 . .

= Ba-b(s) + nahnb Bb(s) into (16) gives

-1
B (s)=B_ . (s)— fBa.bBl’)[fBbB}’)] B, (s) .
Furthermore, define |

1/2

_*
W (s) = [na 0,0, nba] ol = B,.,(5)

_-1/2
W, (s) = 0, /B, (5)

where Wa(s) and Wb(s) are standard Brownian motions independent of each other. Then we can

reduce (15) to the canonical form

| -1
FLse) = [!dwlxv.; [ ;] !.w_adW;]
where
-1
(17) Ea(s) = Wa(s) — !Wawb [IWle')] Wb(s) .
Notice that Wa(s) and Wb(s) are independent of each other but not of Wl(s) in general.

Thus, we have the following formal statement of the asymptotic distribution of a general purpose

causality test in a levels VAR.
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THEOREM 1 In the model {1)’ if ]In —J(L)L| =0 has n~r unit roots (0 <r<n—1) and the
remaining roots lie outside the unit circle, and if rank(As) =g (£ n3) , then under the null hypothesis

(4)

-1
d 2 , , )
18 T Ko fng(k-1)+g [’ aw,w, | 1w ] !.‘dell

where the first and the second terms are tndependent,

-1
W (s)=W (s) — IWan’) []wbwl')] W, (s)

end
W, (s) I n, 0 0
W_(s)| = BM(Qy) with 0 = [Q I“s'g 0
_Wb(s)_ _nbl 0 I(n——r ) —(na—g)_
and where
— —1/2 ’ -1 ’ ’ _%
Oa1 = Ty By — Oy, BylggS, [S1Eus1] '

o.=aYpa s [s:3s - 0
p1 =%y RpfaygSi 5145, -

The condition that rank(As) =g has the following interpretation. Suppose that the subvector

§1t. = (yit’ ¥s t) of A is cointegrated with '171 linearly independent cointegrating vectors

(1S ;1 {n-— n, — 1) . Then there exists some n x r matrix
A A n—n
i= 11 -13 3
0 A33 i,
-1,

such that R(A) = R(A). It can be shown that ta.nk(ias) =r— ;1 {n,. Since |R(A3) = R(A

3° 33)’

we deduce that ra.nk(As) =1—T, . Thus, we may say that g = rank(As) is the number of remaining

1
cointegrating vectors that involve some elements of Yay after the cointegrating vectors for 'jl  are

exhausted.
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EXAMPLE 1. Let the true model be the following trivariate system with one cointegrating vector {given

by the first equation) and error covariance matrix Eu = (au u ):

i
Yie = Yo T ¥y
Yoi = Yor 3 T Ug
Vg = Y3 F Uz

Suppose we set the lag length k=1 and J(L}=B = (bij) in (1)’, estimate an unrestricted VAR(1)
and test 10 : b13 =0 (ie. Ys has no causal effect on Y ) using the statistic FLS . In this case we

have A3 =0 and g =0 in Theorem 1, which together with k = 1 imply the limit

-1
d 2
ps = fowyw [1wl] - fw aw,

Let us now define the correlation matrix (pij) where

1/2
pij - au.u./(au.u.au.u.) '
i i1 jj

After a little manipulation we find the following formulae for the covariances nal and le in the

matrix of the theorem:

W

¥

—1/2 1/2
A= (1-4 (Pay = PaoPor) =p 1—92

al = P23 31~ P32fa1’ = F13.2 12
Q1=r12
We deduce that the limit distribution of FLS is dependent on the nuisance parameters Plg (the corre-

lation between u,, and u2t) and P13.9 (the partial correlation between u., and u, given

1t 1t 3t
Uy, ). Sufficient conditions for this limit distribution to be nuisance parameter free are P12 = Pia.9
= 0 or equivalently Plg=P3 = 0 i.e. no correlation between U Uy and Ug, - Interestingly,
these conditions are not necessary. An alternative set of sufficient conditions are P1o =0 and

= P23
Py = 1. Then nbl =0 and nal =1 so that the limit process Wa(s) = Wl(s) a.s. The limit

distribution can then be written entirely in terms of the independent Wiener processes Wl(s) and

Wb(s) . 0
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If rank(Aa) =n,, we may take Ka. = In and there is no Kb . Hence R’ =[R! Riz]

b
3 11
with ﬁil of full row rank n, . Thus, ﬁ,i, -+ [ﬁ.il, 0] and in the calculation following Lemma 3, the

nonstandard blocks that involve ﬁé2 disappear. Therefore, in this case there is no component

FLS(?) . That is, we have the usual chi—square asymptotics.

COROLLARY 1.1 If lIn —J(L)L| =0 has n—r wunii roots and the remaining roots lie outside the
unit circle, and if ra.nk(A3) =D, , then under the null Aypothesis (4)

F. o~ 32
LS xnl

nsk' a

By Corollary 1.1 together with the remark following Theorem 1, one can say that if there are as many
cointegrating vectors involving some elements of Vg 88 the dimension of the subvector Ya, after the
cointegrating vectors for §1 p are exhausted, then the asymptotic distribution is chi—square. This gen-
eralizes the statement made in Sims, Stock and Watson (1990) that if "there is a linea;combination

involving X, which is stationary,” then "the F—test will have an asymptotic xi/p distribution"

2t
(Sims, Stock and Watson, 1990, p. 135, paragraph 3 and footnote 3).
EXAMPLE 2. Let the true model be the following trivariate system with one cointegrating vector that

involves all variables (given by the second equation):

Vg =¥ TY

1t
Yor = Y1t F ¥g—1 T V2t
Yg¢ = Vg1 T Ugy

Suppose we proceed as in Example 1 setting k = 1 and testing
10 : b13 = 0 (no causal effect of ¥g on ¥, )

using the statistic FLS from a fitted VAR(1). In this case it is easy to see that .A3 =1, g= D, = 1

and Corollary 1.1 applies, so that FLS --9-# xi .

Next suppose we wish to test the joint hypothesis

10 : b12 =b,, =0 (no causal effect of Yo and Y3 OB ¥, ).

13
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The cointegrating matrix in this casc is

AT =(1,-1,1)

and

which does not have full row rank, so that

g=1<2=n3.

The limit distribution of the Wald test of '10 is the mixture

-1
d 2 2
Flg—x + ]dwlm[jwa] Jw aw, .

After a little calculation we find

51
W () =W (e) - jwawi[jwl] W, ()

where Wl(s) and Wa(s) are independent Wiener processes. The limit distribution of FLS in this
case is therefore nonstandard but nuisance parameter free.

Observe that in this final example the cointegrating relation involves both Yo and ¥y - Thus,
there is a linear combination involving both these variables that is stationary. Yet, nevertheless, the
limit distribution of the Wald test of causalily is nonstandard. This example serves to illustrate that the
limit theory is more complex than the discussion in SSW might suggest. In fact, as Corollary 1.1 makes
clear, the appropriate sufficient condition for the Wald test to be asymptotically x2 is that there are as

many cointegrating vectors involving the variables Ya in (1)" (that are concerned in the null hypothesis)

in a linearly independent way as the dimension of ¥q - a

Now suppose that ' is not cointegrated. Then there is no A and we may take A.L = In in

the above calculation. Hence we have Ri =D® Sé and Ré =€ ® Sé . Obviously we can set

K - @ K =i @ R’ =D’ ’ R =5,
Ka. D In3 and Kb b I!13 so that we have Rll DDOS3 and R22 53 Thus we

may take R} = [In—na’ 0] .
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Furthermore if A is not cointegrated, we have the VAR(k—1) representation in first order dif-

ferences such that
®
Jll(L) JI2(L) 0
— % * *
By, = |35,(L) 359(L) J54(L}14y, 4 +u,

3310 I3(0) 330

corresponding to {1)". Since In — I*(L)L is invertible, (9) becomes
_ T -1 . _ _ -1
Ayt = [In J*(L)L] u , le., C(L) = [In J*(L)L} .
Hence from Lemma 1(ii) we have
—1
= —7*
B,(s) = [l — I*(1)| B ,(s)

since A =1 . Thus
i n

B, (s)
B,(s) = [l — I*(1)]
B, (s

: ’ ’ H ¢ H . ’ —1/2 ’
since Ba(s) = SSBZ(S) and Bb(s) = Rsz(s) with R} = [In—ns’ 0] . Multiplying (slzusl) / § 1

on both sides of this last equation, we have
Wl(s) = KIWb(s)

—1/2 1/2

where K = (si)Jusl) [Inl —33,(1), =73,()]8, 77 . Note that Kj is of full row rank, and that

KiK1 = In since Wl(s) is a standard Brownian motion. Define a nonsingular matrix
1

K = [K;, K,)

where K2 isan (n— n3) * n, matrix such that K2K1 =0 and K2K2 = 1112 . Then we can write

W () = [Inl, 0K W, (s) -

Notice that in {17) we may replace ‘Wb(s) with K’Wb(s) which is also a standard Brownian motion.

Therefore, redefining Wb(s) as K’Wb(s) we obtain the following result.
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COROLLARY 1.2. If A i3 not cointegrated, i.e., |In --J(L)L[ =0 hkas n unit roats, then under

the null hypothesis (4)

—1
d 2 r ’ 4
Fig— x“f‘a(k"l) + tr [Idwlﬂa []w Ea] W dWl]

where the firsat and the second terms are independent,

-1
W () =W (s) — /W W/ [[wbwd W, (s},
Wa(s) D

= BM(1 ),
Wb() n—n t

3

and Wl(s) is the vecior of the first n. elemenis of Wb(s) . O

1
The above two corollaries show that in two exireme cases the asymptotic distribution of the
Wald test is free of nuisance parameters. Thus: (i) If there is "sufficient cointegration with respect to

¥,, " in the sense that rank(A_ ) ==n_, then the asymptotic distribution is x2 ; and (ii) If there
3t 3 3 nlnak

is no cointegration, the Wald test stﬁtistic converges to a nonstandard but nuisance parameter free distri-
bution, and hence critical values for the test in this case can be conveniently tabulated.

In the intermediate cases, however, the asymptotic distribution is not only nonstandard but also
dependent on nuisance parameters, i.e., if there is cointegration but it is "insufficient with respect to
Yay " in the sense that rank(A3) <ng, then the asymptotic distribution depends on nuisance param-
eters in a rather complicated manner. Hence, in order to test causality using this approach, estimation of
the nuisance parameters would be required and critical values for the particular distribution would need
td be calculated by simulation based on those estimated parameters.

In sum, to detect noncausality in & VAR model like (1), we need first to know whether A is

cointegrated or not, and second to see if rank(As) =n, . If there happens to be no cointegration or if

3
there is sufficient cointegration with respect to gy 1 then we can apply Corollary 1.2 and Corollary 1.1,

respectively. (Of course in the case of no cointegration we can also formulate a (]:---l)t'h order VAR in

Ayt .) But otherwise it is necessary to know rank(As) , to estimate nuisance parameters, and to
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simulate the asymptotic distribution f.hat is relevant for the particular model we have using estimated
nuisance parameters. This procedure seems too complicated and computationally demanding in practice
besides having no sound statistical basis. We cannot but conclude that causality tests based on OLS
estimation in levels VAR's are far from recommendable. We shall therefore propose an alternative and
somewhat more promising procedure based on ML estimation of the model in ECM format in Section 4.
But before proceeding to the next section we extend the above theorem and its coro-lla.ries to the

model (1) where g # 0. Write the true model (1) as
(18) y,=p+ &x, +u,

and consider two types of estimated equations:

(19) yt=p+¢xt+ut
and
(20) v, =kt 6t+§>txt+ut

where a time trend term is included in (20) since some or all elements of y, mey have deterministic
trends as well as stochastic trends if p# 0.

Effects on the asymptotics of the presence of deterministic trends in I(1) regressors, and those of
the inclusion of a time trend term in estimated equations are discussed in Park and Phillips (1988) in a
general framework. Therefore, we briefly report here only the results and the intuition behind them.

We first consider the estimated system of equations (20). Including both a constant and a time
trend term as regressors is equivalent to detrending the process {yt} prior to the estimation of (7}.
Hence the basic components that appear in the asymptotic distribution in Theorem 1 become "detrended
Brownian motions.® Furthermore this distribution is unchanged whether or not some elements of Y
actually have deterministic time trends. Thus whether I‘ip #0 or I‘_'Lu = 0 (including the case that
p=0), if we estimate the equations (20), then Theorem 1 and Corollary 1.2 still hold with the
Brownian motions Wa(s) and Wb(s) in the asymptotic distribution replaced by the "detrended

Brownian motions" V'-Va(s) and V.(I’b(s) , respectively, where
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-1
Wa(s) = Wa(s) -/ War' [ ] rf’] r(s)
with (s)’ = (1,s) and ﬁ’b(a) is similarly defined. Clearly Corollary 1.1 also holds.

Next suppose that we estimate the system of equations (19). Then the asymptotic distribution is
affected by whether or not there actually are deterministic trends. Since the inclusion of a constant term
as a regressor is equivalent to demeaning the process {yt} prior to estimation, if I‘-’Lp =0, then
Theorem 1 and Corollary 1.2 again hold with the Brownian motions Wa(s) and Wb(s) replaced by

the "demeaned Brownian motions" V_Va(s) and V_Vb(s) , respectively, where
Wa(s) = Wa(s) — IWB

and V—Vb(s) is defined analogously. Of course, Corollary 1.1 holds.

However if I‘J’_,u # 0 and hence some or all elements of A have deterministic trends, the exten-
sion is not as straightforward as it is in the earlier cases. Since the time trend component is not
eliminated by demeaning the data, one of the elements, say the last one, of V—Va(s') or \_’Vb(s) must be
replaced by a component corresponding to the time trend, t. More precisely, instead of Wa(s) or
Wb(s) define

W (s

Wials) = (i=e or b)

where le(s) isan n,—g—1 (f j=a) or (n—r)— (n3 —g)—1 (if j=Db) dimensional

3
standard Brownian motion. Then, for example, if j=b, Wb(s) in the distribution of Theorem 1 is

replaced by the demeaned Wb*(s) , lLe., ﬁ/b*(s} where

Wia(s) = W) — [W,,

and Wa(s) is replaced by the demeaned Brownian motion Wa(s) . It depends on the structure of A13
which of Wa(s) and V-Vb(s) should be modified to V_Vj*(s) (j=a or b).
Corollary 1.1 obviously holds, but Corollary 1.2 is not true any more if u# 0 and (19) is esti-

mated. (Note that if there is no cointegration, nongero u always produces deterministic trends in A .



23

The reason can be explained as follows. Recall that in the argument proceeding to Corollary 1.2, we had
[IIl - J*(l)}Bz(s) = Bo(s) where Iu — J*(1) is nonsingular. This implies that each element of BD(s)
can be expressed as a linear combination of the elements of B2(s) . Furthermore, because of the restric-

tion that J’{s(l) = 0 it turns out that the first n_ elements of Bo(s) s S iBO(B) , are collinear with

1
R};Bz(s) and this leads to the nuisance parameter free property of the Wald test in the case of no coin-
tegration. However, if there are deterministic trends in LA Bz(s) is an n—1 dimensional Brownian
motion and is equal to Gé[ln —J"(l)]-lBo(s) where Gn is an n x (n—1) matrix such that
G(’][In - J“'(l)]_lp = 0 since only the (n—1)—vector Géyt is asymptotically dominated by stochastic
trends while v itself is dominated by deterministic trends. Therefore, all the elements of Bo(s) can-

not be expressed as linear combinations of Bz(s) , and hence in general SiBO(s) cannot be collinear

with Bb(s) ! Thus if we estimate (19) when g # 0, then Corollary 1.2 no longer holds.

4. CAUSALITY TESTS BASED ON ML ESTIMATION OF THE
MODEL IN ECM FORMAT

As we saw in the last section, causality tests based on OLS estimators of unrestricted levels
VAR’s are of little practical use. In this section we consider an alternative way to test noncausality
hypotheses in cointegrated VAR's. Qur testing procedure is based on Johansen’s (1988, 1989) ML
method. This method has two advantages over the levels VAR approach considered in the last section.
First, the ML procedure gives estimators of the system’s cointegrating vectors, A , and their weights
T' . Hence if the asymptotic distribution of the tests depends on the structure of A (or T'), asin the
case of OLS based tests, then we may use these estimators to test relevant hypotheses about the structure
of A (or T). Moreover, the ML estimators are asymptotically median unbiased and have mixed
normal limit distributions, unlike those that would be obtained from levels VAR estimation, and they are

therefore much better suited to perform inference. Second, since ML methods take into account

I'We can similarly explain why the asymptotic distribution of Theorem 1 is not free of nuisance param-
eters in general; if there is cointegration, then B2(B) = AJ’_C(l)BO(s) and hence all elements of SiBO(s)

cannot be necessarily expressed as linear combinations of the elements of BZ(S) .
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information on the presence of unit roots in the system, we can avoid unit root asymptotics altogether,
i.e., the asymptotic distribution of the ML estimator of A will be mixed normal and conventional
normal asymptotics will apply to the estimators of the other parameters. (See Phillips (1988/1991).)

We deal with the ECM representation of the system given in (2) and (2)’, and estimate the par-

ameters J’{, ey F I', and A. The asymptotic theory does differ depending on whether or not

¥
k—-1"
there are deterministic trends in Y, (ie., I‘ip = 0 or not) as is shown in Johansen (1989). The
difference in the asymptotic distributions, however, does not affect our results about causa-xlity tests
obtained below. Therefore, as in the last section, we shall assume for simplicity that u = 0, i.., the
true model is (2).

Although Johansen assumes normality of the innovation sequence {ut} in addition to the
assumptions we made in Section 2, it is obvious in view of our Lemma 1 and Lemma 2 that all the
asymptotic results in Johansen (1988) continue to hold without the extra assumption.? Thus, suppose
that by Johansen’s likelihood ratio test about the number of cointegrating vectors we have decided that
there are r ? 1 cointegrating vectors. (If there is no cointegration, we can formulate the model in terms
of first order differences {Ayt} , or we may apply Corollary 1.2 in the last section.) Then the ML esti-
mator A of A is given by the eigenvectors corresponding to the r largest eigenvalues that solve
equation (9) of Johansen (1988). Also, let A-L be the n—r eigenvectors® corresponding to the n—r

smallest eigenvalues and assume that all the eigenvectors are normalized in the manner prescribed by

Johansen (1988, p. 235). The estimator of ¥ = [J¥, ..., J]’:_l, T] is given by
¥ = AY'Z.(2:2,)
1"171

where AY' = {Ayl, wry AyT] , and Zi = [511, vy le] with T, = [Ayt__l, oy Ayt-—k+1’

2af U, is not pormally distributed, the estimators considered below are not ML estimators any more.

Nevertheless we shall continue to refer to them as "ML estimators."”

3These eigenvectors do not provide a consistent estimator of the space spanned by A-L . But we call

them AL since their role in the derivation of the asymptotic distribution is the same as that of AJ_ .

(See the Proof of Lemma 4.)
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(;&’yt_l)’]’ . In this section the symbol """ on top of a parameter signifies that the parameter is
estimated by ML.

We shall construct a Wald test statistic based on these ML estimators to test the noncausality
hypothesis {5). But before proceeding furiher, we summarize the limit behavior of the ML estimators

and some sample moment matrices. Define

A=Al
T= f‘ﬁ’ )
and
v =[J% .., ch—l’ T},

where Il = é’A with A’ = (A’A)_lA’ , and define

~

where I = A’A  with A’ = (ATA )_IA’ . The limit theory we need is given in the following
1 =1 =1 Il 1

lemma which is a consequence of results in Johansen (1988).
LEMMA 4.
- d -1 -1
(i) T(A-A)-— A [13232] fBdec =A MM

where M2 =B Mc =/ Bde": ) BZ(S) is the n—r dimensional Brownian motion defined in

Lemma 1, Bc(s) is an 1 dimensional Brownien motion with covariance mairiz ﬂc = (I"E:ll‘)-l )

9Bg

and B2(s) and Bc(s) are independent.
n(k-1) r

where vec(N’) = N(0, ):Il ® Eu) which is independent of Bz(s) and Bc(s) .
ey P
(3i1) Eu —— Zu

where Eu is given by (7) or (12) of Johansen (1988).

-l
Gv) = [rfz‘lr] -2
c 1 c
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where Z] [zn, ooy zI’I‘] with s [ﬁnyt 1 Ay;—k-i-l' (A’yt-—l)']

where 22 =[5211 2T] with 32 =A RARE o

Now the null hypothesis of noncausality is given by (5). This can be written alternatively as

(21) §]%.5=10 or (5’ @5 )vec(d;) =0
where &, {J k P
SiJ*S?. = SiI‘A'S = I‘lA:’3 =0

where I‘1 denotes the first n1 rows of T . Since

s .~ oa o
TA- —TA’ =TO/(0 Y A’ —TA’

= (T-T)A’ + T(A’ —A’),

we have
(22) vec(‘i; —®) = f’}}
where &' [J“‘, v .k 1 ,,] with J = I‘A’
1 ] 7 2
1 o )0 |-
. 0 (k—1) :
P=l---—- {,.._ - —:___._
] i
1 ] - 2
0 1A®I 1 T {n
1 n, n i
n2(k-—1) nr nr

and

vec('i"—'l”)

Y
I

vec(fx —4A)

Furthermore define

J,] . Note that (21) involves some nonlinear restrictions, viz.

26
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I I
I, E 0 i 0 n"(k—1}
. n“(k-1) | !
P, = ——-——i-——-_!_ —_——
[ 1 - - 2
0 'AeI !A T |n
i L, 4l i
n"(k-1) or (n—r)r
and
2
n”(k-1) + nr (n-1)r _‘
I
2
sen vl @ o n°(k-1) + or
) (z72,)" ® L, ; 0
le=|———== ——— e e ——
| (33, 0
0 ' ( 2 2) ¢ | (n-1)r
I -

- ~ a-la—1 e - Sbh oS — A’
where ﬂc =(r Eu r) , and z, = [z21’ - 22'1‘] with Iy = Alyt—l .

Then, in order to test the hypothesis (21) we consider the Wald statistic

(23) Fypp, = vec(24) (S ®S,)[(S” 8 81)P,A,P (S @ sl)]_(s' ® 5 )vec(dy) -

Note that (S’ @ S/)P,Q,P;(S ®S,) might be singular since P,0,P; is singular and this possibility
is accommodated through the use of the generalized inverse in (23).
To analyze the asymptotics of FML it will be convenient to transform FML as follows.

Define a nonsingular matrix

| | |
1, Lo b0 o0 n2(k—1)
n"(k-1) | ! l
H - —_——— e o i e e =
: o |
] [} i 2
0 'AeI ! A ®T!A T |n
L i n, 4 I i
nz(k—l) nr {n—1)r (m—x) 2
and EO = HO(Haﬁo)_l . Then since HOE(’] =1 2k and S@;Sl = 0 under the null hypothesis, we
n
can write (23) as
(29) Fy = vee(®; — #4) EQIQ" By P,0,P{E Q7 Q" By vec(d; — #4)

where
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: 1 I
i ] i
’ [ | 1 1 —
ol S m T
| ¢ | ]
0 :A3 @ Sl i AJ_3 @ I‘1 : A.I.3 @ I‘ll D 0,
2 1 | 1 2
n"(k-1) nr {a—1)r (n—r)
where I' | isthefirst n, rowsof T
11 1 1
Let g= rank(Aa) as before, and d = rank(rl) < min(nl, r) . Next define an n, xd matrix
L and an n, (n1 —d)} matrix Lb such that
IR(La) = iR(I‘l)
and
1
IR(Lb) = [R(rl)
Now introduce the nonsingular matrix
u b
I ' 0 n_n,(k-1)
__1_3£k._11i_ o 173
1 ’
0 :Ka @ In n.g
P P S
L= 0 :K’ @ L’ (n, - g)d
b a 3
______ .;....... - ———
! s ’ -
0 :Kb ® Lb ] (113 g)(nl—d)
n3(k—1) n,n,
where Ka. and Kb were defined in Section 3. Let 6’ = I-..’Q’ where
’ 24 | ! —
Ik—l @ S3 951: 0 | 0 : 0 n1n3(k 1)
'_—__—_T - ___{. _...._...........i_______
| II rd Iwrs
) ] K A3 ®5 KB.AJ.3 ® I‘1 :K ALSQI‘.LI n,g
R et EECE R S
| 11+ l
0 | 0 }KbA.L3 @ L’ I‘l,KbA 301.. r (ns-g)d
- — = ——— L — ___+ ._...._.___‘____...__
i i
I | ;
0 | 0 : 0 KbA 3OLbI‘ 1 (n3—g)(n1—d)
i I |

Also define
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’ 21 [} |
L, ® 53°S1: 0 : 0 | 0
-__...___.!.____}______...Jr _________
0 K A, es"(x A,eT )/ﬁ'(x A,®T )T
~ I
Q".I[‘= -___.__...!.._._..._{I._______.L _________
0 ! 0 {K{A  ®LT, '(KA ® LT } /YT
| i 11
IRl et nbel Wikt
0 : 0 : 0 KbA 5 ® LT |
L [ ' d i
and
i | ]
Q;l E 0 E 0 n1n3(k—1) + 1,8
——— - _E_._.___;._____..
- 0 ] ’ | 0 — d
Q. : Q*z ! (n3 g)
___..._?_._...-:_____
| | 4 - —
L 0 : Qs (ny - g)(n; —d)
L | | d
nf(k—1)4nr (n-t)r (n—1)’
where
A : X
F Fs 1
L_, ® S;@5; : 0
Qtl_ '—___—-_—:_ - s == )
| K’A, @5/
0 - 1
- I -
Qi =KpA 5@ LT
and

Qug=KpA 3@ LT -

Note that each of Q;j (i=1, 2, 3) is of full row rank by construction, and that Eé,i\ Q..

With these transformations we may rewrite (24) as
Fpqp = vec(®; — 25) H QIQ"HiP,0,P; _OQ] TQH) vee(¥] — 8}) .
. . 3 2
Further, since diag(y/T In1n3 (k=1) +n1g’ TI(na_g) & T (n3-—g)(n —d))Q = QT 0T where
3/2

= diag(y/T 1 y TL T ), we have
Tor n2(k—1)4nr O (n—1)2
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-

(25) FML = vec(®} — *) T*TQT[QTTOT OP ] P,,,__0 OTQT] QT OTHE! vec(®, — &) .

Thus, we now consider the limit behavior of TBTE(,J vec(@’ — &;) and TOTHOP f P, ___0 OT .

First let us look at the former. From (22)

*
58y vec(@ )= TOTPO”
where
[ Lo | ] a2
1 2 {0 t n"(k-1)
nk-1)}
_____ !.- -{I._ _—— -
0 11 A" @T nr
e, =
N o= -
0 0 A ®T'T | (n-1)r
I L =
_____ .I,_ _.}_ —_ - - -
| 0 1A eI'T 2
0 | 1A r: (n-r)
i i J
(k—=1) nr ar
and T’ = (I"I‘)_II" with Ei being defined analogously. Letting
Top = diag(y/T I ) »TI_ ), we have by Lemma 4(i) & (ii)
n (k—1)+4nr
i ] 1
! 2 : 0 : 0
n (k1) g
—— e e L e e
b .
0 |1 _{(A"@T)/yT
* ’ ’ { s ~ d
(26) TOTHU vec(<I> -¥)=|---=- t- -{'-- - TOT” —_ Pon
0 V!0 ) AeTT
] [
_____ i._ _i._ —_—— ————
0 ] oA T
. REEARE

where



nz(k—l)—l-nr (n—1)r
i |
I ! 2
nz(k—1)+nr ' 0 (k1) + nr
_——— _...E_______
— ' -
PU_ 0 : I(n——r)r (n-1)r
— e o o — ——I-—“ — — A — ——
! 2
0 : In-r OE;Nz {n-1)
L ]
and 77 = [vec(N’) ,vec(M?Mc) ].
; « /P O.P’ *
Next we consider TOTEOP*Q*P*EOTOT . Let
- | : . ,
I i I -
n2(k—1) i 0 : 0 n (k-1)
._._______._....,:____._
- | -1 |
V= 0 o er | 0 nr
| no
— — S EE o w— — —— —l— — - —
i 1
| | G | -
0o | ] o emn’ i (o-n)r
I 4
L C i i
2
n (k—1) nr (n=-1)r
and define
_ \ i .
1, ' 0 0
O N L Y :
Py=P V= |- —de — = - — =,
. . ~
0 !A®I!'A T
/ ni 1
L [ 1 |
| -
R | 1
(z:2) e | 0
PR P 1 !
Q, =V OV ) = |- mm e e~
N
i s
0 | (232))" @0
| 1 |
Note that P,0,P,=P,VV 10,V 1) V'P, =P,0,P,, and that T3 HoP, 0P,
= P Yo TypPiq where Top = diag(y/T I 9 ,TI(n_r)r) and
n (k—1)4nr
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1
i
|
n2(k—1) ! 0 | 0
SR g
1 i ~
1 1 A7
) 0 : I . :AA_LNTGI‘
Pep = --'—'r———-——i——-—-"-—-
0 !AAJTer ! 1 @ I'r
1 I n—-r -
_____.!,._.__.___i_________
ll.’ P | l“
0 iAATOr] | 1 e L/TYT
1 1

vl

since A‘A=A’A(A’A) A’A=1 and éii = A

Lemma 4(i), {ii) & (vi),

bt 8

L R R &

(1, o |
I
|
G
Y
I S|
1; —d—DP = f |
*T * 0 ' 0 !
' :
.._._-__i.__ —_—— e - =
iM_IM e |
O MM eI
i |
nz(k—l) nr
and
1
1 1
Y e L ! 0
.. d 1 u=
TOTQ*TOT_—’Q*= _____ T
0 ‘M@
;
Therefore, we have
(27) H/P,0,P,H T+ -5+ P,0,P!
OT 0 *~0°0T LA
Thus, from (26) and (27)
L4 AI ’ d ’
(28) QTTETHO VCC(Q* - Q*) — Q#PO'I

and

~ ~ - d
7k i * ? ’
(29) Q1 T# H/P,Q,P H:TUTQT — Q/P,0,PLQ, .

A(AA)” AA =1
n—r

1 n2(k-1)

nr

(n-r)r

(n-1)
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Hence, from
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Note that Q(P,N,P.Q, is not necessarily nonsingular. For example, suppose that k=1 and r=1,

and that n i1s even and n, =n

1 3

Q.P, has more rows than columns, and hence QP 0, P.Q, cannot be nonsingular. If

=n/2. Then QiP, is an n2/4 x (Zn—1) matrix. If n2 8§,

Q.P.0,P.Q, is not nonsingular, we cannot apply the continuous mapping theorem directly to obtain
the asymptotic distribution of (25) from (28) and (29). Furthermore, even if Q/P 0, P;Q, is non-

singular, the asymptotic distribution of (25) can be shown to depend on nuisance parameters El , X

u ¥

and Qc in general. See Example 4 below for an illustration of this.

Thus we assume that g = ra.nk(As) =n, or d= rank(I‘l) =1, . (In the operational proce-

dure we shall suggest below, one or the other of these assumptions will be made and tested when n, = 1
o mn, = 1.) First suppose that g < T, and d = n, - Then from the definition of Q, , we have
L]
Q,“1 | 0 | 0 n1n3(k‘1) + 1,8
Q= |- -m - i
0 1 ’ 1 0 n. - n

nz(k—1)+nr (n—r1)r (n—r)2

where Q;l and Q;z are of full row rank. Hence

|
Q.M ©0)Qy

|
]
i
:
(30) QPAPQ=|— - - —— —— - '}'— - T - =
|
1
1

which is nonsingular. Also

i* vec(N’)

(31) Py =
, -1
QZ* vec(M2 Mc)

Thus, combining (25), (28), (29), (30), and (31) we obtain by the continuous mapping theorem

d
(32) Fur — Faey + Fure)

where
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’ -1
FML(I) = VCC(N’) Ql* [Qi*(zil ] Eu)Ql*] Qi* VBC(NJ) :
, _ -1 _
Fypgz) = veclMy M) Qe [cz.;,.‘(M21 @ ﬂc)Qz-] Qj vee(M; M ),

and F are independent since N is independent of M

and and Mc by Lemma 4(ii).

FuLa) ML(2) 2
- 1 . .2
Because vec(N‘) = N(0, EI ® Eu) , we easily see that FML(I) = xnlna(kw-l)+nlg . As for
FML(2) , note that by the same argument as that of Lemma 5.1 of Park and Phillips (1988)
Q:. (M @ 0)Q —%Q’ vec(MZIM ) = N(0, 1 )
28309 ¢/ vt 2* 2 7¢ T ! nl(na—g)
since B2(s) and Bc(s) are independent by Lemma 4(i). Hence, 2 Since

ML) * % (n8)

F and F are independent, we deduce that

ML(1) ML(2)

F d x2
ML nlnzk

Next suppose that g = n,. and d ¢ n, - Then there will be neither 'Q2* nor Q3,, , and

hence a similar calculation to the above gives

-1
d ’ ’ 1 ' ’
FML — vec(N )Ql*[ 1*(2; @ Eu)ql*] Ql"‘ vec(N)
which also has a x2 distribution.
n1n3k

We summarize these results in cur next theorem.

THEOREM 2. Suppose ihat in the model (1)’ (or equivalently (2)’) IIn —J(L)L| =0 has n—r unit

roots (1<t <n—1) and the remaining roots He oulside the unit eircle. If rank(A,) = ng or

3
rank(I‘l) =n, , then under the null hypothesis (4) (or equivalently (5))

F —db x2
ML n1n3k

u]

Unfortunately, even the ML method does not always guarantee the usual chi—square asymptotics
because the rank condition in Theorem 2 is not always satisfied. To illustrate the problem that arises

when there is rank deficiency both in A3 and I‘1 we provide the following example.
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EXAMPLE 3. Consider the trivariate cointegrated system
(32) Ay, =1a’y, ; +u,

F L — L— —
where Yy = (Vi Your Yai) o LHEL CHPL SRR P9 JF 1 = {7 79 75) = (0.11), and
o = (cl, ay a3) =(1,—1/2,0). In this example we use lower case letters to signify vectors and
scalars. (For example a corresponds to A .)

Suppose that we want to test whether Yg_y causes y,. . Then the null hypothesis is

(33) 1% = 0,

and the Wald statistic given by (23) becomes

~ a2
(1,95)
Fmr = 73 T -2 1
ML e gy AT Sl - grp vy L,
o0,y (Z1%) © + 7u 3(EaTy) ey
where o= var(ult) and 21 = (a Ygr = @ yT—l) . Though we could use the formulae given

earlier, it is easier to proceed as follows, taking advantage of the simplicity of the model. We write

FML = =2 T T
T3y, | Ty ek

(VT 7p° (Tay)?
because 313 = S:ISAL = Sé(Axéiil + ag’il) =a,+ a3g’:kJ_ =0, . (For éi)‘il = 12 and
@y = 0.) Since by Lemma 4 &ul £, LA Z)c £ W s T(iiﬁl)-_l £, azl ) T2(iéiz)_l
<, M;l , VT ;1 = ﬁ(:}l — 11) <, N(0, oulaIl) , and Tas = T(E3 — a3) 4, aL3M;1MC , we
have
(34) FyL = 1 1 e xix:

X, + Xy, a b

where each of X, and Xy is distributed as chi—~square with one degree of freedom, and X, and Xy,
are independent.
Thus, FML does not converge to a xi distribution but to a nonlinear function of independent

chi—square variates. This occurs because both of 7y and a, are sero. Under the null hypothesis that
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M0 = 0, we can expand 7,9, 88

71u3 = 03(71 - 71) + 71(03 - 03) + (71 - 71)(03 - as)

~ _ —1/2 - _ —1 A - _ —3/2
where "Y%< Op(T R a, — @, = Op(T ), and (11 '71)(03 a3) = OP(T ). If
ag $0, -'}1'&3 is asymptotically dominated by the first term. If e, =0 but 7, # 0, then ;15:3 is
asymptotically dominated by the second term. In either case the Wald statistic FML will have an
asymptotic chi—square distribution because ﬁ(;l —_ 11) is asymptotically normal and T(&3'— 03) is

asymptotically mixed normal. If ap =7 = 0, however, ;153 is equal to the third term and there-

fore the usual chi—square asymptotics do not hold.
The following theorem gives the analytic form of the density of the limit variate in (34).

THEOREM 3. If Y = xaxb/(xa + xb) where X, and Xp, ore independent chi—square variales, both

with degrees of freedom n , then the densily of Y 1is given by:
(35) df(y) = 22 7Pr(n/2) 2 YyP IR (Bik )
PV =  “k=0k) "—k+n/2") -

When n =1 asin (34) we have:

(36) paf(y) = (2/7)e K, 1(v) .

In (35) and (36) Kv(y) denotes a Macdonald function or modified Bessel function of the third kind with

parameter v (c.f. Erdelyi (1953), p. 5).

The density (36) is graphed in Figure 1 against that of a x? variate. As is apparent from the
figure, the density of (36) is much more concentrated near the origin and has a much thinner tail than
the x? distribution. I we were to test the null hypothesis (33) using a critical value obtained from {36)

for the Wald statistic in this case, the test would have much greater power than a test that employed a

3

an investigator who employed a conventional Wald test in this case would be unaware of both the size

nominal xf critical value. In practice, of course, we do not know that both /] and a, are zero, and

distortion in the use of nominal x2 critical values and the resulting power loss, O



7

EXAMPLE 4. Consider the trivariate system with two linearly independent cointegrating vectors

Ay, =TA’y_ 41

where T/ = (0, 75, 'yé) and A’ = (ai, aé, 0) are 2 x 3 matrices. Again in this example lower case
letters denote scalars and vectors.

Suppose that as in the last example we want to test the hypothesis

7,93 =0.

This time we shall apply the formulae given earlier. Since ag =7 = 0, we have from (28) and (29)

’ —_ ’ ’ -1
QiPy1=ay 7,7, N,m m,

and

, , 2 -1 1
QiP.LPLQ, = (a3LTl.L) m, mcz— 1 ® 7, + (e

2 -1, ,
1 u=L 31711) ) l4.1\1[29::1\723'—4.

Note that since there are no lagged differences in the system, the covariance matrix of N2 is
Eu @ EII . Now define

—1/2
¢ = a2t 2 1/2[dB B [[Bi] / = N(0, I

a c c 2 2)

and

¢, =528z (8 1 7P = N, )

where Ca. and Cb are independent. Then

UPgn=og,m,(1; u‘yl)l/zcb 11/20i/2‘am; 2
and
QUP,A,PIQ, = (a7, Voo 20 2 0l 2 i 2y 8 )
+ ("31"1;)2'“24(7121;";)1/2cbz—m 1/22_1/2%( 2% i)llz'
Therefore

[Cbﬂ_llz ql/2 a]

C

d

ML, 12 1.1/2 12 172,
Canc Eznc <.a.+ CbEI ncEI cb

F
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which shows that the asympiotic distribution is nuisance parameter dependent when r=2 and

@y =9 = 0 in the above trivariate system. Notice that in this last expression if r is equal to one,

3

then ( , (., S_l , and are scalar, and the limit distribution reduces to the one given in
a b 1 c

Example 3. 0O

In sum, if the system is subject to cointegration, causality tests based on ML estimation may
well collapse and not satisfy the usual chi—square asymptotics, not because of failure to use information

on unit roots (as in the levels VAR estimation), but because of the nonlinear constraints T A = 0 that

13

are necessarily involved in the null hypothesis. Thus, we need to know whether the condition that
(i) rank(I‘l) =mn, or that (ii) ra.nk(A3) =1, holds. Unless we have a reason to believe a priori that
either condition (i) or (ii) holds, we have to test the conditions empirically. This can, of course, be done

using the ML estimates of I‘l and A but will necessarily complicate the inference procedure, as we

3 1

now discuss.
In particular, condition (i) or (ii) can be easily tested if n, = 1 or n, = 1, respectively, For

example, suppose that n

=1 and n32 1. Ther T. is an r—vector, and hence condition (i) is

1 1

equivalent to I‘1 # 0. Furthermore, notice that I‘l being a zero vector implies that J =T A, =0

*13 173
in (5). Therefore if n, = 1, we propose the following (sequential) testing procedure.

{I) Test the hypothesis that I‘1 =0 by

) SR T
FyL = r1z; Ty

~

where ST is the r x r lower—right block of (iiﬁl)_l . FI

o e 2
M couverges in distribution to X

under the null hypothesis that T 1= 0.

(II) If the above hypothesis is rejected, then test the hypothesis (5) using the statistic (23). If

not rejected, then test the hypothesis

* —_ s e = ¥ —_
(37) M= "= ,13=0

by the Wald statistic



39

IT %, @ o =17 =
Fyp = ¢4815,8,] "¢,/5,

-

where ¢_’|_ = [J‘Lm, .y J;—l,ll’o] ) S+ = Ik-—-l @ S3 , and E+ is the n{k—1) x n(k—1) upper-

2,0 1 I1 . 2 e
left bleck of (ZIZI) . FML has an asymptotic xns(k—l) distribution under the null

hypothesis (37).

Note that the convergence results of FBI/IL and FI‘IMI; stated above follow immediately from Lemma 4.
In the case of ng = 1, we can proceed with a similar testing procedure.

In most applications of causality tests we can expect that n. =1 (and probably n

=1,

1 3

also). The above testing procedure therefore should be useful, although some loss of power in relation to
an exact test such as that based on the limit {34) will be inevitable when there is composite rank defi-

ciency as in Example 3.

5. CONCLUSION

This paper has studied the asymptotics of Granger causality tests in unrestricted levels VAR's
and Johansen—type ECM'’. The results of our analysis are not encouraging for these tests in levels
VAR’s. QOur main conclusions regarding the use of Wald tests in levels VAR’s are:

(i) Causality tests are valid asymptotically as x2 criteria only when there is sufficient
cointegration with respect to the variables whose causal effects are being tested. The
precise condition for sufficiency involves a rank condition on a submatrix of the cointe-
grating matrix. Since the estimates of such matrices in levels VAR's suffer from
simultaneous equations bias (as shown in Phillips (1988/1991)) there is no valid statis-
tical basis for determining whether the required sufficient condition applies.

(i) When the rank condition for sufficiency fails the limit distribution is more complex
and involves a mixture of a x2 and a nonstandard distribution, which generally

involves nuisance parameters. The precise form of the distribution depends on the actual
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rank of a submatrix of the cointegrating matrix and again no valid statistical basis for
mounting a Wald test of causality applies.
In view of these results we r?commend against the empirical use of Granger causality tests in levels
VAR’s when there are stochastic trends and the possibility of cointegration. Next

(iii) If there is no cointegration the Wald test statistic for causality has a nonstandard
but nuisance parameter free limit distribution. This distribution could conceivably be
used for tests when it is known that there are stochastic trends but no cointegration in
the system.

Testing for causality in ECM's is more promising than in levels VAR's but is still unsatisfactory in
general. Our main results are as follows.

(iv) Wald tests for causality in ECM’s are not in general valid asymptotic x2 criteria.

(v) Problems of nuisance parameter dependencies and nonstandard distributions enter the
limit theory in the general case, Both these problems compromise the validity of conven-
tional theory. These results may be considered surprising and deserving of some
emphasis in view of the fact that other types of Wald test in ECM's are known to be
asymptotically valid x2 tests.

(vi) Sufficient rank conditions for causality tests to be asymptotically valid x2 tests are
given. These rank conditions relate to submatrices of both the cointegrating matrix and
the loading coefficient matrix. They can, in principle, be tested empirically using the
ML estimates of these submatrices.

(vii) For the special but important case of testing when there is either one causal variable
or one dependent variable of interest, a sequential operational procedure for inference is
suggested.

We conclude that Granger causality tests in systems of stochastic difference equations are fraught
with many complications when there are stochastic trends and cointegration in the system. Neither levels
VAR models nor systems formulated in ECM format lead to a satisfactory basis of inference. But since

ML estimation of ECM's delivers optimal estimates of the cointegration space it would seem that ECM's
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provide a more promising basis than VAR’s for the sequential inference procedures that are needed to

adequately test causality hypotheses in these models.



42

APPENDIX
PROOF OF LEMMA 1
{i) From (2)’ we have
{Al) By 1= Gzlt =+ Fut
where
1 1 1 T
* i J* . r
31, SO L
— ___-_:_ —_—— _.I._ —
_ Lol
¢=1 Tagn) ! |
—_ _____i_ _— _:__.........._.
T I A?T% | A
A Jl’ = A Jk—l:A I‘-+-Ir
| I I J
and
e ®I
F= k1 n
A!

Since Z, is. I{0) by assumption, the eigenvalues of G must be all less than unity. Hence we can

write (Al) as

(A2) 2, = E’)(L)Fut__1
= i_ i
where ©(L) = E?zoejL = E?=0G L.
-1 T
Now by the same argument as that of Theorem 2.2 of Chan and Wei (1988), T ~ X zltzi ¢
t=1
-2 El and
_ 1 [T§] -
u
VT ot 4 |Bo®
(A3) —_
L3 (o, 0u,) E
z u
_VT t=1 1t t i

where Bo(s) is an n—vector Brownian motion with covariance matrix Eu’ and £ is an nm,
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dimensional normal random vector with mean zero and covariance matrix 21 ® Eu with 21 = Ezltzit
= E?_OGJFEuF’GJ . Bo(s) and § are independent.

Since ©(L) is the inverse of I - GL and lIn — GL| = 0 has only stable roots, we see from
Brillinger (1981, p. 77) that for all p > 0
)
Py, <
j=1

where ”ej”a denotes the sum of the absolute value of the entries of G)j . This in turn implies that

®
.2 2
I Plol® <a
j=1
where ||@J|| = tr(@j®3)1/2 . Thus by the multivariate extension of Theorem 3.3 of Phillips and Solo
(1989)
1 [T§] d
(A4) way t—lzlt — O(1)FB(s) .
Since Az, = A;Ayt—l , we also have from (8) and (A4)
] {T§] ] [T;:] 1 [T]
(A5) ﬁ Az?t = A.L\I’ﬁ zlt + AJ.VT ut + Op(l)
t=1 t=1 t=1
d

—+ A’WO(1)FB(s) + A’B(s)

= A‘[l + FO(L)F]B,s) .

Next, we set Bl(s) = G(I)FBO(S) and Bz(s) = A_’L[In + TO(I)F}BO(s) . Combining (A3), (A4) and
(A5) we have (i) as stated and the covariance matrix of B(s) = (Bo(s)’, Bl(s)’, Bz(s)’) is given by
0.
(ii) Inserting (A2) into (8) gives

Ayt = \IJG)(L)Fut__1 +u,

(A6) =1+ ¥O(L)FLjy, .

Hence, C(L) = In + $O(L)FL (cf. (9)), and C(1) = I11 + $O(1)F . Therefore, from (A5) we have
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(A7) Bz(s) = AiC(l)Bo(s) .
(iii) It is obvious that 00 = 20 = Eu , which is p.d. by assumption. From (A7) we have
(AB) a, = JHLicu)EuC(l)'Al \

which is also p.d. since R(C({1)) = R(A)L = m(AJ.) .

Since Az2t = AJ.Ayt—l is a function of the past history of the innovations {ut—l’ LPY o}
we have
EAz2tut+j= ¢ forall j20.
Hence 220 = AZO =0.

PROOF OF LEMMA 2

(1) was proved in Lemma 1(i). The rest of Lemma 2 immediately follows from Lemma 1 and from

Lemma 2.1 of Park and Phillips (1989) noting that 220 = A20 =0.

PROOF OF LEMMA 3

™~ 3

T T
—1 . n—3/2 ,
T tElzltzlt T t_z_:l’lt’zt
: S = =
() 1202 =

T T T

T
T_slzzz M ']."_2 Ye =

t=1 2671t t=1 2t 2t

% 0

0 fBzBé

and



T
_1/2 ’
T Elzltut
(i) 120 =
T
1 %’
T g, U’
t=1 2t
N
(A9) d 0
!Bdeo
by Lemma 2.

PROOF OF LEMMA 4
(i) This is proved in Lemma B of Johansen (1988).

(ii) Recal! that 2, = Hixt where x, is given by (6). Define

H =[D®l, e84

= [(H1 — Hl) X’ +H{X ]{X(H1 - Hl) + XHl]
- Z1Z1 + (H1 - Hl) X’Zl + ZIX(H1 — Hl) + (H1 —_ Hl)’X X(H1 — Hl)
where

-1

B —H =[,¢® (A-A)] = 0 (1T7)

by virtue of (i). By the same argument as (A5) and (A7)

[Ts]
/27y, Ay, d, C(1)B,(s) -

t=1
Hence, by Lernma 2.1 of Park and Phillips (1989), X’Z1 = Op(T) and X'X = Op(Tz) . Therefore
(A10) T‘liiil = '1*"1z;z1 + 0 (1)
p
N E

by Lemma 2(i)(a). Also

45
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(A1) (2] —2)Z, = (H, —H)’X'Z, + (B, —H)'X'X(H, - H))

=0 (1).
)
Furthermore
U'Z1 =0 Zl +U X(HI_HI)

where U'X = Op(T) similarly. Hence, by (A9) or Lemma 2(i){(b)

(A12) VITU'51 = ?1,1—‘U'z1 +o (1)
d .,
- N

0
where vec(NU) = N{o0, El @ Eu) .
Now since ¥ = AY’il(ﬁiil)_l , we have from (A10), {A11), and (A12)

-1 = = N1
1 1 - = %1%
+g52(Z) — 7)) 2, |

- -

+
1

N
[

JT(I—9) = ﬁU z[
<, N E_I—N

where  vec(N’) = (2-1 e In)vec(NO) = N(0, EII ® Eu) . Furthermore, N is independent of
(Bz(s_)’, Bc(s)’) because Bz(s) and Bc(s) are linear combinations of elements of Bg(s) (see Lemma

1in Section 2 and Lemma 8 of Johansen (1988)) and N0 is independent of Bo(s) by Lemma 1(i).
(iii) This is proved in Theorem 3 of Johansen (1988).

(iv) This follows immediately from (ii) and (iii).

(v} This was proved in (ii) above.

(vi) Write
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(a) Since each column of AJ_ is an eigenvector of the equation (9} of Johansen (1988),

= A;SIIA.L'dmg('\r+1’ vesy Jtn)

= dla.g().r_H, -y An)

A’s. sis A
are the product moment matrices defined by (8) of Johansen (1988) with

1710700701 s

S and Slﬂ correspond to

(i: i=0, 1)
S11 B 1) |
are the eigenvalues

where S..
1)
k—lagged level variables replaced by one—lagged levels (i.e.,
A, (=141, .., m)

i 4
S(}k and Sk()' respectively),
and the last equality follows from the normalization condition:

Johansen’s Skk .
A
Since ij (3 = r+}, ..., n) are Op(T—l) by Lemma 6 of Johansen (1988), :li

corresponding to

A =1

A.lel L~ n—r

fat - —1/2
and hence £ and I'IJ. are Op(T ).
Also from the normalization condition

In—1: = A1811A¢

=(E'A" + IIJ_AL)SH(A:. + AJ-I[J_)
— -;:-r ’ é ‘ I W ';,' ;:; ’ o ‘ i o
=EA SHA_ + HLAJ.SIIA"' + E’A SllA.Ln.l. + IIJ.AJ.S].].AJ.HJ. .

Hence
MAS AT B
11011 n—r

since A’SHA = Op(l) by Lemma 3 of Johansen (1988) and A’SIIAJ. = Op(l) similarly. Thus

(in our nota.tion) by Lemma 3 of Johansen (1988), it follows that

: -1,, d ,
Since T A.LSIIAJ._.IB2B2

-] 1/2
I =0,(T"%).
-1

L =00.

Therefore

1 7 1 = ~—1 ! ’ é‘_l
272" ,Iﬁ(A"nJ. + A.l.) Y——IY—I(A"'HJ. + A.L)

4Notice that we have the level variables Yoy in (2), while Johansen formulates the model so as to have

as the level variables. This difference, of course, does not affect the asymptotics.

Yok
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where Y——l = [yu, - yT_l] . Hence

12 1 PN 1 -1
Lz, =La7, + SE0T) MY Y A 4 S5ATY Y ASH
22t = %t R A e L
+ BT ANy Y AR 1
4
T
d p
» [B,B;

by our Lemma 2.

PROOF OF THEOREM 3. Write y = zazb/ (.'.a + sb) where the joint density of (za, zb) is

pdf(z . zb) =c cxp{—(l/2)(z + 'b)}znfz —1 n/2 —1

-1
and c= [2“I‘(n/2)2:| . We transform variables as (za, zb)-b (s,y) where z =sty and
3, =y+ y2/s with ¥y 20, 8> 0. The jacobian is ((s+3r)/s)2 and, hence,

n/2-1 n/2-——1 n/2—1

pdf(y,s) = ¢ exp{—(1/2)(s + 2y + y>/8)}{s+y) (s+y)/8)°
= e VP2 exp{—(1/2)(s + y¥/8)Hay)"s

(a13) =« PIR_[3)emiae + Pt

((s+¥)/s)
n —n/2—1

Next observe the following integral representation for Macdonald’s function Kv(‘Y) , 1.e. the modified
Bessel function of the third kind, see Erdelyi (1953, pp. 5 and 82, formula (23)):
v[® 2 -1
(A14) K,0) = (/20" expita/a)e + ¥ as
0

Integrating (A13) with respect to s and using (A14) we deduce that:

paf(y) = e ¥y 21g2_ [][z

—y_n/2—1
TR, [k] K yny200W

=2 (/) Yy I [] SRC

giving (35). When n =1 we have

x+4n lz(y)yk_n/ y

n/2

= 2ce



pf(y) = T(1/2) ¢ Y{K, () + K_; ()}

= (2/7)¢77K, ()

since Ky(y) = K__y(y) (e.g. Erdelyi (1953), p. 5, formula (14)), leading to (36).
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