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Abstract

Let A be a fixed integer matrix of size m by n and consider all b for
which the body Kb = {z : Az < b} is full dimensional. We examine
the set of shortest non-zero integral vectors with respect to the family of
norms whose unit balls are given by (K, — K3). We show that the number
of such shortest vectors is polynomial in the bit size of A, for fixed n. We
also show the existence, for any n, of a family of matrices M for which
the number of shortest vectors has as a lower bound a polynomial in the
bit size of M of the same degree as the polynomial bound.

1 Introduction

For any closed convex body K, the difference body K — K, being convex and
symmetric about the origin, defines a norm

. T
llellx-x = min{X: ;2 € K ~ K}. (1)

We consider a family of convex bodies of the form K = {z : Az € b}, where
A is a fixed m by n integer matrix, and & may vary; and denote ||z}ix,-x, as
||]]s. We shall assume that A has rank n, and that there is a nonnegative vector
m, different from 0, such that 74 = 0, so that K} will always be bounded. We
shall only consider those values of b for which X} is nonempty. By af we will
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denote the ith row of A. We would like to characterize those vectors that are
the shortest nonzero integer vectors with respect to the norm || - ||, for some
value of b.

What we shall actually do is to produce a bound on the number of these
shortest vectors that is polynomial in the bit size of A but exponential in n.
The dependence on the bit size of A4 is through the log of A, (A4), defined as the
largest absolute value of an n by n subdeterminant of 4. If we use the definition
of size of A in [6], then loga(nA,) is less than the size of A. The argument follows
the outlines of the polynomial bound on the number of vertices of the integral
hull of a polyhedron, in {3]. For any fixed n we give an example of a family of
matrices that shows the polynomial in our bound is of the lowest degree possible.

The length of the shortest integer vector with respect to a norm || - ||; is an
example of one of Minkowski’s successive minima. For any norm || || Minkowski
(5, section 47] defines n successive minima, A,, ..., A,, where ); is the minimum
of all A such that the scaled “unit ball” {z : ||z|| < A} contains ¢ linearly
independent integer vectors. These minima may be seen as realized by integer
vectors k!, ..., A" given by the rule: A’ is a shortest integer vector linearly
independent of h?, ..., A*~!. Ties may occur, so that this construction is not
unique. Nevertheless, Kannan, Lovasz, and Scarf show in [4] that for fixed A,
the union over all b of these successive minimizers for the norm || - |5 lies in the
union of a set of n—1 dimensional hyperplanes, of cardinality polynomial in the
bit size of A but exponential in m — n,

One conjecture generalizing the current result and the result of Kannan,
Lovasz, and Scarf would be that the union over b of the first ¢ successive mini-
mizers lies in a polynomial number of i — 1 dimensional affine spaces, for fixed
m and n. We know of no evidence for the intermediate cases of this conjecture.

2 Upper bound on number of shortest vectors

Define two vectors in R™ to have the same sign pattern if they have the same
coordinates positive, the same coordinates negative, and the same coordinates
zero. Shortest vectors are in a weak sense extreme among all integer vectors z
with the same sign pattern of Ax.

Lemmal Ifz = %(y+z), where y and z are integer vectors such that Ay and
Az have the same sign patlern (and necessarily so does Az), then x is nol a
shortest veclor,

Proof: Let w = }(y—=z) = y—z. We shall show that w must be shorter than
z for any choice of b. Fix any b. Then ||z||y = 1/X where Ap < b, A(p+Az) < b
for some A € Ry, p€ R, Let

a'y a'z

H= A(l -+ min":ni=>o{E, -&g

h. (2)



The minimum is over a nonempty set, because K3 is bounded. 1/u will be an
upper bound on the norm of w.
We will now show that

Alp+ %y) <b Alp+ ﬁZ) < b, (3)

checkmg each row. First, for any i such that a‘z < 0, we also know that a’y < 0
and a’z £ 0, so, having selected p greater than zero, we have

a'(p+ 53;) <da'p<V, (4)
and . 4 _ . :
a'(p+ —2——z) < alp < B, (5)
Second, for 7 such that a*z > 0, our choice of # guarantees that -
a'(p + %y) < a'p+ Ma'(1/2) + &' (2/2)) = ¢ (p + dz) < ¥, (6)
a'nd , ] ’ . . . , .
a'(p+ —2—z) <a'p+ Ma'(2/2) + a*(y/2)) = a'(p+ Az) < P, (7)

Thus we have (3). Hence, with ¢ = p + (1/2)y and w = (1/2)(y — z), we have
q € K and ¢ + pw € K;. From our deﬁmtlon, [lw]]s < l We conclude, since
1> A, that [|wlfy < ||z][s.

m}

We can also bound where a shortest vector can lie. The proof uses techniques
from [2].

Lemma 2 If z is a shortest veclor, then |a¥z| < nAL(A), fork=1, ..., m.

Proof: Let z be a shortest vector. Let K be the cone of vectors y for
which Ay has the same sign pattern as Az. Every vector in K is a positive
combination of at most n extreme rays of K. In particular, we may write z in
such a way:

=31, kP, N20 (8)

where the p' are n extreme rays of K, scaled to be integer vectors.

Each extreme ray p of K satisfies the equations a’p = 0, j € 8, for some
set S of n — 1 linearly independent rows of A depending on p. Let r be the
integer vector whose ith coordinate is {(—1)*~! times the determinant of the
n —1 by n — 1 submatrix of A consisting of the rows in S with the ith column
removed. It follows that for any i, the product a‘r is the determinant of the n
by n submatrix of A with rows S U {i} and is zero whenever i is already in S.
Thus r is a multiple of p. We may choose p to be r or —r, whichever pomts
in the correct direction. For any i, the product a’p will be at most A,(4) in
absolute value.



We now show, for any b, that |{z}ls > Xil|p*|ls. The argument is that any
body K, containing both 0 and ¢z also contains t);p'. Let the body K} contain
both 0 and tz. None of this body’s defining constraints can exclude tX;p*.
If afz < 0, then afp' < 0. Since K; contains 0, we know that b; > 0. Thus
thiafp' < b;. Ifa’z > 0, then since a’p* > 0 forall k, and \;p* = 2= hs Arpt,
we know that tA;a’p’ < ta’z < b;. Now if K contains both w and w + tz, if
we let ¥’ = & — Aw, K contains both 0 and tz, hence also $X;p*, so that K,
contains w + tA;p*. Applying the definition of |} - ||, gives us our intermediate
result. ‘ .

Since z is by assumption a shortest vector, ||p'lls > {|z|[s > Xi|[p'}]s, and so
A; €1 for all i. Now,

n
labz| = |3 A a*p| < nAa(4). (9)
i=1
a
We can now establish our polynomial bound:

Theorem 3 The number of shortest vectors for a fized matriz A is al most
m 4" (3 + 2)"" 1, where ¥ is [logy(nAn(A4))].

Proof: This proof is by reflecting sets, following [3]. _

Choose, perhaps sequentially, numbers ¢, 1 < 6; < 1,fori=1, .., m, so
that no more than n of the hyperplanes a’z = +6;2%,i = 1,...,m, k = 0,..,¥41,
intersect at any one point. Divide the region {z : {a*2| < 6,2%%%; Vi} into sets
8(j1, -1 Im), called reflecting sets, of the form

. (8:2+°1,6:2)  §i>1
S(j1,..jm)={z:d'z € (=6:,6) =0 ¥}, (10)
‘ (-—3,'2_-", —9.’21—3‘] Ji<-1

where each j; ranges from —4 — 1 to ¥ + 1. Lemma 2 guarantees that every
shortest vector lies in one of these reflecting sets. Further, we can show that
any reflecting set contains at most one of the shortest vectors. First we show
that if a reflecting set contains two integer points z and y, then all four of
A(2z ~ y), Az, Ay, and A(2y — z) have the same sign pattern. It is clear from
the definition that in a reflecting set with j; # 0, all points z have the same sign
for a'z. On the other hand, in any reflecting set with j; = 0, any point z has
la*z| < 6; < 1, and since A is an integer matrix, if  is an integer vector then
a‘z = 0. Therefore if = and y lie in the same reflecting set S(j1, ..., jm), then
Az and Ay have the same sign pattern.

Now let us determine the sign pattern of A(2z — y). If j; = 0, then a'(2z —
¥) = 2a'z — @'y = 0. Otherwise, without loss of generality j; > 0. Since
@'z > 6;2% and a'y < 6,294, we find o'(2¢ — y) > 26,2 — 6;29*+1 = 0. Thus
we can conclude that A(2z — y) (and also A(2y — 2)) has the same sign pattern



as Az and Ay. By Lemma 1 neither # nor y can be a shortest vector. Therefore,
we can bound the number of shortest vectors by counting nonempty reflecting
sets,

Furthermore, we can reduce the number of reflecting sets that may simul-
taneously contain shortest vectors. Many of the reflecting sets constructed are
power of two multiples of one another. For example, $(2,4,4,-2) =
25(1,3,3,-1). Depending on A, it may be that S(1,3,3,-1) = 25(0,2,2,0).
If S(j1,..y Jm) = 2"8(ky, ..., k), for & > 0, these two sets cannot both contain
shortest vectors, by the following argument. Let 2 € S(ky, ..., k) be a shortest
vector. Then 2"z is an integer vector in 5(j1, .1 Jm). By previous arguments,
no other vector S(j1, ..., jm) can be a shortest vector, but 2%z is 2* times as long
as z in any norm, and so cannot be shortest. Thus each family {8, 25,45, 85, ...}
of reflecting sets of this type can contain at most one shortest vector.

We bound the number of shortest vectors by the number of minimal members
of families of reflecting sets. For any reflecting set S(ji, ..., jm), consider the
reflecting set S(ky, ..., k), where k; = j; — 1if j; > 0, k; = 0 if j; = 0, and
ki = ji +11if §; < 0. It is clear from their definitions that S(J1, - dm) C
25(ky, ..., km). Inequalities defining S(j1, ..., jm) are missing from 25(k,, ..., kn)
only in three cases. If j; = 1, we miss a*2 > 6;. If ji = 0, we miss —0; < a'z < 6;.
If j; = —1, we miss a*z < —6;. Depending on A, these inequalities might be
redundant for 5(j1, ..., jm). If S(41, ..., Jm) is minimal in its family and so not
equal to 25(ky, ..., k), an inequality of this type must be nonredundant, so we
then have a facet of the form &'z = +8; for some 1.

We count the number of minimal reflecting sets by the number of their
vertices which lie on such facets. Each vertex is the intersection of 1 hyperplane
of the form a’z = +6;, and n—1 hyperplanes of the form o'z = 6,2 , where j is
some integer between 0 and 1 + 1. Thus there are at most m2(,™,)(2¢ +4)"~!
such vertices. Each vertex lies in at most 2" reflecting sets; each reflecting set
has at least n vertices on the required type of facets. We conclude that the
number of reflecting sets, and therefore the number of shortest vectors, is at

most;
4*m(,2 )¢+ 2!
n .

(11)

]

3 Example with many shortest vectors

For each n, and each ¢, we show the existence of a matrix M, with bit size at
most ¢, ¢, for which there at least c,¢™~! shortest vectors, where ¢; and ¢2 are
constants dependent only on n. Since ¥ = log,(nA,(M)) is less than the bit
size of M, this shows that the exponent on ¥ in Theorem 3 is the best possible
exponent that does not depend on m. We show the existence of M with the
assistance of the following result from [1].



Theorem 4 For any n > 2 there ezists a sef of n independent unit vectors
81,...,5n, and an infinite set V of inleger poinis, where V is a subset of the
verlices of the conver hull of the nonzero integer points in the cone generaled
by 8y,...,8n. This cone conlains no nonzero integer poinis on iis boundary.
Further, if we let B=! 1o be the matriz with columns sy, ...,5,, let 1 be the
vector of ones, and define V(¢) = VN {z : Bx < 2%1}, then V(¢) has at least
cé™ =1 points, where ¢ is a constant depending only on n.

The vectors s),..., 5, may be taken as real eigenvectors of an easily con-
structed matrix. They are, however, irrational, so we will have to make rational -
approximations to use them. We will use the following lemma to relate vertices
of integer hulls to shortest vectors.

Lemma & Let K be a pointed cone. Let v be a verter of the conver hull of
nonzero inleger poinis in K. Then v and —v are the only nonzerc inleger veclor
in the set (K —v) N (v~ K), (where K — v denotes the set {x —v:z € K}).

Proof: Since v € K, we know 2v € K. Trivially0 e K. Nowv =2v —v €
(K—v),andv=v—-0¢& (v— K), so v is indeed in (K —v)N (v — K). Similarly,
so is ~v. Let z be any integer point other than v, —v, and 0. Assume that z
lies in (K — v} N (v — K). Then both v+ 2 and v — 2 are nonzero integer points
in K. But v = (v + z) + }(v — z), contradicting the hypothesis that v was a
vertex of the convex hull of nonzero integer points in K. Thus we may conclude
that the only integer points in (X — v) N (v — K} are v, —v, and 0.

m}

If v is in the interior of K, the set (K —v)N (v — K) is full dimensional. The
vector v is therefore the shortest nonzero integer vector with respect to the norm
given by the set (K ~v)}N(v—K). If v is on the boundary of K, this set will not
be full dimensional. In this case if X is a closed set, and z is any point in the
interior of K, then for sufficiently small € > 0, (K — (v + ex)) N ({(v + ¢z) ~ K)
contains a neighborhood of the origin and so is full dimensional, and yet still
contains only 0, v and —v as integer vectors. Here v is the shortest nonzero
integer vector with respect to the norm given by this expanded set. In either
case such a ball is centrally symmetric, and so equals its own difference body
scaled by one half. Using B and V from Theorem 4, and letting K be the cone
{z : Bz > 0}, we see that each v in V is a shortest vector with respect to the
norm given by the body (K —v)N(v— K) = {z : —=Bv < Bz < Bv}. This body
is the difference body of {2 : Br < Bv, —Bz < {Bv}. Since V is infinite, the
matrix M” defined as the 2n by n matrix with one block of B and one block of
— B generates an infinite family of norms with distinct shortest vectors.

Of course, as we mentioned above, B has irrational entries, and so does
not have a well defined bitsize. We now perform a two-step process to find a
family of rationally defined cones each of which gives many shortest vectors.
Assume ¢ is large enough that V(¢) contains at least two points. First we



“press in” the facets of K until they reach points in V(¢) as follows. Let
o= mm{b'z/z o1 ¥z sz € V(¢)}, where b is the ith row of B. The a; are
strictly pos1t1ve as V(¢) is entirely in the interior of K = {z : Bz > 0}. The
first new cone is then K; = {.1: bz — o E _ ¥z >0,i=1,..,n}. Note that
Zu—l o = 2::1 mlnﬁev(¢)b z/EJ leI < mm,evw) Zl-—l 5‘3/2 --lex -
1, because these minima can be achieved at the same point only 1f the set
{0} U V(¢) has dimension at most one. Now let z be any nonzero point in K.
We know that 0 < 30 (Vz - os 0., Ha) = (1 - 0, oy E; 1Mz Since
we have determined that (1 - 3Y"7_, &;) > 0, we know that Yici ¥z > 0. This
allows us to conclude that 0 < bz — a; 2= Pz < bz for all i. We now know
that V(¢) C K, C K.

The facets of K1 may still be irrational; however. We will replace each of the
n facets of K with n — 1 constraints to gel a new cone K. Let K3 be the cone
generated by V(¢). (K3 will in general have too many facets to use directly.)
For each i the set {z : b’z — o; EJ _Pr=0}isa supportmg hyperplane of
K3 at some ray through 0 and some integer point 3*. The inequality bz —
o }: 1 Wz >0forz € K; is implied by n — 1 constraints defining facets of
K3 mc1dent on this ray. K5 is defined to be the intersection of these n sets of
n — 1 constraints. Now we have V(¢) C K3 C K, C K. Since V(¢) is a subset
of the extreme points of the integer hull of the nonzero points of K, we can
conclude that V(¢) is also a subset of the extreme points of the integer hull of
the nonzero points of Ky.

If we let A be an n(n — 1) by n integer matrix of minimum bitsize such that
Ky ={z: Az > 0}, and let M be the 2n(n — 1) by n matrix consisting of one
block of A and one block of —A4, then, by Lemma 5, M generates norms with
at least c¢” ! shortest nonzero integer vectors. To determine the bitsize of M,
first notice that since for all v € V(¢), we have 0 < Bv < 2°1, and B! has unit
vectors for columns, each component of v is of magnitude at most n2¢. Since
each row of M comes from a hyperplane defining a facet of the cone generated by
V(¢), each element of M is a signed determinant of the matrix whose columns
are vectors of V(¢), and so is of magnitude at most (n — 1)!(n24)". Although
apparently large, this bound is of bitsize linear in ¢. Thus M is of bitsize at
most a constant times ¢, as desired.

There is a more complicated construction of a 2n by n matrix M of bitsize
at most a constant times ¢, also generating norms with at least c¢™~1 shortest
nonzero integer vectors. Unfortunately, this paper is too short to contain it.
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