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IN ADISC
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ABSTRACT: Let P_ denote the convex hull of the integer

points in the disc of radius r. We prove that the number of

2
vertices of PI is essentially 3 as r+w.
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1. INTRODUCTION

Take a disc of radius r in the plane and consider Pr’ the convex hull of the
integer points inside the disc. How many vertices will P have?

Motivation for this question comes from several sources. First, in integer program-
ming, one wants to know the number of solutions, when ¢ varies, to the problem max c-x
subject to x € K where K 1is a convex body in Rd. The answer is the number of
vertices of conv (K n Hd) . A relevant result in integer linear programming is the follow-
ing. Let P cRY be a polyhedron given by the inequalities a-x<a (i=1, ..., m)

d

with a €T and o €Z. The sizeof P, size(P) is defined as the number of bits

m d
necessary to encode it as a binary string, i.e., size(P)=‘2 [_2

Mog( |ay3! + 1)1
i=1%=1

+ [log(| eyl + 1)]] . Then, as it is shown in [5], the number of vertices of conv(Ud NnP) is
at most 2md[12d2 size(P)]d_l. A construction in [3] shows that this result is best
possible.

A second motivation comes from classical results. Write B¢ for the d—dimensional

Euclidean ball. Van der Corput proved in 1922 [6] that

2
(1) [ZZzan2l=r27r+ O[ﬁ_e}

with ¢ = 0.01. Since then there have been a lot of (minor) improvementsin e, probably
the last coming from Iwaniec and Mozzochi (see [8]), generalized by Huxley [8]. He proves
that if D is a convex body in R2 with 83 boundary and positive curvature at every

point of the boundary, then

7
) |zz2ner=r2AreaD+o[rTr+‘].

Another classical result is due to Jarnik [9]. He showed that if T' is a strictly convex

curve in the plane whose length is s, then

2 3 2 1
(3) Iz HI‘|§3E55+0[55].



If T is c , then the exponent 32; can be reduced to g in (3). This is a result due to
Swinnerton—Dyer [13] and Schmidt [12]. Jarnik gave an example of a strictly convex curve
I' whose length is s and whose radius of curvature is less than 7s at every point such

that

!”2 nr| 23is’25+ O[s’}] .

=35
(1) has been extended to higher dimensions:
4

|13 n rB3| =13 vol(B3) + O[r’é’] ,

|E4 n rB4| =t vol(B4) +0 [r2 log r] ,

|ZZd n rBd| = vol(Bd) + O[rd"2] , for d>4.

Here the first equality is due to Vinogradov [15] and Chen [4], the other two to Walfisz
[14]. What we will need here is the weaker

d( d:l )

T

(4) 1791 B4} = 14 voi(BY) + 0

b

valid forall d > 2.
Another motivation is the following. Let Xpy een0 Xy be points chosen randomly,
independently and uniformly from Bd . Then Kn = conv{xl, cees xn} is a random

polytope. It is known (see, for instance, Schneider’s survey paper [11]) that the expected
d—1

number of vertices of K = is const(d)na+I. Now if one chooses 1 so that

4 vol(Bd) =n, thenin rBd there will be essentially n integral points, and the number

of vertices of conv(lld n rBd) must be around

d—1 d(d—1
n’dﬁ“ +I

if the integer points "behave" like random points in :Bd . It turns out that this is indeed

the case for d = 2, as Theorem 1 below shows.



Write N(r,d) for the number of vertices of conv(ﬂd and) and set N(r)
= N(r,2) .

THEOREM 1. For large enough r

2 2
¢ S N(1) g ¢pff,

where ¢y and ¢, are absolute constants.

From the proof we will get ¢, #0.33 and cy % 5.54. It is not clear for us whether

2
the limit 1im N(r)r 3 exists or not.
IHw

The proof of the upper bound in Theorem 1 is easier and works in any dimension:
d(d—1
+
(5) N(rd) gcyr
We can extend Theorem 1 to smooth enough convex bodies in R2 , using Huxley’s

result (2).
THEOREM 2. If D is a plane convex body with 63 boundary and positive curvature,
then
2 . 2 2
¢;(D)r? < # of vertices of conv(Z” N 1D) < ¢o(D)r?
where the constants c¢;(D) and cz(D) depend on the upper and lower bounds for the

curvatureof D .

The proof is essentially the same, but more technical than that of Theorem 1 and
will therefore be omitted.
In the proofs we will use Vinogradov’s notation << and <<y - All implied

constants are effective.



2. PROOF OF THE UPPER BOUNDS

The upper bound in Theorem 1 is easier. It follows from Jarnik’s result (3) but one

has to make the boundary of P, strictly convex. Actually, Jarnik’s original proof applies

as well giving ¢, = 3(27r)’61T = 5.5358... . Or one can use the following result of Andrews
[1], ef. [2], [12], [10] as well. If PcC RY s a convex polytope with integral vertices and
nonempty interior, then

d—1

# vertices of P << (vol P)Eﬁ:I .

This proves (5) immediately.
Now we give a simple direct proof of (5). Assume v is a vertex of conv(?!d n rBd)
and consider M(v) = B4 (v— rBd) .

CLAamM 1. vol M(v) < od

Indeed, M(v) is convex and centrally symmetric with respect to ve€ 9. By
Minkowski’s theorem,  vol M(v) > 29 would imply the existence of a point
xe¥n M(v), x#v. Then both x and 2v—x are integral and lie in BY s

V= %[x + (2v—x)] cannot be a vertex. D
Assume now that v is at distance A from the boundary of B4, Clearly,

vol M(v) > 25(vaE) ™ vol B4
d—1
that gives, together with Claim 1 A <</ 1 d+1 . Then, using (1) and (4)

4=y

N(r,d) < lﬂd n rBdl - |ﬂd n (r-—A)Bd| <<y .o



3. THE LOWER BOUND

For the lower bound in Theorem 1 define

S . |
A=2317,

and set A = A(r,A) = 1BH\(1-A)B2 .

An integer point x € A is called a verterif it is a vertex of P, and a nonvertez
otherwise. The set of vertices will be denoted by V, the set of nonvertices by NV . For
anonvertex x € NV let v eV bethe vertex nearest to x . This may not be unique, then
choose any one of the nearest vertices. Draw an arrow from v to x and color this arrow
green if it goes clockwise and blue if it goes counter—clockwise. We may assume that there
are at least as many green arrows as blue ones, denote the set of green arrows by G.
Clearly,

INV| < 2/|G] .

Observe that, if vx€ G, then |v—x|| < y2TA. This is so because, as x € NV,

there must be a vertex of Pr in the cap (of rB2 ) that has minimal area and contains x,

and for any point y in that cap [|x—y|| £ V2r-A)A < V214 .
CLAIM2. If vx€ G and vy € G, then v, x, y are collinear.
PROOF. An easy computation shows that the triangle with vertices v, x, y has area

less than % (This is where A = 2-’} r_’él’ is needed.) But any lattice triangle has area at
least % s0 v, X, y must be collinear.

This means that for fixed veV there is a longest green arrow vx (with
x = x(v), say) containing all other green arrows starting at v. Fix now a primitive
vector p € 2 (i.e., a vector p # 0 with relative prime components) and consider S(p) ,
the sum of all vectors x(v) —v coming from a longest green arrow vx(v) that is parallel

to p and points in the same direction.



1
CLAaM 3. [|S(p)|| << 1%

We postpone the proof to the end of this section.
Clearly, ||S(p)|I/llpll is equal to the number of green arrows that are parallel to p
and point the same direction. Now let {pl, ceey pm} be the set of all primitive vectors

with S(p) # 0. Evidently, |V| > m. On the other hand, by Claim 3

m ”S(P)” 1m
Gl=% l—<<13% .
16l i=1 i =113

m
Here X ]]pi“'"l will be the largest when {pl’ «++» Py} is the set of the m shortest
i=1
primitive vectors in 2. Then, as it is well-known [7] and actually easy to see
3 b <o ym <oV
<< 4ym< .
i=11P =
Now by (1)
2
<< |ANT?| = |V] + |NV| < |V +2|G]
1
<< |V] +i3/]VT,
which clearly implies the lower bound.

It is perhaps worth stating separately what we used in the last part of the proof: In

the disc sz , o(p2) diameters contain only 0(p2) of the integer points in pB2 .

PROOF OF CLAIM 3. Consider the lattice lines

1
Ll={x€R2:x=tp+iﬁ2,t€R}
P

where i=1,2, ... and p* is the vector obtained from p by a 90° counter—clockwise
rotation. (Here p is a primitive vector, again.) For each longest green arrow vx(v)
where x(v) =v+k(v)p (k(v)=1,2,3,...) thereis aline £ such that the segment
connecting v and x(v) is containedin AN li . This intersection consists of either one or

two segments but in both cases we have



llx(v) = vil = k(v)llpll £ L; := half the lengthof AN .

More generally, let {(h) denote the line parallel to p and at distance r—h from
the origin (so 0 < h < r). Write L(h) for the half-length of the intersection A n {(h).
Then

L(h) = y{2r--h)h — y(21=h=A)[h—A] +
where |h—A| 4=b-A if h>A and 0 otherwise. Clearly 4§ = {h;) with
_ i
hi =T el We must have
Il < k(Mllpll £ L; -
The inequality ||p|| < L(h) implies an upper bound for h, namely,
-§)]2IA2
el
1
so that H << r3. This shows that for h ¢ [0,H]

L() << v |vE - /TF=5T, | .

b Hi= [1+0(r

Now

IS}l < 3L : 0 ¢ b < H)

H
< ol + ol [ L(w)dn + max L),
0 0<h<H

because the sum ELi can be considered as an approximation to the integral [ I(-)IL(h)dh .
Evidently max L(h) < 2r& and ||p]| < y2rA . Then
/5 L(h)dh << v j}g[ﬁ—,/rmr_ +] dh

= vz 3l 5]

2
A
<<Tol"

So indeed,

1
IS()|| << o5 + 1A% + K << 13. 0
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