Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

11-1-1989

Mathematical Programming and Economic Theory

Herbert E. Scarf

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Scarf, Herbert E., "Mathematical Programming and Economic Theory" (1989). Cowles Foundation
Discussion Papers. 1173.

https://elischolar.library.yale.edu/cowles-discussion-paper-series/1173

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/1173?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 2125, Yale University
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 930

NOTE: Cowles Foundation Discussion Papers are preliminary
materials circulated to stimulate discussion and critical
comment. Requests for single copies of a Paper will be filled
by the Cowles Foundation within the limits of the supply.
References in publications to Discussion Papers (other than
acknowledgment that a writer had access to such unpublished
material) should be cleared with the author to protect the
tentative character of these papers.

MATHEMATICAL PROGRAMMING AND ECONOMIC THEORY

by
Herbert E. Scarf

November 1989



MATHEMATICAL PROGRAMMING AND ECONOMIC THEOR?

by
Herbert E. Scarf

1. The Theory of Economic Equilibrium

I would like to take this opportunity to describe my own very perscnal
thoughts about the relationship between mathematical programming and eco-
nomic theory. These two topics were intimately linked together during che
the marvelous initial burst of activity in mathematical programming some
forty years ago. Some of the major figures in the early development of our
field--Arrow, Leontief, and Koopmans--were themselves economists. Others,
such as Kuhn and Tucker, Kantorovich, Gomory, George Dantzig, and certainly
von Neumann were sufficiently close to economics to be alert ro the rela-
tionship between mathematical programming and the problem of the optimal
allocation of resources,lwhich is at the heart of economic theory. Since
that time, however, the two subjects have drifted so far apart that many
scholars in the field are unaware of their histerical connections, the
similarity of their basic themes and their enormous potential for fruitful,
mutual stimulation.

Microeconomic theory studies the interaction of individual econcmic
agents with private and frequently competitive goals. The subject deals

with the institutions of private property, the benefits of decentralized

*The remarks in this paper were presented as the Plenary Address at the
Joint National Meeting of CORS/TIMS/ORSA on May 9th, 1989 in Vancouver,
British Columbia. The preparation of the paper was supported by the Program
in Discrete Mathematics at the Cowles Foundation, Yale University and by NSF
grant 593A-31-47004,
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profit maximization, the distribution of income arising from the provision
of goods and services, and the role played by prices in equilibrating supply
and demand. The primary topic in mathematical programming seems, at first
glance, to be quite different. Mathematical programming is concerned with
the development of algorithms for the efficient numerical solution of dis-
crete and continuous maximization problems and as such is apparently
unrelated to the institutional considerations of econozic theory. What I
would like to do in this talk is to bring these two subjects together and

to remind my listeners of their comzon features. In particular, I want to
stress the close relationship between algorithms and economic institutions:
to suggest that it may be fruitful to view ecoﬁomic inszizutions as highly
specialized computational procedures and to view numerical algorithms as the
analogues of economic activity engzged in by individuals or firms.

One of the major themes of microeconomic theory is that the producing
and consuming units of the economy respond--in a decentralized fashion--to
prices that are determined in competitive markets. In conventional economic
analysis, we typically divide the basic units in the economy into two
classes, One class consists of consumers, who own all of the assets of the
economy either directly or indirec:tly through the ownership of financial
claims or shares in manufacturing entities. The second class of econcmic
agents are producers, whose business is to transform productive inputs into
those goods and services that are valued by consumers themselves or used as
intermediary goods by other producers.

There may be many ways for a given producer to take his factors of pro-
duction--labor of varying skills, capital, a great variety of raw materials,

energy and other inputs--and transform them into outputs. Fooed can be pro-



duced on small plots wicth primitive implements, or on large farms that make
use of the most advanced forms of agricultural machinery. Steel can be
produced in plants of varying sizes, either operating independently or
integrated with enterprises using steel as inputs. During the Great Leap
Forward in China, it was even proposed that steel be manufactured in
individual back yards. How are these choices to be made?

Economic theory usually makes the assumption that the individual pro-
ducers in the economy are faced with competitive.prices for all of the
factors of production and with competitive prices for the outputs of produc-
tion. If all of the input and output prices are known by the firm, then any
particular production plan will have a profit associated with it: the value
of output at these prices minus the cost of those factors used in produc-
tion. It is then customarv to assume that the goal of the manufacturing
entity is to select, from the list of all possible plans available to it,
the particular production plan that maximizes its profit.

Prices also enter into the consumer side. Each consuming unit owns its
share of the assets of the economy and is able to evaluate its income or
wealth ornce the prices of these assets are known. Given the income of each
consumer, and the prices of goods to be purchased, the individual consumer’s
demand for the outputs of production can be specified as well-defined func-
tions of price. Adding up the individual demand functions, we obtain the
market demand functions, which tell us the quantity demanded of each of the
goods and services in the economy as a function of the entire set of prices
faced by consumers.

Market demands arise from the consumer side of the economy, market

supplies from the producer side. At an arbitrary selection of prices it
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need not be true that the demand for each commodity is equal to its supply.
If the price of apples is too high, consumers may wish to spend their income
on oranges, and if the price of clothing is too low in comparison with wages
and the cost of materials, manufacturers may not be able to cover their
costs of production. Only certain prices--equilibrium prices--will equilib-
rate the demand and supply for all commodities. It is these prices--and
these prices alone--that permit the economv to function in the decentral-
ized fashion celebrated by economic theory.

This intellectual construction--this paradigm--of decentralized compe-
titive behavior is extremely flexible and provides a framework of analysis
for a great variety of economic problems. To take one exacple, it can be
used to discuss the consequences of a change in some significant parameter
of the ecoromy, such as the abrupt increase in the cost of imported oil
experiencec by the United States twice in the last fifteen years--in 1973-74
and 1979-80 --changes with extraordinary consequences for the future
develop-ment of the U.5. and world economies. To analyze this experience
we design a formal mathematical model of the economy in which the price of
imported oil appears as an exogenous parameter. On the consumer side of the
economy we specify the assets--for example, labor, capital and durable
goods--owned by each class of consumers and their preferences for the goods
and services potentially available to them. To model the production side,
we need an explicit mathematical description of the techniques avail-
able to producers--given perhaps by an input/output table for the economy as
a whole, or by a series of activity analysis matrices for each of the firms
in the econcmy. We then solve the pre- and post-shock variants of the model

for equilibrium prices, the choice of productive techniques, the



distribution of income, and other variables of economic interest. A
mathematical presentation of the model of equilibrium is required for this
exercise in comparative statics to be carried out on the computer.

Ideally, the general equilibrium model can be used to describe the
efficient allocation of resources and the selection of production plans in a
socialist economy, such as the Soviet Union, as well as in an economy in
which private initiative and individual gain are the motivating forces for
economic decisions. The general equilibrium medel formed the basis for the
fascinating discussion of economic planning in the early decades of this
century. One of the major figures in this debate was the Italian economist
Barone, who was skeptical about the use of the equilibrium model on the
grounds that the computational difficulties were insurmouncable. Barone
described the production side of the economy by an activity analysis model.
He realized that if we knew precisely which activities were to be used at
equilibrium, then relative prices--for all of the goods and services in the
economy--could be determined by solving the system of linear equations that
said the profit assoclated with each of these activities was zero. For
Barone, and for subsequent participants in this debate about socialist plan-
ning, the difficulty in aﬁplying the egquilibrium model to a socialist
economy was that no computational procedure existed for solving the vast
number of nonlinear equations--and inequalities--required to select precise-
ly the correct set of activities to be used at equilibrium.

On the face of it, Barone’s objection seems no longer to be valid,
given the emergence of the modern computer and the development of efficent
computer codes for calculating equilibrium prices. Models with, say, one

hundred variables can be solved quite readily on a personal computer. Given



the value of this calculation, it would seem desirable to use a dozen super-
computers full time to provide Soviet planners with the prices and
produczion decisions that would alleocate resources in an optimal fashion.
Like all acdministrators, Soviet politicians are presumably reluctant to give
up political power. A bank of Cray supercomputers would be a trivial
investment if the results of numerical computations could avoid the
inefficiencies of the Soviet economy without sacrificing centralized polic-
ical concrol of economic decisions and without allowing the vast

disparities in income that are an inevitable consequence of private economic
initiative.

Whv is it, then, that we see the emergence of the institution of
private markets to solve the economic problems faced by one centralized
economy after another? It is astonishing how much political power is being
sacrificed today in the Soviet Union, Poland, Hungary and other countries,
in the hope of dramatic improvements in economic conditions. In my opinion,
the major attraction of markets over centralized calculation, for Gorbachev
and his economic reformers, is not so much the mathematical difficulty of a
single equilibrium caleulation. It is rather that these computations must
be performed over and over again, in real time, in the face of constantly
changing economic circumstances. The ecomomy is in continual flux, with new
possibilities constantly emerging, and mathematical solutions to the equi-
librium equations will at best represent the solutions to yesterday's
problems. If we are to be responsive to the novel conditions of daily life
--and to engage the energies and skills of millions of self-interested
economic actors--it may be necessary to use the market as an algorithm for

‘solving the equilibrium equations rather than solving the eguilibrium equa-



tions themselves on the computer.

Suppose that the system is in equilibrium and that somebody discovers
a new way to make sausages out of sawdust, or a new way to transport elec-
trical energy using superconducting wires. Shall this new activity be used?
The planners could recalculate the equilibrium on the supercomputer. Or
they could make use of a theorem of economic theory--perhaps the most impor-
tant result of microeconomic analysis--that provides an immediate,
necessary and sufficilent condition for an affirmative answer to the
question: can all consuzers to be made better off if the new activity is
used? The condition is amazingly simple; all consumers can be made better
off if and only if the mew activity makes a positive profic at the current
equilibrium prices. I do not know whether Gorbachev is impressed by
mathematical theorems, but the fact that the market test of profitability is
the precise test for a Parezo improvement is the intellectual justification
for decentralized markets. And this market test can be carried out by self-
interested, economically motivated individuals, rather than on the com-
puter, if we are willing to tolerate inequalities in the distribution of
income.
II. Mathematical Programming

What does this have to do with mathematical programming? On the face
of it, mathematical programming is concerned with an entirely different set
of issues than those I have just mentioned. Mathematical programming is
about the maximization of a function of several variables, subject to a set
of con#traints. The primary example of a constrained maximization problem
is a linear program, in which the objective function is & linear function of

the variables and the constraints are, themselves, a series of linear



inequalities. The solution of a linear program seems to be an exercise in
applied mathematics and apparently has nothing to do with prices, profis
maximization and decentralized economic decisions.

At the present moment, the two major contenders as algorithms for the
solution of linear programming problems are the simplex method, invented by
George Dantzig some forty years ago, and the new interior point mechods
introduced by Karmarkar within the last five vears. There may be consider-
able debate as to the computational merits of these twe methods for solving
any particular linear program. But, from an economic point of view, the
simplex method is the clear winner, in the sense that the very steps of the
simplex method are capable of the most striking economic interpretaticn.

At each step of the simplex method, a trial solution to the linear program
is proposed. To test for the optimality c¢f this soclution, we find those
prices that yield a profit of zero for the activities in use, and use them
toe calculate the profitability of the reraining activities. The trial solu-
tion is optimal if none of the remaining activities make a positive profirt;
if one of them is profitable, we simply increase the level of its use from
zero, making compensating changes in the previous activity levels until one
of them falls to zero. The algorithm continues until a trial sclution is
found that passes the pricing test for optimalirty.

The simplex method mimics the search for decentralized prices that
equilibracte the supply and demand for factors of production. A visitor from
ancther planet who was taught the simplex method for the solution of maxi-
mization problems would immediately be led te the introduction of
competitive markets. With no knowledge, whatsocever, of the long, hiscerical

development of the institutions of competition, our visitor would be able to



answer a vital question: if the economy is in equilibrium--in the sense
that the optimal values of the variables have been determined--and a change
in economic circumstances presents a new activity for possible use, can the
new activity be used so as to increase the value of the objective function?
He would know immediately that a necessary and sufficient condition for the
use of this activity is that it make a positive profit at the old
equilibrium prices. Prices and the institurion of competitive markets, not
obviously associated with the simple mathematics of maximization, arise in
the most natural way in solving optimization problems.

1 remember a conversation that I had many years ago with Tjalling
Koopmans, when linear programming models were being considered as a tool for
socialist planning. At one point Tjalling said, "Suppose that the giant
linear program for the Soviet Union is solved on the computer. Should we
tell the individual firms the specific production plans that the model
instructs them to use, or should we simply give them the prices for their
inputs and ouzputs and let them make their own decisions?” I think that
perhaps we should do neither. Instead, we should suggest that the institu-
tion of competitive markets be used to decide on the merits of those novel
economic possibilities that firms will be facing over and over again in the
future.

ITI. Integer Programming and Econcmies of Large Scale Producticn

Now I would like to turn this discussion of markets on its head and
talk about what is, for me, one of the major difficulties in the competitive
solution to the problem of resource allocation. Both linear programming and
the classical model of equilibrium make an extremely important--and, to my

way of thinking, extremely restrictive--assumption about the production side
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of the economv. In both of these formulations it is required that produc-
tion exhibit constant returns tec scale: that the mix of inputs needed to
produce a particular assortment of outputs be unchanged as the scale of pro-
duction varies; that it is just as efficient to manufacture steel in our own
back yards as it is to use a fully integrated assembly line. This is a
terribly restrictive assumption, which excludes the possibility of economies
of scale and forces us to ignore one of the central features of economic
life in the twentieth century: the large industrial firm whose size is
based on the economic advantages of large-scale production.

Economists have been concerned for many vears abou: the need te incor-
porate the possibility of increasing returns to scale in their analytic
formulations. An older school of economists held the opinion that effi-
ciencies of large scale production were caused by indivisibilities, i.e.,
large, lumpv aggregates of capital--assexbly lines, railrocad and telephone
networks, bridges--whose economic advantages could not be realized at low

ievels of production. Abba Lerner, for instance, devoted two chapters of

his famous book The Fconomics of Control teo the study of indivisibilities.
I quote from Chapter 15, to illustrate his position on this subject:

We see then that indivisibility leads to an expansion

in the output of the firm, and this either makes the

output bilg enough to render the indivisibility

insignificant, or it destroys the perfection of

competition. Significant indivisibilicy destroys

perfect competition.

In the ¢lassical case of constant returns to scale, there is

essentially no theory of the firm, since the firm can be progressively
disaggregated into smaller and smaller units, which then interact with each

other by means of market prices. If increasing returns to scale or

indivisibilities prevail, however, the firm cannot be disaggregated into



competitive units without a substantial loss of efficiency. In the case of
constant returns to scale, institutional arrangements such as competitive
markets are directly suggested by numerical methods for the solution of
linear programming problems. If the analogy were to be maintained, we would
expect corresponding insights about the intermal organization of large firms
from the study of decision methods for the solution of maximization problems
involving indivisibilities. And one of the central concerns in mathematical
programming, at the present moment, is precisely the study of maximization
problems in which the production possibility set involves indivisibilities,
increasing returns to scale, or other forms of nonconvexity--that is,
integer programming.

Indivisibilities are introduced into a linear programming problem by
requiring théc some, or all, of the activity levels take on integral values,
rather than arbitrary real values. Linear programming problems that require
some of the activity levels to be integral are known as integer programs.

As you all know, the first algorithm for solving the general integer
programming problem was introduced in the late 1950's by Ralph Gomory.
There were some serious problems with this and other early computational
methods. The methods were not robust: a slight change in one of the
parameters of the problem could transform an easy problem into an
intractable one. In contrast to the simplex method, which performs
remarkably well on most linear programming problems, integer programming
algorithms were capricious and unreliable. And, perhaps even more
significant for economic theory, none of these algorithms seemed capable of
being interpreted--by even the most sympathetic student--in meaningful

economic terms.
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Early researchers in this area were acutely aware of the vital rela-
tionship of integer programming to economic theory: Tjalling Koopmans
wrote an early paper on indivisibilities, and Gomory and Baumol published a
joint paper in Econometrica on a possible economic interpretation of
Gomory's "cutting plane" algorithm. By the late 1960's, however, the
origins of discrete programming problems in economic theory were in the
_process of being forgotten by practitioners in the field. The search for
tractability led to groupings and classifications of integer programs that
were based solely on their mathematical properties; less and less reference

was made to economic considerations. The terms "indivisibilicy,” "factor

endowment," "capital," and "degrees of substitution” were slowly replaced by
a new set of concepts: "graphs," "network flows," "matching problems," and
"matroids." Economic theorists and scholars in discrete mathematics became,

in time, unable to converse with one another, despite the essential
underlying connections between these two disciplines.
IV. Complexity Theory

In the 1970’'s, an important intellectual event took place: the devel-
opment of the field of "computational complexity." A new way of looking at
the intrinsic complexity of a discrete programming problem was introduced.
This involved classifying problems as "easy" if the time required for their
solution was a "small" function--a polynomial function--of the time required
to describe the problem, or as "hard" if this were not the case.

An example of an easy problem is that of maximizing the flow of mater-
ial through a railroad network with capacity constraints on each link of the
network. This problem can be solved quite readily for networks of large

size. On the contrary, the traveling salesman problem--which calls for the



construction of a tour through a set of cities so as to minimize che total
traveling time--is hard, and it becomes prohibitively expensive to obrain
the precise optimal solution as the number of cicies increases. Easy prob-
lems are routine and presumably can be carried out by human beings without
the extrordinary intellectual and conceptual investment required by a hard
preblem. This is a point that will come up again,

In the last decade, my own research has been directed toward studying
the general integer program from the point of view of complexity theory. To
illustrate this point of view, let me return to the earlier discussion of
the role played by prices in the solution of linear programs. For such
problems, prices have their customary economic interpretation as "marginal
value products”--the marginal change in the optimal value of outpur if a
particular factor of production is increased by a small amounc. But, as we
have seen, prices are also used to deterzine whether a specific feasible
solution, one which satisfies the constraints of the problem, is actually
the optimal solution. Given a feasible solution to a linear program, we
find those prices that yield a zero profit--net of all costs, including the
rental of capital--for the activities being used. Then a neeessary and suf-
ficent condition that the proposed feasible solution be optimal is that all
of the remaining activities make a profit less than or equal to zero when
their profitability is evaluated at these same prices.

This test for optimality is not available for integer programs; there
simply need not be a set of prices that yields a zero profit for those
activities in use at the optimal solution. Let us look at the following

example of an integer program with a single constralnt and two non-negative
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integer variables.

maximize x + 3v, subject Co
dx + 3y < 5,

x,y =2 0, and integral

The solution to the corresponding linear program - with no requirement of
integrality for the activicy levels--is (x,vy) = (0,5/3), and the price of
the constraint--the optimal dual variable--is equal to one. At this price
the second activity makes a profit of zero and the first activity--which is
not used--has a negative profit. But the optimal solution for the integer
program is (x,y) = (1,1); both activities are used and there is no price at

all chac yields a zero profit for the two acctivities simultaneously.

(0, 5/3)

FIGURE 1
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This is, of course, not an accident of this particular example. Except
for very special integer programs, there will not be a vector of prices that
provides a profit of zero for those activities used in the optimal solution
and a negative profit for the remaining accivities, Moreover, if we have
solved a specific integer program by one device or another, and a new
activity is discovered, there is no conclusive pricing test to tell us
whether the new activity can be used 50 as to improve the objective value.

A similar difficulty arises in the equilibrium formulation that I dis-
cussed earlier in the talk. Suppose that the economic system is in equilib-
rium at certain prices and that a new activity is discovered which can only
be used at an integral level. Is its profizability at the equilibrium
prices a necessary and sufficient condition for a Pareto improvement--for
the possibility that everyone can be made better off using this new
activity? The answer, unfortunately, is no! And if several activities are
simultaneously discovered, all of which must be used at integral levels,
improvements may require the use of a complex mixture of both profitable and
unprofictable activities. The market test is simply not available to us in
the presence of indivisibilities.

The market test fails because the firm, whose technolegy is based on an
activity analysis model with integral activity levels, cannot be decentral-
ized without losing the advantages of increasing returns to scale. The large

firm has an internal organization of managerial and productive tasks, which



16

cannot be replaced by competitive markets that are internal to the firm.
We cannot decentralize the large firm by assuming that the subdivisions of
the firm trade outputs and factors with each other using competitive prices.
But if we return to our metaphor about the relationship between
computational procedures and economic institutions and view the large firm
as an algorithm for the solution of integer programming problems, can some
hints about the internal structure of the firm be obtained by examining
numerical algorichms?
V. Lenstra’'s Algorithm

1 would like to take a look at the algorithm propoesed by Hendrik W.
Lenstra, Jr. several years ago (Lenstra, 1983). In the language of complex-
ity theory, integer programming is what is known as an NP complete problem:
if there is a polynomial algorithm for integer programming, then virtually
every problem that we can think of is easy o solve--a quite unlikely possi-
bility. Lenstra's algorithm provides a polynomial algorithm for integer
p?ogramming when the number of integral variables is fixed in advance. It
also provides a sharp theoretical description of the complexity of integer
programming and it is also possible that the algorithm may have practical as
well as theoretical significance. Several of us are programming a variant
of Lenstra’'s algorithm at the present time, to see whether it is actually
useful in solving the general mixed integer program with, say, thirty or

forty integral variables. It is too early to give you a definitive verdicet,
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but 1 am optimistic.

Lenstra’s algorithm makes very heavy use of that branch of mathematics
known as the Geometry of Numbers. This subject, invented by the distin-
guished mathematician Hermann Minkowski almost 100 years ago, is now under-
going a remarkable revival, due primarily to its potential application to
the study of discrete programming problems.

To appreciate the novelties of the Geometry of Numbers, it may be
useful to contrast it with the classical arguments of linear programming.
The primary mathematical tool used in linear programming is convex analysis.
The constraint set defined by a series of linear inequalities is a convex
body, and the existence of prices that support an optimal solution is a
direct application of the separating hyperplane theorem. When indivisibil-
ities are present, the corresponding activity levels are restricted to
integer values, and the vector of possible activity levels lies in the lat-
tice of integers in n dimensional space. The major mathematical problem in
the theory of discrete programming is to find out--in an efficienc way--
whether a given convex body contains a lattice point.

It is an elementary mathematical observation that a convex bedy may
have an arbitrarily large volume and yet be free of lattice points. But if
the body is symmetric about the origin, it will contain a lattice point
other than zero if its volume is sufficiently large. Minkowski's fundament-
al result is that there will be a lattice point, different from zero, in a
symmetric convex body lying in n dimensional space if the volume of the
body is greater than 2%, Minkowski's theorem is applied, in an indirect

way, in Lenstra's algorithm,
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Lenstra begins by casting the integer program in the form mentioned
above: does a given convex body contain z lattice point? Let us consider
as our convex body the triangle in the plane with integral vertices (1,0),
(0,1} and (15,17) and suppose that our question is whether the triangle
contains an integral vector other than one of its vertices. (This
particular example is, of course, trivial to analyse; we may actually write
down an explicit formula for the number of lattice points in a planar tri-
angle with integer vertices. Think of this, rather, as an illustration of a
general convex polyhedron in n-space.) The most naive approach would be to
enclose the triangle in a rectangular box: 0 = x, =15 0 < Xy % 17, set

1

the first coordinate equal to each of its 16 possible values, and for each



(0, 1)

(1,0)

FIGURE 3

(15,17
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(2,7)

(1,-4)

FIGURE &
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of these first coordinates, check to see whether there is an integral value
of the second coordinacte satisfying the linear inequalities defining the
body. This is the basic idea of a branch and bound algorichm.

But we can do better. If we make the following unimodular transforma-

tion of coordinartes, which carries lattice points inte lattice points,

the body will have the form of Figure 4, with vertices (-1,5), {1,-4) and
(2,7), and the rectangular box containing the body will be considerably
smaller. We will have only & possible values of the first coordinate,
rather than our previous 16 values.

What Lenstra does for the general problem is to construct a unimodular
transformation such that either

1. the body is sufficiently large so that it clearly contains a lattice
point, or

2. the rectangular box containing the body, in the new coordinate sys-
tem, is small in at least one coordinate, say the first coordinate.

In the first case the algorithm terminates with a lattice point. In
the second case the lattice points lying in the body have a small number of
possible values for their first coordinate, and the problem is then reduced
to the study of a small number of n-1 dimensional problems.

The algorithm takes the form of a decision tree (see Figure 5): Find
the good unimedular transformation and consider, in turn, each one of the
small number of integer programs involving n-1 variables. Repeating the

process, each of these problems leads to & small number of integer programs
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wich n-2 wvariables. VUltimately, we are led to integer prograzs with a
single variable, which are, of course, trivial to solve. It is necessarv to
consider all branches in the decision tree, but there are ample
opportunities for parallel processing since the computations to be carried
out on distinct branches can be done simulfaneously.

Other algorithms for solving integer programs--such as branch and bound
methods--alse make use of decision trees. But the Lenstra algorithm is the
only one that I am aware of--for the general integer prograz, rather than

the special case of 0,1 problems--in which the work atr each node and the

FIGURE 5
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number of branches emanating from each node are both polynomial in the data
of the problem, at least if the number of variables is fixed.

The work at each node of the decision tree involves finding a unimodu-
lar transformation so that the body is relatively thin in a particular
direction. This can be done by means of the basis reduction algorithm
introduced by L4szlé Lovdsz (see Lovdsz, 1986), which executes in polynomial
time for a fixed number of variables. In the second case, in which a
lattice point cannot be determined directly, the number of branches emanat-
ing from the node can be shown, also, to be a polynomial function of the
data of the problem. If we use the metaphor of complexity theory, which
suggests that easy problems are those that can be solved routinely by human
beings, negotiating fhrough the decision tree is, in itself, routine even
for a general integer program.

V1. The Organization of the Firm

The computatiocnal procedure seems to be capable of an interpretation in
terms of the managerial tasks faced by the firm. If the large-scale firm is
viewed as an algorithm for the solution of maximization problems based on an
activity analysis model with integral activity levels, the decision tree may
be taken as a representation of the internal organization of the firm. We
can imagine a human being sitting at each node of Figure 5, who performs
the routine calculations required at that node, and transmits the results
of these calculations to the small number of subordinates at each of the
successor nodes. Accepting the metaphor means accepting the equivalence
between the arithmetical operations required by an algorithm and the more
usual paper work performed at a desk or handling of materials on the shop

floor. But we have accepted a metaphor of this sort before--in discussing
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the equivalence between the simplex method and the wmarket’'s search for
equilibrium prices.

But, of course, lenstra's algorithm--as just described--solves one
particular integer program, in much the same way that our equilibrium calcu-
lation, in the Socialist planning office, solved for a vector of equilibrium
prices under a particular set of circumstances. If the decision tree is
meant to be a representation of the internal organization of the large firm,
whose technelogy involves substantial indivisibilities, this organizatiom
must have some stability in the face of changing economic circumstances.
Suppose, for example, that we are interested in solving not one specific
integer program but rather a family of similar problems--sav, the family of
integer programs with a fixed technology matrix, but with many different
right-hand side vectors. It can be shown, using some recent results by
Kannan, Lovdsz and myself (1988), that a decision tree with polynomial work
and a polynomial number of branches at each node may be constructed so as to
cepend only on the activity analysis model and to be fully independent of
the right-hand side of the integer program. With such a decision tree, a
shock to the environment need not reQuire a total redesign of the intermal
organization of the firm, t may also be shown that the tree will change
only slightly if the technology matrix is altered slightly, whether by the
revision of one of its coefficients or by the discovery of.a new process.

We actually see these small changes taking place in the performance of the
algorithm itself--in the structure of the tree--as we change the numerical
values of the problem.

Such a flexible tree cannot be constructed in polynomial time, for var-

iable n. But once it is constructed, the computations at each node and the



number of successor nodes are actually polynomial in n as well as the other
data of the problem, as long as the number of inequalities is less than the
number of variables by a fixed amount. Construction of the decision tree
can be viewed as an expensive investment activity, which provides a firm
with flexibilizy in the face of changes in the eceonomic enviromment faced by
the firm. There is a considerable trade-off between a flexible design,
capable of withstanding substantial changes in the parameters of the
problem, and a less expensive design tailored ta a particular problem. It
is much less costly to construct a decision tree for a particular problem
rather than one that deals simultaneocusly with a large set of alternatives.
But if a specific tree were constructed and the economic environment changed
in a significant fashion--if, say there were a substantial change in the
price of imported oil--then a2 new decision tree, and perhaps a
reorganization of the firm's administrative structure, might have to be
recalculated at considerable cost. The achievement of flexibility--the
construction of an organization or computer code capable of solving a large
number of relatively similar problems in real time--may merit its additional
cost in the face of the uncertain and constantly changing circumstances that

are an ever present aspect of modern economic life.
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