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ABSTRACT

General formulae for the finite sample and asymptotic distributions of the instru-
mental variable estimators and the Wald statistics in a simultaneous equation model are
derived. It is assumed that the coefficient vectors of both endogenous and exogenous vari-
ables are only partially identified, even though the order condition for identification is
satisfied. This work extends previous results in Phillips (1989) where the coefficient vector
of the exogenous variables is partially identified and that of the endogenous variables is
totally unidentified. The effect of partial identification on the finite sample and asymp-
totic distributions of the estimators and the Wald statistics is analyzed by isolating
identifiable parts of the coefficient vectors using a rotation of the coordinate system
developed in Phillips (1989). The pdf’s of the estimators and the Wald statistics are illus-

trated using simulation and compared with their respective asymptotic distributions.
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ASYMPTOTIC AND
FINITE SAMPLE DISTRIBUTION THEORY
FOR IV ESTIMATORS AND TESTS IN
PARTIALLY IDENTIFIED STRUCTURAL EQUATIONS

1. INTRODUCTION

Identification of a structural equation in a simultaneous equations system is an
important preliminary condition prior to estimation and statistical inference. Standard
statistical procedures are almost always based on the assumption that the coefficients of a
structural equation are uniquely defined by a priori restrictions on the coefficients of a
simultaneous equations model. These restrictions usually arise from economic theory.
Conditions for identification have been discussed by various authors (e.g. Fisher (1966),
Hsiao (1983), Hausman (1983)). If anr equation is identified, we are usually able to
estimate the coefficients consistently and to mount conventional statistical tests relying on
asymptotic normal or chi—square distributions.

However, the statistical properties of estimators and tests in cases of identification
failure have not received much attention by researchers. We use the term identification
failure here to imply that the rank condition for identification in single equation estimation
is not fulfilled, even though the order condition is satisfied. Hence studies in identification
failure presume that the usual condition that empirical researchers check for in single equa-
tion estimation is met. It is of importance to investigate the statistical properties of
estimators and test statistics in case of idéntiﬁca.tion failure, since there are good reasons
for suspecting such failures in empirical research (see Phillips (1989) and Sims (1980) for
examples). When such failures occur, the conventional statistical theory does not apply.

A finite sample distribution theory of the instrumental variable estimator and the limited



information maximum likelihood estimator in case of identification failure was developed in
some earlier work by Phillips (1980, 1983, 1984a, 1984b, 1985). In this work it was shown
that the exact finite sample densities of the estimators do not carry any information on the
coefficients in a structural equation when the trﬁe coefficient vector is not identifiable.
Moreover, the densities are invariant to changes in the sample size, demonstrating the fact
that the uncertainty about the coefficients that is due to lack of identification persists in
the limit as the sample size tends to infinity. Recently, a general finite sample and asymp-
totic distribution theory for the imstrumental variable estimator and for Wald test statis-
tics was developed in Phillips (1989). There it is assumed that the whole coefficient vector
of the endogenous variables is not identifiable and a general rank condition is given such
that the coefficient vector of the exogenous variables is partially identified. By rotating
the coordinate system, identified and unidentified parts of the coefficient vector are
distinguished. The finite sample distribution theory developed therein shows that only the
estimator of identified coefficient vector has a finite sample density that carries any useful
information on the true coefficient vector. The asymptotic distribution theory shows that
only the estimator of the identified coefficient vector is consistent and has a meaningful
limit distribution. These findings remind us how important the necessary and sufficient
condition for identification is in terms of the statistical properties of estimators and tests in
simultaneous equation models.

This paper is built upon the earlier work in Phillips (1989) and employs a similar
approach. The finite sample and asymptotic distribution theory in Phillips (1989) is given
for the case where the coefficient vector of the endogenous variables is totally unidentified
and that of exogenous variables is partially identified. In the present paper it is assumed
that the coefficient vectors of both endogenous and exogenous variables may be partially
identified. Hence the current framework is more general than that of Phillips (1989) and
includes total identification, total lack of identification and partial identification of the

coefficient vectors of both endogenous and exogenous variables. General formulae for the



finite sample and asymptotic densities of the instrumental variable estimators will be given
by rotating the coordinate system as in Phillips (1989). The general formulae provide an
economical way of writing down the exact and asymptotic densities of the instrumental
estimators in various cases of identification and lack of identification and shed light on the
effect of identification and lack of identification on the finite sample and asymptotic distri-
bution theory of the estimators. The asymptotic distributions are derived for general
martingale difference errors and, as in Phillips (1989), the limit distribution theory is all of
the mixture normal class. Limit distributions of Wald test statistics are also derived.
These are, in general, not chi—square and again demounstrate the effeci of non identi-
fiability.

The plan of this paper is as follows. Section 2 discusses the structure of the current
problem and the rotation of the coordinate system that isolates the identifiable components
of the coefficient vectors. In Section 3, the finite sample and asymptotic distributions of
the instrumental variable estimators are derived. Section 4 deals with statistical inference
on the whole coefficient vectors. Standard Wald statistics are formuiated and are shown to
converge in distribution to random variables which are not distributed as chi—square.
These results indicate the importance of identification for statistical inference in a simul-
taneous equations model. Section 5 reports some numerical computations in partially
identified models and contains figures of the pdf’s of the estimators and the Wald statistics
based on simulations. These figures illustrate some of the main properties of econometric
estimators and tests in partially identified models. Conclusions are drawn in Section 6.
All proofs are in the Appendix.

A word on notation. We use the symbol " 3 " to signify weak convergence, the
symbol " =" to signify equality in distribution and the inequality " > " to signify
positive definite when applied to matrices. We use O(n) to denote the orthogonal group
of n x n matrices, Vk,n to denote the Stiefel manifold {H,(nxkj:H{H, =1}.

Finally, we use r(II) to signify the rank of the matrix II , Py to signify the orthogonal



projection onto the range space of II with Qp=1-P. All the limits are taken as

T -+ o, unless specified otherwise.

2. A PARTIALLY IDENTIFIED STRUCTURAL EQUATION AND
ITS ESTIMABLE FUNCTIONS

We are concerned with a structural equation
(1) y =Yf+Zv+u
=Wi+u

where y,(T = 1) and Yo(T = n) denote n+1 endogenous variables, Z,(T xk;) isa
matrix of k, exogenous variables included in the equation (1) and u is a random

disturbance vector. The reduced form of (1) is written in partitioned format

mh

(2) [le Yzl = [er Zg] + [Vl’ Vg]

Tg 9
o1

Y=ZI+V

where Zy(T x k,) is a matrix of exogenous variables excluded from (1). It is assumed
that ko 2n so that the necessary condition for the identification of (1) is satisfied, and
that Z is of full column rank k =k, +ky. The equation (2) is assumed to be in
canonical form (see Phillips (1983) for details of the necessary transformations), so that the
rows of V are iid(0, Im) , m=n+l. We shall require the following distributional

assumption for the development of the finite sample theory

(C1) VzNp (01).



In addition, we make the following standard assumption on the asymptotic behavior of the

sample second moment matrix of Z :

(C2) T2 2.M>0.

It will also be convenient in some cases to strengthen (C2) to the following
(C2)- T12:7 =M + O(T™).

We partition M conformally with Z = {Z,, Zo] = [Z{, Zq ,Z4] 38

- - r -

My, M, My Myg Mysiky
M= =| Mgy My3 Mgx ks
Mgy Mgg | | My Mg M |k

The second partition corresponds to the selection of a submatrix of instruments Z3 .

The identifying relations connecting the parameters of (1) and (2) are
(3) i Hlﬂ =9
(4) 7y —I0=0.

Equation (1) is identified iff II, has a full column rank, i.e. (L) =n <ky . We call this
the fully identified case, following Phillips (1989). If

(5) H2 =0

and r(lly) =0, we have what is usually referred to as the leading case in econometric
distribution theory (Phillips (1983)). In this case the parameter vector f is totally
unidentified. However, if Hl =0, for example, the entire coefficient vector ~ is

identified and is equal to the reduced form sub coefficient vector T -



In this paper, we consider the general case where Hl and Iy are of arbitrary
rank. The leading case where II, =0 and II, is of arbitrary rank is discussed in earlier
work by Phillips {1989). In the leading case the vector J is totally unidentified and only a
certain part of 7 (i.e. some linear combinations of <) is identified. In the general case
certain components of both § and 4 are identified while other components of both vec-
tors are unidentified. The number of components in each category is determined by the

ranks of II1 and II2 , which are assumed to be

(C3) (L) = kyp < Ky
and
(C4) i(lly) =n;<n.

Following the development in Phillips (1989, §2.1) we now rotate coordinates in both the
space of the endogenous variables Y, and the exogenous variables Z; to isolate
estimable functions. Define

oy Iy
§=S,,5,] € O(n)

where 52 spans the nulil space of I, and H21 = H281 has a full column rank D . Let
61 = Siﬁ: ﬂz = Séﬁ
and

My, =TS, M,=T8,, Ny =TS, I

9511 lgg =TSy = 0.

Then the identifying relations in the new coordinates are



(6) m=118) — Dby =7
(N Ty — g8y = 0.

In this system we see that f, is identifiable and f, is totally unidentified. Moreover the
structural coefficient vector 4 is also unidentified due to the effect of the unidentified
coefficient [, appearing on the left hand side of (8).

We now rotate coordinates in equation (6) to isolate the identifiable part of =.

Again as in Phillips (1989, §2.1) we define an orthogonal matrix

ki k9

R=[R; R, ] € O(k,)

where R, is selected to span the null space of 14 and k, = k11 + k12 . Under R’ the

equation system (6) becomes

(8) Rim=m
and
9 Rym — Rl By —Rallyofy = %
where
7, = R{7
and

79 = Ray7-
Here " is identified, while To is not.

These rotations produce a new structural equation
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V=Y 0+ 27+
= Y2SS’ﬂ + ZIRR"r +u
(10) = Y21ﬁ1 + Y22[J’2 +Zym Lyt tu.

In (10) (which corresponds with equation (13) in Phillips (1989)) the coefficients (f;, 1)
are identified and (4, 7,) are totally unidentified. The original coefficients are recovered

from the equations:
B =355 +Syh,
v = Rl'yl + R272 .

The reduced form system (2) can be similarly rewritten in the new coordinate

system (following rotation by §) as

(11) ¥y =271 + Ll + vy
(12) Yo, = 210y + Zogllyy + Vg
(13) Yoo = Zylljg + Voo

where Vo, = V251 1 Voo = V282 .

3. DISTRIBUTION THEORY UNDER NORMALITY

3.1. Coefficients of the Endogenous Variables

We shall study the finite sample and asymptotic distributions of instrumental var-
iable (IV) estimators of the structural equation (1) under the normality assumption (C1).
We assume (C3) and (C4), so that II; an IL, have arbitrary ranks. (The distributional
theory in the case where II, =0 and Hl is of arbitrary rank was developed in Phillips

(1989).) Under (C3) and (C4) and in the transformed coordinate system leading to (10}
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(B, 7;) is identified, while (G, T,) is totally unidentified. The functional forms of the
finite sample distributions of the IV structural coefficient estimators will be derived and, as
a corollary under the additional requirement (C2), their asymptotic distributions will be
obtained.

The IV estimator of § in (1) is simply & = argmin FI-WEPH(y—W4) where
H=[Z,, 2] isa T x (k; + ky) matrix of instruments and 2, is a submatrix of Z,
formed by column selection. We require k3 >1n, so that the order condition of sufficient
instruments is satisfied. If H = [Zl, Z,] , the instrumental variable estimators are
equivalent to 25LS estimators.

Formulae for the subcofficient vector estimates in the transformed system (10) are

easily obtained by stepwise regression as follows:

P

’ "'-1 p)
By = (Y3;EY,,) (Y3, Eyq)

7 ¢ -1 ’
By = (Y393 ¥o0) (Ysqdyy)

:Y1=Ri:}'
=R{(2:Z )’1zf ~R:(Z:Z )‘12'[‘{ Y., g
=M\814) 4V T, 121 T22!)
2
772=Ré:¥
= Ry(2:2,) " 20y, — R4(Z:2) V24 Yo, Yool | 0
= Rol8y18y) 41¥p —Ralofy 1121 f22tl g
2
where
I _1 rd
E =L - LYy (Y5oLYg0) " Y4oL

’ -1 ’
J =L LYy (Y5 LY,) Y5 L



12

Of course, E and J are idempotent matrices with ranks r(E) =tr L — n, = k3 -1n,,

and 1(J) =trL—n, = kg —n; respectively.
The following theorem gives general expressions for the exact densities of [91 and
By . |

THEQREM 3.1: Under the assumptions (C1), (C3) and (C4)

where

—1 l ’
Alg=A(00) s Wollky —ny + 3, + 1,1, , Ty A06” Aplly)

8o = 8(00") = N(I13;A166 ALy, 113, A406- Aqlly,)

and
— (7. ~1/2/,
AT = (Z3QZIZ3) / (Z3Q21Z2) .

In the above formule, © is ¢ matriz that is distributed uniformly on the Stiefel manifold

v ={0:00=1 .
ky—no ks { k3—n2}

) A J J J N(Bm(6)8,, B)pdf,(B,m)dBdmpdi(8)dd
2 gt 12 B0 1» Blpdig(Bm)
=I,, say

where

- w-l
B= an(k3 —n 1y + 1, Inz)

0= N(Aglly,, T)
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and

m(6)] 4= N(O, 53 ApQphTlyy) -

REMARKS

(i) We find that both distributions (a) and (b) are mean and covariance matrix
mixture normal. This is an economical way of writing down exact distributions whose
series representations are very complicated (these may be deduced from results in
Phillips(1980, 1984b). Moreover the functional forms given here more easily shed light on
the effect of identification and lack of identification on the finite sample distribution
theory.

(ii) The density of B2 is independent of ﬂ2 and carries no information on ﬁ2 )
This is as we would expect since ﬂ2 is not identified. Interestingly, we find that the
density of B2 is dependent on the identified coefficient By - The density of Bl is also
dependent on ﬁl .

(iit) If I, has full column rank, the whole parameter vector § is identified and

the pdf of f§ may be expressed as

BEJ 2J N(AgB, A)pdf(A,g)dAdg =1, say
gERn A>0

where
- -1 ’ ’ s _1 4
-1
g= N(HQ(ZQQzlzg,)(ZgQZIZ:,,) (ZéQzlz2)H2:

Hé(ZéQzlz3)(ZéQz123)_1(ZéQzlzz)Hz)

This expression is easily recovered from part (a).
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(iv) If 7(Il,) = 0 then II,; =0 and we find from part (b)

Bs J N(0,B)pdi(B)dB

where

|
B:an(k3—n1+n2+ 1L,1).

This result is consistent with the earlier result in Phillips (1989, Theorem 2.1(a)) for
the case of totally unidentified g.
(v) The exact densities of fil and ﬁz undergo some simplification when ﬁl =0.

By setting f; =0 in (a) and (b} we obtain:

alj
Ve —n. k
3 2’2

J N(0, A(€6")pdi(A(6©"))dAdO
A>D

ﬁsj N(0,B)pdf(B)dB .
2 B>0

The latter result was given earlier in Phillips (1988).
(vi) The density of the (totally unidentified) estimator B2 depends on the matrix
AT = (ZéQz1Z3)_1/2(ZéQz1Z2) , as it enters the mean of #. However, # occurs in the

distribution of 5‘2 only in terms of the projection operator Q g It is clear, therefore, that
the distribution of [32 depends explicitly only on T_ll QAT , which tends to a finite limit
as T - o under (C2). Nevertheless, the dependence on T/ 2AT and the noncentrality
of the distribution of # make the problem rather different from that studied in Phillips
(1988, 1989).

Under assumption (C2), we may develop an asymptotic distribution theory of fil

and B2 as follows:



COROLLARY 3.1: Under (C1), (C2)’, (C3} and (C4),

(3) VT(B; =)= | N(O, (T3, M3,

v
kg—Tg.kg

=Ty, say

(6) By* J N(0,B)pdi(B)dB

B>0
= f2 , say
where
_ 1
Mgg.1 = Mgq — Mg M 1M, 4,
_ -1
Mgg.1 = Mgy = Mg M; 1 My5,
el
and B= an(k3 -n; +n,+1, In2) .
REMARKS

(i) The estimator 51 is consistent to ﬁl , as we would expect for the identified
subcoefficient ‘61 . On the other hand, 32 converges in law 1o a non degenerate
distribution so that the uncertainty about ﬁz that results from the lack of identification

persists in the limit. This is analogous to the cases explored earlier in Phillips (1988,

1989).

(i) Note that the limiting distribution of Bl is a covariance matrix mixture
normal. Hence the conventional asymptotic theory for identified coefficient estimators
does not apply here. This is because the lack of identifiability of 62 affects the limiting

distribution of Bl by producing an additional variability that is manifested in the

covariance matrix mixing variate.

33-1

M 200 MY 2M,, 1

33-1732-1721

ytde
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(iii) If the entire parameter vector § is identified, we have directly from (a)
7 ’ ’ -1 -1
JI(6-6)» N[O’ (M3M39.1M33.1M35.1T15) ] ;

corresponding to traditional asymptotic theory.
(iv) If r(l'[2) =0 then

B J N(0,B)pdf(B)dB
B>0

50 that the usual leading case resuit applies in the limit.

(v) Note that the limiting distribution of 32 is different from its finite sample dis-
tribution. Again, this is also different from the leading.case where the finite sample
distribution is invariant to T. -

(vi) Since B=8 B, + SoB, we find that f4 SyT,. Thus, the effects of the lack
of identifiability of ﬁ2 are manifested in the original coordinates in the nondegeneracy of
B.

(vii) Corollary 2.1 continues to hold if the rows of V form a sequence 6f stationary,
ergodic martingale differences with covariance matrix I, as is discussed in Phillips (1989).

Thus the asymptotic results hold for a much wider class of errors.

3.2. Coefficients of the Exogenous Variables

The estimates of the coefficients of exogenous variables have the following finite

sample distributions. These depend on the joint pdf of fil and 32 .

THEOREM 3.2: Under (C1), (C3) and (C3)

(a) %, EJ o, J n, N(v + Gymy — Gyllgyry, (1+rir1-!-rér2)G2)pdf(rl,r2)dr1,dr2
R R

=5, say



where
— ’ ’ _1 f
G, = R{(2{2,)'2{2,
and
G, =R{(Z:Z,) R
o = RilZ12)
(b) 7= ,[an JRnlN(Réﬁ + Fymg = Rollyyry — Fyllgyry —R3Mors

(1 4 141y + 1315)Fy )pdi(z;, 15)dr, dr,

=3y, 86Y
where
F, = R4(Z:Z,) " 212
1= Ral214y) 214
and
F, = R4(Z:2,) 'R
9 = f5l14y) "Xy
REMARKS

(i) Both ’yl and %, have mixture normal distributions since they are clearly

normal conditional on the estimates of the endogenous variable coefficients.

17

(i) When T, =0, % and %, bave distributions identical to those derived in

Phillips (1989).

ili) When II, =0, the whole parameter vector + is identified. Its pdfis easily
1

recovered from part (a) of Theorem 3.2 as follows:

A{EJ "2J By

R°R
1+ T{T{ + rérQ)Gz)pdf(rl, rz)drldr2

N(y+ Gy7my = G114,
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o _ = -1 . "
where G, = (2{2,)72{Z, and G, = (Z{2,)" . I, in addition, I, = 0, we find from
the above that

5 s J L N(v, (1 + £°5)G,)pdi(F)dr
R

where T = J. N(0,B)pdf(B)dB and B= W;;l(k3 —n; +10,+ 1, In) . The exact
B>0 2

formula of the pdf of % in this case was derived by Phillips (1984) by a rather different
method.
(iv) If I'Il has full row rank, 7 is totally unidentified. In this case, the pdf of %
is expressed as
¥z J n, I a, N+ Fymy =Tty = Fyllgyny — oty
R R
(41 + rérz)f‘z)pdf(rl, Iy)dr,dry

where F, = (2{2,)712/Z, and Fy = (2{2,)".

(v) Note that the density of 7, contains 7, inits pdf as an argument. In contrast
{but consonant with our former results on Ziz ), the density of 7, does not depend on
7y - The lack of identifiability of 7, implies that there is no information about Yo in the
distribution of 7%, .

(vi) The densities of :Yl and 7%, both depend on the sample size T . Thus we can
expect that both will have asymptotic distributions that are different from the finite
sample distributions given here.

The asymptotic distributions of ’yl and ’y2 are given as follows:
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COROLLARY 3.2: Under (C1), (C2), (C3) and (C4)

(8) ¥T(3; —7,)» -G,y F, jR% N(O, (1+ B{B; + T57,)G,)pdi(z, )dF,

=§1 , say

_IR

- , _1 -
where Gl = R1M11M12 and G = R: Mll

(b) %y * Rymy —RoIL 1 B) — Ryl oo = 8y, say.

REMARKS

(i) The estimator :71 is comsistent to 7y, as expected for the identified
subcoefficient vector mn - However, ")r2 converges in law to a nondegenerate distribution
due to the lack of identification. This is analogous to our former results on the estimators
Bl and B2 .

(ii) As is the case with the estimator fﬁl , the limiting distribution of %, isa
covariance matrix mixture normal. Here again, we find that the conventional asymptotic
theory for identified coefficient estimators does not apply.

(iii) When I, =0, the earlier results obtained in Phillips (1989) can be readily
recovered from our general formulae for the asymptotic distributions.

(iv) When 1'[1 = 0, the whole parameter vector 7 is identified irrespective of the
rank of the reduced form coefficient matrix Ii, . The limiting distribution of % might be

expressed as

T(=7) » G ot J o NO, (14 816, + £4%,)Go)pdi(F,)dT,
R

where él = M7IM,. and G2 = M7

11712 Moreover, if TI, =0, we find that

11

MG o N, (4 1/1)G,)pdi(F)

-1 -
N(0,B)pdi(B)dB and B=W_'(kg—n;+mny+1,1 ). Clearly, ¥ is

where T = J
B>0 2
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consistent to 7, manifesting its identifiability. However, its limiting distribution is a
covariance matrix mixture normal due to the lack of identifiability of the endogenous
parameter vector .

(v) If I, has a full row rank, the whole parameter vector < is totally
unidentified. As can be readily found from part (b), % converges in law to a nonde-

generate distribution as shown below:
Y21 —Mppfy = Typly -
(vi) The limiting distribution of 7%, is different from its finite distribution. This is
consistent with the leading case discussed in Phillips (1989).
(vii) Since ¥ = R, :’1 + Ro%y , We find that %2 Rof, . The nondegeneracy of %
is due to the lack of identifiability of the coefficient vector 3.

(viii) As is the case with Corollary 2.1, Corollary 2.2 holds if the rows of V form a

sequence of stationary, ergodic martingale differences with covariance matrix I.

4. STATISTICAL TESTS ON THE COEFFICIENTS
In this section, we shall consider the problem of testing hypotheses on the coef-
ficients of the endogenous and exogenous regressors. We shall formulate Wald statistics for

the hypotheses
Hg:H)B=h
where H, is p; xn of rank p, (< n) and

H, :Hyy=h

¥ 2

where ]E[2 is pyxn of rank Pg (¢n). The error variance estimator for the Wald

statistics is defined by
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o =T Ny, =W ) (3, - W, 5)
— _1 . 7 ’ P .
=T "(y; — Yg1; — Ygof5) Qzl(yl = Y9181 — Yoobs) -

The Wald sta.tisfics for H 8 and H y are, respectively,
R , , —1s, -1 ~2
W= (B A -h)) {HI[Y2(PH—PZ1)Y2] Hl} (BB —h,)/%
and

) S e PEE .2
W7=(H27—h2)'[H2(Zinl) Hé] (Hy¥ - by)/

where
’, _1 rs
Q= PH - PHYz(Y2PHY2) Y2PH .

The following lemmas will be employed in deriving the asymptotic distributions of
Wﬁ and W’Y . As in the previous section, we assume that (C2)’, (C3) and (C4) hold.
Note also that the following lemmas hold under the assumption that the rows of V form a

sequence of stationary, ergodic martingale differences with covariance matrix I . This
replaces condition (C1).
LEMMA 4.1

a1+ BBy + T4,



LEMMA 4.2:

’ _1 7 4
[Y5(Pg - le)Yz] # 8949055

where
_ 5 = —1/2 ’ ’ -1 1/2 B
l,=B+B Jv Wa, @ 41 5, M59,1Mg3.1M39.1T91 411 )d0|B
ky—nyks
o1
B=W (o, +k, +1,1 )
n, ) 3 n,

and
7. =Mz, MY 200 M7/ 2M,, .1 -
117 }77°217°32-17°33-1 33-1732.17°21 .
LEMMA 4.3:
2:Q2, 3 T ¢lQp — QpAl; A Qplen}
1%71 12 F F' 11 F 12

R +
=nt.w 2(k1+k3—n, nny,

120
where H-{z is the Moore Penrose tnverse tJfH'{2 , €= N(0, I(k1+k3)n2)
0
- _Mﬂ2n12
. M3 My, Ty
] _Mﬁﬁnn + M0y,

and

; =1
£, =0Qpr) .

22
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REMARKS

(i) Lemma 4.1 shows that the standard error of regression converges weakly to a
random variable due to the lack of identifiability.

(ii) H the coefficient vector J is totally unidentified, we find that
T_IY'QZIY —+1 and that 5231+ 1T where s JB>ON(O,B)pdf(B)dB and

B= W;l(k3 —n, + 1, +1). This is consistent with the result obtained by Phillips
2

(1989).

(ili) When #=0, we find from Lemma 4.1 that a1+ Thus under the

5Ty -
null HO : #=0, the nondegeneracy of &2 persists in the limit as well.

(iv) If the system is totally identified, we would have [Y;(Pp-—P, )Yz}—1
: 1

= Op(Tul) . Lemma 4.2 shows that [Y4(Pg —PZI)YZ]“1 = Op(l) in contrast. The

difference arises since the coefficient vector 4 is only partially identified.
(v) If the coefficient vector J§ were totally unidentified, we would have

-1 -1 : -
[Y5(Pg ~ PZI)Y2] 3 W (o +kq + 1,I) as was obtained by Phillips (1989).
(vi) Lemma 4.3 is obtained in the same way as Lemma 2.7 of Phillips (1989). The
result can be sharpened as follows:
: + +
ZiQZ,=» 11 JL2an(ch +ka—n, DI,

o wwent

=l WW L)

= WW".

Columns of W are now iid N(0, (H12Hi2)+) . That is, W has a singular matrix normal

distribution. Note that Lemma 2.7 of Phillips (1989) uses an additional rotation to obtain

the required result on the assumptions that 1'[1 has full row rank and that H2 =0.
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THEOREM 4.4: If the rows of V form a sequence of stationary, ergodic martingale
differences with covariance matriz 1 and if (C2), (C3) and (C4) apply, then under the null
= r Qs s 7 ’ ’ _1 x ;
(Ty — By)'S5H{{H,SolyyS3H{} "E;Sy(Ty — By)

1+ 6iﬂ1 + T5f,

(a) Wﬂ"

(b) W,Y:

1
5 = 2 + - + -1 ’ 5
(55 ~ m)'R Hz{Hz{H12Wn2(k1 + kg - o, DIy} Hz} HyRo(55 — 1)

1 + ﬁiﬁl + 15T,

REMARKS

(i) Theorem 4.4 shows that the limiting distributions of the Wald statistics are not
chi—squared. Hence the conventional theory for hypothesis tests in simultaneous equations
system does mot apply. Under the alternative hypotheses H 8 Hlﬁ # h; and
H, : Hy7#hy, [Yé(PH—PZI)Y2 I, 2;Q2z,, H,f-h  and Hyy—h, have the
same order of magnitude Op(l), so that the Wald statistics do not diverge under the
alternatives as T goes to infinity and the tests are also inconsistent. Of course, this is a
consequence of the lack of identification.

(ii) When II, =0, our result on W 3 reduces to that obtained by Phillips (1989).
W‘T has the same limiting distribution as in Theorem 4.1 in this case.

(ii) The limiting distributions of W 8 and WT when f and 7 are totally
unidentified were derived by Phillips (1989).

We also study the case in which the coefficient vector 7 is fully identified as in
Phillips (1989). In this case, we have II, =0, so that Yoo = Voo . Hence it follows
that 2{QZ, = OP(T) as below:
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LEMMA 45: If Tl = 0, then
T2(QZ, 4 p3{1 - & ¥(¥ 23 V) L0 8]37p/

-1/2
M35 1M32. 1M 12
where ¥ = , p=10, M4 | and & is distributed uniformly on the
-1/2
My1 " Myolly,

11
Stiefel manifold V ={0:9'®= I }-
2

Do,k +kg

THEOREM 4.6: If I, =0, then under the same condition as in Theorem 4.4

-1
- 4 4 ’ ’ _1 r ot —1 Q
o L VE 2{H2{p<1>[1 — o (Y 9e V)Y 8lepr) Hz} By

v , /T
1 + 18+ 15374
Here §=-GllyF + J ] N0, (1 + BB+ T57,)Go)pdf(T,)dz, where
R 2
G, =MM., and G, =M}
17 7711712 27 11

REMARKS

() When M,=0, Lemma 44 yields T 'Z{QZ #p®'p’. This can be
sharpened further to give rise to a result equivalent to Lemma 2.9 of Phillips (1989).

(1) Under the altemnative H, : Hyv# by , T (Hyy—hy) diverges, and 50 too
the statistic W - The test is therefore consistent. However, the limiting distribution of
W,y is not chi—squared due to the non identifiability of 5.

(iii) When Il, =0, Theorem 4.6 reduces to the result discussed in Theorem 2.10
of Phillips (1989).
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5. ILLUSTRATION OF PROBABILITY DENSITY FUNCTIONS
We illustrate the finite sample and asymptotic distributions of the two stage least
squares {2SLS) estimator in a single equation of a simultaneous equation system. We

consider the structural equation (1), the reduced form equations of which are
yp=Iym + Zamp + ¥y
Yoy =20y + Zlly +Vyy

Yoo =2ZyIjy + Zollgg + Vyg -

It is assumed that an appropriate rotation is ;Serformed to partition Y2 , 1'I1 , H2 and
V, asin Section 2. The endogenous variables y, , Yoy and Yo, are T x1 vectors.
The exogenous variables Z; and Z, are Tx1 and T x2 vectors, respectively. The
values of parameters in the reduced form equations are set to be #; =2, 1) = [0,0] ,
I,;=9, 0§ = [1,5], Mp=25 and Mgy = [0,0] . Notice that the value of f; is zero
by construction. The identifying relations show that ﬁl is identified and that ﬂ2 and 7
are not identified in this experimental format. For the purpose of simulation, 4,000 itera-
tions are made to generate normal deviates for Vi V21 and Voo . For Zl and Zq,
random numbers from a uniform distribution are generated. Since the variables Z; and
Z, are exogenous, they are fixed throughout the iterations. In each iteration, we calculate
the 2SLS estimates of ﬁl , ﬂ2 and + using the formulae in Section 3. These are used to
plot the finite sample and asymptotic distributions. Since the parameter ﬁl is identified,
its estimator Bl has a distribution which is not invariant to the sample size, as is dis-
cussed in Phillips (1988). At a given sample size, the finite sample distribution is plotted
by using Bl , while the asymptotic distribution is charted by the rescaled values of Bl ,
ie., T1/2f31 . The 2SLS estimator of 52 is known to be invariant to the sample size and,
as discussed in Phillips (1988), has a standard Cauchy distribution. The parameter 7 is

unidentified, but its estimator has a distribution that varies with the sample size.
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Figure 1 illustrates the finite sample and asymptotic pdf of the identified coefficient
estimator Bl . Sample sizes T = 30, 80 are used. As discussed in Section 4, both the
pdf’s are scale mixture normal. The identifiability of 5, is manifested by the fact that the
pdf’s are centered on the true value of f; and concentrate as T increases. In Figuré 2,
the pdf of le 231 at T = 80 is plotted together with normal pdf’s. The normal pdf’s are
charted by a normal density function formula with the variance 15, M1/2 00 M2 1

22.11l91
conditioned on certain 8 as in Corollary 3.1. Note that Moy ;= Myy — M, M]IM

217117712

The pdf’s of normal 1 and normal 2 are generated by setting ©’ = [cos(7/2), sin(x/2)]

and ©’ = [cos(0), sin(0)] , respectively. The tail of the pdf of 1!/ 2Zi1 is in between

those of normal 1 and normal 2, reflecting the scale mixture normality of Tll 2]31 . Figure

3 shows the pdfs of f32 and the standard Cauchy. The sample size here is T = 80. We
find that both pdf’s have similar shapes.

The pdf's of & at T = 30, 80 are plotted in Figure 4. The distributions are shown

to have very large variances. This is what we would expect from the lack of identification.

=1

Both the pdf’s show only a slight difference in shape. If we set II =0, the

11 12
coefficient parameter + is identified. Figure 5 plots the pdf’s of % at T = 30, 80. We
also set Ty = 0, hence 7= 0. The distributions are symmetric around the true value of
v, and again concentrate as T increases as we would expect since v is identified. The
limit distributions of % at T = 30, 80 are almost identical and display thick tails,
apparently due to the effect of the unidentifiability of 62 )

Figure 6 and Figure 7 display the empirical pdf’s of the Wald statistics under the
null hypotheses on # andon v at T = 30, 80 against the chi—square distribution with the
degrees of freedom 2. Here ri=[2,0], xéz[0,0], I, = [3(13] , Iy = [%8] ,
hence § and 7 are only partially identified. When f is partially identified, Figure 6 shows
that the null distributions of the Wald statistics have high peaks around the origin and
that their tails are thinner than that of the chi—square distribution. Contrastingly, when

4 is partially idemtified, the null distributions of the Wald statistics display more
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dispersion than the chi-square variates, as we see in Figure 7. Obviously we find that
using a nominal chi-square in hypothesis testing in case of identification failure results in
size distortion.

The empirical pdf’s of the Wald statistics under null hypotheses on the identified
coefficients J and v for T = 30, 80 are drawn and compared to the chi—square
distribution with the degrees of freedom 2 in Figure 8 and Figure 9. Weset II, = [? ‘c{ ]
and I'I2 = [ é % ] with the same =, and 7, as for Figure 6 and Figure 7, so that § and
v areidentified. As we would expect from the standard theory on simultaneous equations

system, all the empirical pdf’s in Figure 8 and Figure 9 are almost identical to the chi-

square distribution.

6..CONCLUSION.

General formulae for the finite sample and asymptotic distributions of the instru-
mental variable estimators and Wald test statistics in a simultaneous eqﬁation model are
derived under the assumption of partial identification of the coefficient vectors of both the
endogenous and exogenous variables. In order to isolate identifiable components from the
coefficient vectors, we employed a simple rotation of the coordinate system. Both idenii-
fied and unidentified components estimates can then be studied separately and the
consequences for estimation and inference in the original coordinate system follow directly.

Only estimators of identified coefficient vector have finite sample distributions that
carry information about the true coefficient vectors. The estimators of the unidentified
coefficient vectors are independent of the true coefficients. But they are not invariant fo
the sample size. All the finite sample distributions are expressed as mixed normal. The
formulae derived are general enough to include totally identified, totally unidentified and
general partially identified systems. Asymptotic analysis informs us that only the esti-
mators of the identified coefficient vector have meaningful limit distributions. However,

these are not normal, demonstrating that the effects of the non identifiability of other
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components persist asymptotically. Ounly the estimators of the identified coefficient vector
are consistent of course. The limit distributions of Wald statistics for the whole coefficient
vectors are not chi—square, as we would expect from the lack of identification. As a matter
of fact, these tests are inconsistent in the general case of partial identification. Simulation
results show the empirical pdf’s of the estimators of both the identified and unidentified
coefficients and of the Wald statistics under the null against the respective asymptotic dis-
tributions. The difference in the properties of the estimators and of the test statistics in
the two polar cases is vividly shown in the figures. These results indicate the importance
of identification in simultaneous equations theory and highlight the consequences for esti-
mation and for statistical inference of identification failure. In empirical research where
order conditions for identification are all that are checked, these consequences should

always be borne in mind.
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APPENDIX: PROOFS

PROOF OF THEOREM 3.1

(2) The coefficient estimate of f§; is written as
7 I -1 ’
By = (Y5 EYp) ™ (Y5 Ey;)

where E =L —LYyp(Ys,LY,0) Y5l and L= Py~ Py - Factorize the idempotent

172

matrix L as L=D,D{ where D;= Qzlz3(zéqzlz3 (c.f. equation (33) of

Phillips (1989)). Using this factorization, we write E as

_ -1 ,
E =D, Dj = D;D{Vo5(V49D;D{Vag) ™ V45D{Dj -

It follows from (C1) that §=D{Voq = N(0,I) . Hence E can be rewritten as follows
—_ ’ K -1 Ty
E = D,D; — D, &6’ 6} &'D;

-1
=D, [I- &8 #D;

~1/2,,

=Qzlza(ZéQzlze.)—l/zee'(ZéQzlza) 23Qz,

where e is distributed uniformly on the Stiefel manifold Vi K

3 Tg%g

={0:0°0=1, , }. Weifnd trivially that

(A1) 6'(Z’QZIZ 1Y21 v = N(&* Aqlly;, Iy 3_112)111)

22

~1/2

where Ap = (zéqzlz3) (ZéQZIZS) . Standard multivariate theory then yields the

(conditional) Wishart distribution:
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= W}1 (1:3 - L, Inl, Hé1AT99’AT“21)

and (conditional) inverted Wishart

(A2) A(©6")|g = (Y5,BY, ) 1V,

- ‘ 1 ri ’ F
= W;l(k3—n2+n1+1,In1,H21AT99 ATH21)
Next

(A3) Yél]?.‘ry1 V21 z N(YélEzzﬂmﬁl,
Vv

22

YélEY21) .

Set g(60) =Y,,EZ,Il,, , and note that g(©©) is normally distributed conditional

on Vo, (or equivalentiy on ©) as follows:

g(eef)|e 2 N(115,2,EZ,11,,, 115, Z5EZ, 11, )

5 AL

= N(I13;A706- Aplly;, 115, ApOO Aqlly, ) -

Combining (A2) and (A3) we have:

—_ ’ -1 ;
Vy, = (Y3,EY9y) (Y3 Eyq)
v

22

2

= N(A(06-)g(06")4,, A(66")) .

Next, integrating with respect to A and g conditionalon ©, we find:
3 =J [ N(A(66/)g(00")f;, A(08"))pdf (A g)dAdG
1| Voo n2 JA>0 ( 1 ©

geR

where pdfe(A,g) denotes the joint pdf of A and g conditional on © . Finally, letting

Voo go free and integrating over © € V. , we obtain
22 k k,

3o
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B = Jv J , JA>0N(A(99')g(99')ﬂ1, A(00"))pdfy(A,g)dAdGAO
1:3—n2,]k3 ny
geR

(b) The coefficient estimate of §, is:
2 -1
By = (YT g0) ~ (Y3oTy))

where J =1L - LY21(YélLY21)_1YélL . L is defined as in (a) and factorized in the same

manner. J is rewritten such that
’ ’ ¢ ’ -1
J = D;D; = D;D{(Zylly; + Vo1 )((ZoTlgy + Voq)' D Di(Zylly, + Vyy))
*(Zgllg;+V5)'DyD{
= D,[I-8(9’8)~"e-ID;
where
(Ad) © = Di(ZyTly, + Vyy) = Apllyy + DiVy, = N(Aqllyy, 1),
and Aq = (zéqzlza)“”?(zéqzlzz) . Proceeding in the same way as (a) we find that
—_ ’ “1/2 ’ ’ -1/2 ’
J= Qzlzs(zsqzlza) 0 (23Qq Z3) 2397
where Q = Q(f) is distributed on the Stiefel manifold V={Q:Q' Q=1 _/ } witha
371
non uniform distribution induced by that of & in (A4). It is easily deduced that

. -1/2 )
0 (23Qz, 23) 230z, Yaolv, =N L, pn )

21 2

This is also an unconditional distribution. Hence we find that

Vg9 ¥y = Wy (kg =2y I )



and that
v, —1 _ -1
Next we consider the conditional distribution

(A6) Yéz.l Y1 = N(YézJ Z2H21ﬁ1, YézJYm) V21 ;
Voo

Va1
Voo

Observe that m(ﬁ)l 8= Y5020y, I v is distributed as
21

m(ﬂ)l §= N(o, Hé Z45JZ,11 1) = N(0, HQIATQQ'ATH

172972772 21)'

From (A35) and (A6) we have:
by

= (Y593 Y50)(Y30dy;) Vs = N(Bm(f)4,;, B) .

\'s

Vo1

Voo
In the manner of (a), we then have

B2]v21=I

22

N(Bm(4)5,, B)pdf {B, m)dBdm
ner 172 -[ B>0 1 f

and finally

-

ﬁ2 EI k2n1

N(Bm(#)43,, B)pdf g(B,m)dBdmpdf( §)dé
n,yn, 1
feR meR

-[B>O

where pdfB,m) denotes the joint probability density of B and m conditional on 4.

33
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PROOF OF COROLLARY 3.1
(a) Write

I — ’ ’ ’ ’ -1 ’ ’
Y21EY21 = (1’12122 + V21)D1[I — 668y 4 ]Dl(Z2H21 + V21) .

Now characterize the asymptotic behavior of each term on the right hand side. First
—1/20, _=1/20, -1/2,r,,
T DiZylly, =T " HZ5Qg Zy) ' (23Qg Zyly

=T V2(q.7, —7:7 (2:2.Y\2:2 ‘1/2(z'z —742.(2:2. )V 22,01
= 32 = L324\22)) "4{Zg 329 = 2321(2{2y) "11Zq)lly,

1y, \=1/2 -1
My MM, 5) " 4(Myy = My MM

= (Mgg - 11My3 31 M11M;9)15,

_a-1/2
= Mgy Mgg Mgy

Next

§=DiVoos NO, I, _)
1¥e2 k,n,

D{Vy # N(O, I, _ ).

372

The last two results follow directly from Phillips (1989), Lemma 2.3. Thus we obtain the
limit theory:
~1, e w1200, m—1/2
T Y5 EYyy 3 151 M3y, | M33.100 Mgy 1 Mg 11y -
Similarly, we write

’ — ’ ’ ’ ’ -1 s ’
Y By, = (g, Z4 + V5,)D,[I - &6 66D (Zymy + v,)

Since D:v, 3 N(0,I, ), we find that
1'1 kq



1y, 120112
T Y3 EZymy 3 15, M3y 1 Mg3710@ M33(1M32-1”2

= I, My, Mzt 200 ML 2M,, (11, B

51M32.1M33.160" M35, 1 M35 4TIy
and
—1/2, o 1200, 01/
T Y5 Bvy 2 Jv N(0, 13 Mgy, (M35 100" Myz! 1Mo 11197)46 -
kang:kg
Rewrite [31 as
- , —1 ’ I -_1 4
By = (Y4,EYq))™ (Y4, Byy) = (Y5, EYy)) ™ (Y5, EZoTly 6))
’ -1 ’
+ (Y3EY,y) (Y5, EVy)
= (T Yvs EY, ) N (TYY g, B2, 0 6,)
518Y91 5182911198
-1/2,m—=1y, —1m—1/2,
+ 3ty By, yHTTH g By
Thus

7 ’ ’ _1/2 , -1/2 ——1
VT8, - ﬁ1)|v22 ? N[O’ (T M3y Myl 100 Mgz 1 Mzo 1 Tlpy) ]

and removing the conditioning we obtain

) o a1 20 ar-1/2 )
V'r(ﬁrﬂﬂ*Jv N[O' (T3 M3, Mgs' 180" M3\ Mg 1 lpy) ]de-
kq—ng)kg
(b) Write
Yol¥1]v,, = Y5od(Zgmg + v4)
Voo

=Yi,JZ

22 22) '

35
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Here
] — ’ —1 ’ ’
Since

-1/2, _ m—1/2 -1/2n, -1/2 3
T /%= T~/ “Aglly; + T7/*D{Vy) — Ma3! Mgy Ty, =, say

, —1/2 1,
snd DiVpya N0 T ), it folows thai Qg Qp ad T 12Qpizym,
_1/2
T1/2Q,D{7,1y 5 =0 Thus
~1/2,
T Y22JZ21!‘2—p40.
. 1, -1 o i, -1/2
Moreover, since T "Z'Z=M+O(T ), we bhave D:Z,=(Z2;Q, Z,)
1% = (23Qz Z
(Z:Qy Zo) = A= TH2A + O(TY2) where A=1im T-Y2A.. Next note that
59z, %) = Ar T

T-w
QgDiZy = (Qp + Op(T"l))(T1/2A+O(T_1/2) = o(1) , simce QpA=0. Thus

YézJ Z21r2 T 0 also. Now consider
/ F I r —1 F rd
3 N(O,I)QBN(O,I) = N(0,))AA“N(0,I)
where A‘A=1. Hence Y;,JY,,2B=W_ (k,—n,,1 ). Next decompose B, as
o, 3 1 n, 2

227 722 9

7 — ’ _1 ’ ’ -"1 s
By = (Y50I¥90)  (Y59dZgmo) + (Y59T¥50) (Y349dv;)
’ _1 ’
= (Yo ¥yl (¥g9v,) + 0 (1)

and since

(Y503 ¥,) 1Y, 0, 3 JB>ON(0,B)pdf(B)dB

the stated limit law follows directly.
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PROOF OF THEOREM 3.2

() %, is writien as

-~

N

i

B.i'y

= R:(Z:2, ) 2y, —R:(Z:Z )—IZ'[Y Y, %

e A R TS R Tt A s DA 1 £33 22!l 5
2

— ’ ’ ’ —1 ’ ’ ’ -1 ’ 7
=Rim + R{(2{Z)) "Z{Zo7y — R{(Z12y) "Z{Zoll5 0,

~ 1
+ Ry(2(2) 7124V | B,
L _Bz
ZiV is independent of fil =1 and Bz =1, since ZiE = ZiJ = 0. Thus, we have the

conditional distribution

-~ - ’ ) —-1 ’ ’ ’ _1 ’
N, © N1y + R{(Z1Zy) "Z{Zgmy — R{(Z{Z,) "Z{Z,lly1y

)

-1
{1+ 1Ty + IérZ)R'(Zizl) Rl)
so that

4, = J nzj a, N + Gymy = Gyllyyry, (1 + 5iry + 1555)G ey r,)de, dr, .
R R



(b) We write 7, as

:72=Ré:¥
= Ry(Z2. ) Z:y, —Ry(Z12,) 7 2: (Yo Yoo g
= Rl 8y 171 ~ ™\ 4 itta21 223
2
’ ’ ’ _1 ’ ’ .
= Rym —~Ry(2{Z,) "Z{Zymy —R3Il 16,
1
r ’ _1 ’ . ’ 7 ’ ’ _1 ’ 7
—R4(212) 2{Zylly, By — R3llg) Bp + R5(Z{Z,) "2{V| —h;
—ﬁ2

In the same way as part (a), we obtain

-~

-1 JUS |
= N(B.27r + Ry(Z4Z,) 7 21 Bymy ~ YT 1 — RY(Z{2)) T Z{ZyMly1 1)

l’2

-1

- Réﬂ12r2, (1+ Ty + rér2)R’(ZiZ1) R2) .

Hence
:Yzzj 2 J n, NR§my + Fymy = Rl my = Fyflgyry = Rgllyoty
R
(1414 + rérz)Fz)pdf(rl, Ip)drydry .

38
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PROOF OF COROLLARY 3.2

(2) Using 7y — Ty fy = 79— M5y 6y = Ty (B) = By) = Mgy (B; — B;) , we deduce
from Corollary 3.1(a) and Theorem 3.2(a} that

1
VT(r, = 1) ~ —R{M]IM T, VT(B, - B)) + Ry M1 220v) —ﬁl

3Gy liy Ty + J nzN(O, (1 + 18, + T5T5)Gy)pdi(T,)dz,, -
R

(b) Since Fy~0 as T-~o and Fymy—F My B, -5~ 0, we deduce from Theorem
3.2(b) that ’y2 * Ry — Rénllﬂl — RyI1; 5T, , as required.

PROOF OF LEMMA 4.1

2 - . - : .
0% =T (y; — Yg18) — Ygobly) Qzl(y1‘Y21ﬁ1‘Y2252)

1
= (lr —Bl’ _32)(T-1Y' QZ1Y) —Bl
_B2

We consider the middle term T"lY'QZ Y and wiite Q, =I1-D,Dy where
1 1

Dy = Zl(ZiZI)_ll2 . Then we have

(221r2 + V)~
Y’QzlY-= (211121 + Vzl)’ (I—D2Dé)(227r2+V1 Z21'121+V21 V22).
VI
22

Since we know that Dé\f1 2 N(0, Ikl) , DyVoy 2 N(0, Iklnl) , DaVoo 2 N(0, Ik2n2) ,



—Ip

Hence

4%y — 0 and T 2:D,D47, + M., MT-M, . , we obtain the following results:

5DgD3Zg = My M, 1 My ,
T—l(zz’_rz + 1) (Zgiy +71) 57 1Mgomy +1
T HZymy + v))" (Bylly; + Voy) 5 15MopTly,
T Zymy + v,) Voy —-0

T Zyllyy + V1) (Zollgy + Vo) 57 Mgy Mopllyy +1o)

-1 ,
T (ZgMlyy + Vo1) Voo 470

1

—1x,,
T V22V22 P

Dy

T7H(Zymy + ¥))' DyDy(ZyTy +77) -5 “éMmMI%Mm“z
TN (Zymy +9,) DyDg(ZyTly; + Vo) = mMyy MM yoTly,
T~ (Zymy + ¥;) DyDj Vi —~-0

-1 , , T -1
T (Zgllyy + V1) DgD5(Zolly; + V) 5 M5 Moy My Myally)

-1 ’ ’

-1 ’ ’
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wé M227r2+ 1 ré M22H21 0
_1 ’ ’ ’
T Y Qg Y5 H3iMaa™ 5 Mpgllyy +1, O
0 0 I
i o)
rr M M_IM T, 7 M M-IM I
5 MgyM )Moy 75 Moy M MypIly,
’ _1 ’ _1
— | T5y Moy M Myomy 151 Mg M M yo1Ty,
0 0
Ty Mog 1Ty + 1 75 Moy 1115y 0
= | 13;Mg5.179 M31Mgg 419y + Inl 0
0 0 I
n2-
Using Corollary 3.1, we now obtain
1
7 = (1, B, -B)TY Q, V)| B
= (1, -A{, A3 Z, 1
Ty Mog Mg+ 1 75 Moy 11 0
3 (1, =81, —13)| 15 Moo 17 51 Mg5.115¢ +In1 0
0 0 I
L n2-
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PROOF OF LEMMA 4.2

n, n
172
Rotating Y, by the matrix § = [S;: S5) € O(n) , we have

Y51D1P{Yg; Y5, D1Pi¥9

Y5001 D{Yo; Y3oD;D{Yoq

-1/2

where D1=QZ1Z3(ZéQZIZS) Write the partitioned inverse of

5Yy(Pg— le)Y2S in the form
t ’
2\"H Zl 2
by b

with

-1
) ’ r ’ / ’ -1 ’ ’
4= [Y21D1D1Y21* ¥51D1D{¥pq(Y59D1D{Y50) Y2291I)1Y21]

— ri ’ —1 / ’
by = —{(Y5oD{D;Yo0) " Y5,D, D Yool

227171722711
g = (Y3D; DYoo) ™ + (Y30 Dy Ypo) ™1 ¥5,D D{ Yooty
Y41 D;D{ Yyo(¥5,D D ¥op) ™ -
Now we study the asymptoiic behavior of YﬁlDlDinl’ Yé2D1DiY22 and
Y5, D;D:Yqy . Write Y5,D,D1Yy, as follows

Y5, D1D{ Yoy = (ZgTly; + Vg ) DyD{(Zo1y; + V)

= 115,25D,D{ZoIly; + 115,25D; D1V,

+ V4D D{Zymy + V5, D1D{ Vg, -



Since
-1/24, -1/2
T 71"Di29 ~ MaaiiMg9 .
and
DiV21 3 N(0, IK3n1) .
we have
=1+, . . N -1
(A7) T "¥5,D1D1Y9) 5~ Hp Mig. 1 Mgz 1 May 41l5; -
Next, we find
(A8) Y3,D D1 Yoo = V5,D.Di Vo 3 W_ (kg I ).

227171722 11‘23’112

Lastly, writing

Y5,D1D{Yo9 = (Zglly) + Vg )’ D1D{ Voo = 115, 29D D1Vog + V3, D1 D{ Voo
we obtain
-1/2+,, , s e wl/2
(A9) T/ %Y 3D D{ Yoo 3 T15; Mgy | Mag/ TN(O, Ly ).

32

Using (A7), (A8) and (A9), we obtain the following results:

-1/2y, p . . -1
T2, D D{ Yoo(¥5,D, D1 o)

_— -—1/ ’
T‘n“[TYDDY 5101P1 Yy

217171721

-1
120, 1
T Y22D1D1Y22]

Y -1 -1/2
? { Ml Mgy, Myg. 1= NOL o J(Wy (kply )V N g M3t 1 Mgy, 1H21}

Or, equivalently,
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1
s ’ —1/2 ¢ —1 ’ —1 2
(A10) T‘ll*{nlesz-lMss.lU‘&('s o~ 5 Mz 11\/132_1r121}

-1
—_ ’ ’ —1/2 ‘ -1/2
= {11211"[32-13’133-1ee M33-1M32-1H21}

= 211 , 8ay
Here § and © are as in the proof of Theorem 3.1(a).

1 2 ’ ’ -1 -1 2 ’ ’
(A1) T/ by = Y3D D{Ygo) T / Y5,01D1Yo T,

-1 -1/2 .
= -2 ! ’ "'1 - _ _
) JB>0N(0’ B ® 115, M35.1M33.1M3.1)4;, PAf(B)dB
-_— _2 - , —1 i )
v B N(0, B ® 2,115, Mg My Mgy 11y, &1, )pdf(B,0)dBdO

k3—]12,k3 B>0

where B = W'III(n2 +ky+ 1,17 ) and pdf(B,8) denotes the joint pdfof B and © .
2 2

—_ ’ [ —'1 ’ ’ _1 _1/2 ’ ’
(A12) byg = (Y59D DiYoe) = + (Y59D DYoo) T 1 *Y¥3oD D{Y, Ty,

~1/2

’ s ’ ’ _1
‘T Y5 D D{Yoo(¥59Dy D Yg9)

o gy Ny _
5B+ BN(O’Ik3n2)M33- 1M32_1H21£11H21M32-1M33-1N(0,1k3n2)B

120 v, el 120l
an(nr L3 g Mag \Maq Mgy 1115, £117)d0)B
3

B+B J
v
k3-——n2,k

Cwal

99 » 8.

We deduce from (A10), (A11) and (A12) that

[Y5(Py — PZI)Y2]_1 38 S/
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PROOF OF LEMMA 4.3
This is based on Lemma 2.7 of Phillips (1989). Let Py =D*D*",

D*Y,. =Y

21 7 21
Q=Pp-Pyq 2(YQPHY2) 1Y2PH , may be decomposed as follows (see equation (A6) of

Phillips {1989)):

x, *, __ ’ M
D*Y, =¥y and D*Vyy=V,,. Then Z{QZ, with

b - 7 oT¥[T _ Y*~ ¥ , -1 ’ *
7{Q, = L{D¥1 - D* ' Y,(Y5D*D* Y,) T Y;D¥D* 2,

= 2:D*Qv -Qy Yof,¥,,Q¢ ID*'Z
1710y, T Yt a1y, A

o, _ - __1
where f,, = (YHQY22Y21) .

Now proceeding as in the proof of Lemma 2.7 of Phillips (1989) we have:
1%, = 7%z

~1/2p,
12 +T D V22

—1/2 %,
-FT+T D¥Voq, 2

and
VO _ m—ig T -3/2
FTQY22FT =T 22QFT 22 op(T )-

. - -1
Now write T 1/2p+.g 1=F +O( /2) where 17T 19 = (Mg 12)+H is the

T
Moore Penrose inverse of le . We have

2Q7; = {17 ,F4{Qy,, — Ay, Yot V193, ]FTH12}

+ el _3/2
= T o{T" V22QF - V22QF Y21f11Y21QF o+ O,(T" M7,
VL Qe —Qn ¥ Qu 7.0+, + 0 (T2
12¥32% ~ p 2 f,Y5 Fol V22 1 p

+ -1/2 -1/2g
=1, 22[QF QFTT Yo TI T 17Y5 1QF Vool 12+0p(1)‘
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Writing ¥, = N(0, I(k1 )= ¢, wefind

-i-k.‘;,')n2

24QZ; » 1T ¢/ [Qp — QpATy \ QgleNT,

— +
- H12(Wn2(k1 + X, -, DIt
—1/2
0 _ Mya 1Mag 1oy
M1 e Myy/ Ty + My Mol

Iy= (,\QF)\')'“1 . The last line is obtained as in Lemma 2.7 of Phillips (1989) using the
fact that t1{Qp — QpAf{ AWy} =k +k,—n.

PROOF OF THEOREM 4.4
(a) Since g= 5131 + 8232 ,  we fnd under the null that Hlﬁ -h
= H1S1(B1 —By) + Hls2(ﬁ2 — B,) . Using Corollary 3.1, we obtain

1

H B—by = H Sy(T, — f) -

Combining this with Lemma 4.1 and Lemma 4.2 yields the result as required.
(b) Under the null Ho¥—hy=HoR (% — 7)) + B;Ro(%5 — 79) . Appealing to
Corollary 3.2 gives

H2’y - h2 3 H2R‘2(§2 - 72) .

Now applying Lemma 4.1 and Lemima 4.3, we obtain the result directly.
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PROOF OF LEMMA 4.5

Observe that

—1/2
T, v

and
Yy0 3 N(O,I) = £, say
r1/2
Ma3.1 M35 119
where ¥ =
11/2
My Mpellyy
Proceeding as in the proof of Lemma 4.3, we find that
-1 -1
’ —_— 11}’ ’ ’
T Zlel 2 P[Qf ng’( Qg‘p) v QE]P
= pB[l - &/ U(T 3 1) 1T 8]0 p’
as required.

PROOF OF THEOREM 4.6

This is an easy consequence of Corollary 3.2 and Lemma 4.4.
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Figure 2: pdf's of beta 1 and normals
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Figure ©: pdf's of the Wald stat.
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