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Abstract

Scarf has defined a neighborhood system for families of integer pro-
grams where the right-hand side is allowed to vary. This system de-
pends on a matrix 4 of constraint and objective function coefficients
of the integer programs.

This paper characterizes the set of neighbors of the origin when A
is four by three; showing that it may be described as the set of integer
vectors in a union of two-dimensional polyhedra, where the number of
polyhedra is quadratic in the bit size of A.

1 Introduction

An important question in optimization is how to recognize an optimal solu-
tion. If we are minimizing a convex function over a convex region, we know
that any feasible solution that minimizes over a neighborhood of that solu-
tion in fact minimizes the function over the entire region. In other words,
a local optimum in this case is a global optimum. Here any open set con-
taining the tentative solution will do as a neighborhood. One result is that
if we change the problem slightly, we can check whether a solution remains
optimal by looking only in this neighborhood and without performing an
entire optimization algorithm.

In discrete optimization, a local search is often used as a heuristic to
find an optimum. Here a neighborhood is not an arbitrary open set, but

*The research reported here was supported by the Program in Discrete Mathematics at
the Cowles Foundation, Yale University, and by NSF grant 563A-31-46804.



rather some finite set N(h)} of solutions close in some sense to the tentative
solution k. We may compare a solution with its neighbors; stop if it is locally
optimal, otherwise replace it by a superior neighbor; and iterate until we
either reach local optimality or tire of the whole affair. To parallel the
situation in the continuous convex case, it would be desirable if we could
define a neighborhood system N() so that local optima are global and so
that for some set of perturbed problems, the local optima of a perturbed
problemn are global optima to that perturbed problem.

For a family of integer programming problems min cx s.t. Az < b with
fixed m — 1 by n constraint matrix A and objective function ¢, but variable
b Scarf [1981i] defines a system of neighbors as follows. An m by n matrix
A is formed from A by adjoining the vector ¢ as a new row. An integer
point z is a neighbor of an integer point y if there is a b such that Az < b
and Ay < b, but no other integer point lies in the interior of the body
{z € R" . Az < b}. So that these bodies may be bounded, it is required
that the rank of A be n and that there exist a positive m vector 7 such
that 7A = 0. For this system, N(k) = h + N(0). Also, N{0) = ~N(0).
Scarf shows, under a general positioning assumption, that this neighborhood
system is the minimal system with these two properties for which local
optima are global for all values of b. In [Scarf 1981ii], he characterizes the
neighbors when A is a three by two matrix and when A is four by two. In
[Scarf 1985|, he shows, again under a general positioning assumption, that
when A is a four by three matrix, there exists an integer vector d, such that
every neighbor h of the origin satisfies dh € {0,+1,—1}. This paper shall
consider details of the structure of these neighbors when A is a four by three
matrix. No general positioning assumption is made.

A straightforward way to use this neighborhood system to prove opti-
mality would be to compute a complete list of the neighbors of the tentative
optimum and to check each neighbor for feasibility and objective function
value. This list may be very long, however. Even if A is restricted to being
a four by two matrix, there are examples [Scarf 1981ii] where the number of
neighbors is linear in the actual components of A, rather than polynomial
in their logarithms as we would desire.

Lovasz conjectures that there exists a description of these neighbors as
the polynomial union of intersections of lattices and polyhedra of dimension
less than that of the full space. Here “polynomial” means polynomial in the
number of bits needed to specify A, for fixed dimension n. The lattices and
polyhedra should also have a description of size polynomial in this speci-
fication of A. Recent results of Kannan suggest that this is so, although



the dependence on dimension in his argument is extreme. Given such a de-
scription, we could prove optimality for a problem in n—space by solving a
polynomial number of integer programming feasibility problems of lower di-
mension of the form: does there exist a point with a better objective function
that is feasible in one of these intersections of lattices and lower dimensional
polyhedra? It should be noted that there already exists an algorithm for
the integer programming feasibility problem which i1s polynomial in fixed
dimension, due to Lenstra [1983]. The characterization of neighbors in the
four by three case described below easily gives a description as a polynomial
union of the integer points in two-dimensional polyhedra.

2 Generalities

We first shall introduce notation that is useful for our work with neighbors,
but not specific to the four by three case. Let A be an m by n real matrix
of rank n such that there is a positive m vector x, with 1A = 0. Denote by
a' the ith row of A. We will define a neighbor of the origin in terms of the
points that prevent a point from being a neighbor.

Define: A point z dominates y if z lies in the interior of the smallest
body of the form Az < b that contains both y and 0. In other words,

a':yzo = a‘y>g‘z (1)
ady<0 = 0>dz.

Proposition 1 If r domineates y, then = — y dominates —y.

Proof: If o'(—y) > Othen o'y < 0. Then 0 > a'z, so that a’'(—y) > a*(z—y).
If, on the other hand, a’(—y) < O then o'y > 0, so that o’y > a'z and
0>a'(z—-y). O

Define: An integer point z is a neighbor (of the origin) if and only if
no integer point dominates z.

We immediately have symmetry in the set of neighbors. We now restrict
our attention to the case where m = n + 1, so that all bodies of the form
Az < b are simplices. To characterize the neighbors we divide R™ into
cones according to the signs of the products a*z. Each cone is of the form
{zeR":a'z > 0fors € I, a'z < 0 for i ¢ I}, for some subset I of
the constraints. The constraints in I will be called positive constraints, the
remaining constraints being called negative. The neighbors differ according



to the number of constraints of each sign of the cones in which they lie. We
will use caution when considering points on the boundaries of the cones,
since these boundaries overlap. For the m = n + 1 case we can determine
which of these cones are nontrivial.

Proposition 2 The two cones with all of the constraints of the same sign
contain only the origin; the 2™ — 2 other cones all contain inlerior points.

Proof: We shall use linear programming duality. Let D be a diagonal
matrix, with each entry of the diagonal being either +1 or -1. The question
of nontriviality of the corresponding cone is whether the system

DAz >0 (2)
has a solution. This is equivalent to the question of whether the linear
program

min Oz
st. DAz > e (3)

is feasible, where e is a vector of ones. This, in turn, by linear programming
duality, i1s equivalent to whether the dual linear program

max ye
st. yDA=0 (4)
y20

is bounded. By our assumption of full rank for A, if yDA = 0, the vector
yD must be a multiple of our vector x. If D is the identity matrix I, then
y = An is feasible for any nonnegative A, and (4) is unbounded. The system
(2) therefore has no solution. Similarly, if D = —1I, the same values of y
make this l.p. unbounded. For any other sign pattern of D, O is the only
multiple yD of r for which y > 0, so that (4) is bounded, and therefore the
system (2) does have a solution.
O

The neighbors in the cones with one constraint of one sign and all the
other constraints of the other sign are easy to describe. We describe half of
these; the remainder are their negatives.

Lemma 3 If we define
o = min{a*z : z € Z",a'z > 0, a’z < OV # i}, (5)

then the neighbors in the cone C; = {z : a'z > 0, o’z < OVj # i} are
precisely the integer points in C; with o'z < o;.



Proof: Suppose z is in C; but a'z > a;. Then the point y that achieves
the minimum which defines o; dominates z as follows.

¥z <0=>j#1i=>0> aly.
j ey i i (6)
dz>0=>7=1t=>a'z2> a; = a'y.

Conversely, if z is in C; but not a neighbor, and so is dominated by some
z, it violates this constraint as follows. For j # 1, a’z < 0, so that afz < 0.
By our last proposition, a*z > 0. Then by definition of «;, 6’z > «;. Since
z dominates z, and a'z > 0, we must have a’z > a*2 > ;. O

In fact, domination by an integer point in C; is almost equivalent to
being beyond the hyperplane a'z = a;. There are, however, some problems
associated with integer points z such that a’x = 0 for some §. Therefore we
shall have to define a few more values:

a;j =min{a‘'z: z € Z", ¢’z > 0, o’z < 0, a*z < OVEk ¢ {i,5}}. (7

3 The four by three case

The remainder of this paper considers only the case in which A is a four
by three matrix. In this case there is only one type of sign pattern on the
constraints not dealt with in the previous section: two constraints positive
and two constraints negative. The main result of this paper is the charac-
terization of neighbors in the cones with these sign patterns.

Given two distinct constraints ¢ and 7, let the remaining constraints be
k and . Then let

Kij={zeR3:d'z>0, a’z >0, a*z < 0, d'z < 0}. (8)
Let KI; ; denote the convex hull of integer points in K; ;.
Theorem 4 If we define
S;;=(BKL;)n{z € Z3:d'z < Q;j, dz < ajq, a*z > —Qgt, alz > —oq i}
(where OB denotes the boundary of B), then S; ; consists of the neighbf;?l

in K; ;.

The proof consists of three lemmas.



Lemma 5 If z t8 in S; ;, then x i3 a neighbor.

Proof: Suppose z lies in K; ; but is not a neighbor. Let y be an integer
vector that dominates z, preventing it from being a neighbor. We will show
for all sign patterns of Ay and A(z — y) that 2 does not lie in S; ;. We know
that i

df(z—y)>0 afy<0O

a(z-y)>0 dy<o. (10)

Suppose a'y < 0. By Proposition 2 we must have o’y > 0, and so
a’y > a;;. Then o’z > aj4, so that = 1s not in §;;. Symmetrically, if
a’y < 0 then z is not in Sij.

If a®(z — y) > 0, then a’(z — y) < 0, and s0 a!(z — y) < ~a; 4. We can
then conclude a'z < —oy, and so z ¢ S, ;. Symmetrically, if a’(z — y) > 0
then z ¢ S; ;.

In the remaining case, we know both y and = — y lie in K ;. Since these
are integer points, they lie in KI; ;. We will show that z must then lie in
the interior of KI; ;. Since K;; is an open set, there exists an e-ball about
z in K; ;. For any integer h greater than 1/, there is a unit sphere about
hz in K;;. This sphere contains hz plus or minus each of the three unit
vectors, giving six integer points all in K; ;. The point Az lies in the interior
of the convex hull of these six points, which are all in KL ;, so hz lies in the
interior of KI; ;. Now z is a strictly convex combination of y, z — y, and
hz, and so lies in the interior of K ;, and not in S; ;:

1 h—1 h-1

=it TVt TE ) (11)

O

The converse is established in the next two lemmas.

Lemmaﬁ IfxtsanetghbormK,,, then z isin {z € 2% : a:c<a,,,am<
ajg, afz > —oyy, a'z > —ayi}.

Proof: Each constraint corresponds to domination by a particular point.
If a'z > a;,;, then for the y that achieves the minimum in the definition of
o; j, y dominates z as follows:

a‘z > 0, a:r:>a,,,—ay

de>0, dz>0>d

k Y (12)
a"z <0, 0> a*y

a'z <0, 0> dy.



Similarly if o’z > o;i, T is dominated. If afz < —ayg 1, then for the y that
achieves the minimum in the definition of @y, y + = dominates « as follows:

a‘z >0, ay <0 = a'z > a'(z + y)
a’z >0, aly <0 = afz > of(z+y)
a*z <0, bz < —apy=—-afy =0> ak(z +y) (13)
alz < 0, aly <0 = 0> d(z+y).

Similarly if o'z < —ay k, ¢ is dominated. Thus if z is a neighbor, all of these
« constraints must hold, OO

Lemma 7 No neighbor can lie in the interior of K I ;.

Proof: We will prove this by contradiction, using the following claim:
For any z interior to KI;;, such that neither = nor —z is dominated by
any integer point, there are two integer points y and z on the same facet of
K1 ;, such that for each constraint h, either |a*y| > |a*z| or |aPz| > |atz|.
Here the absolute values are to avoid the distinction between the positive
constraints ¢ and 7 and the negative constraints k and I.

To find these two points, consider the line segment from z to 0. Because
z lies in the interior of KI; ;, and 0 outside of X I; ;, this segment must
intersect the boundary of KI;; at some point v. Because v lies strictly
between 0 and z, and z lies in K; ;, we know that

0 < |atv| < |a*z] Vh € {1,2,3,4). (14)

As v lies on the boundary of K I ;, it lies on some facet of this boundary.
Let r, s, and ¢ be three integer points in this facet in whose convex hull v
lies. We will pick y and z from among these three points.

For each constraint h, at least one of these integer points, say r, must
satisfy |a®r| < |a®z|. Let us say, when this happens, that r covers h. Since
three points must cover four inequalities, some point must cover at least two
constraints.

Some combinations are impossible. Because neither = nor —z are dom-
inated by integer points, we cannot have both a'r < 'z, and a’r < o'z,
nor can we have both a*(—r) < a¥(—z) and a'(—r) < a*(—z), similarly for s
and t. Thus no point can cover both 1 and j, nor both k and [. Some point
must cover, therefore, exactly two constraints. Without loss of generality, r
covers ¢ and k, and therefore does not cover j or . Let a point covering 7



be s. If s does not cover k, then, since it cannot cover i, we may use r and
s for y and =z. ) _ . )
la‘s| > |a'z| |a'r] > |a'z] (15)
|a*s| > |a*z| latr| > |alz|
If s does cover k, then it cannot cover I. The point ¢ must cover I, and hence
not cover k. If ¢ also covers j, we may use it as s in the preceeding case. If
t does not cover 7, then we have s and ¢ for y and z.

a'e| 2 [a'e] [ait] > |aia] )
|akt| > |a"z| |ats| > |a‘x|

Having established our claim, let z be a neighbor which lies in the interior
of KI; ;. Determine y and z as in the claim, and let w = y + z — z. Using
the fact that y and z are in K; ;, and our claim, we have

a'w=d'y+da'z — o'z > min{a’y,a'z} > 0. (17}

Similarly a’w > 0, a*w < 0, and a'w < 0. Thus w is in K; ;. Now let
u = (y+ 2}/2 = (w+ z)/2. Because y and z lie on the same facet of the
boundary of KI; j, so does u. On the other hand, since z is a neighbor and
so integer, w is also integer, and hence in K1 ;. But z is by assumption
in the interior of KI; ;, so that u is also in the interior of K I; 5, giving a
contradiction. O

Thus we have established the theorem of this section, that everything in
Si,; is a neighbor in K ;, and that all neighbors in K, ; are in S; ;.

If A is rational, the conjecture of Lovasz mentioned in the introduction
is also satisfied. This depends upon being able to bound the number of facets
of KI;; in terms of the matrix A. For this purpose, following Schrijver, we
define the size of a rational number r = p/q to be 1+log,(|p|+1)+log,(|n|+
1). To determine the number of these facets, we use the following result of
Cook, Hartman, Kannan, and McDiarmid.

Theorem 8 (Cook, Hartman, Kannan, and MeDiarmid) If A 1s in Q™*n,
and b is in Q", and ¢ = max;(n + 2 + 2 size(a; ;) + size(;)), then the
convez hull of integer points z satisfying Az < b has at most 2m"(12n2¢)"1
vertices.

Using this theorem, and the well-known Euler relation on the numbers
of vertices, edges, and facets of a polytope, we can give a polynomial bound

on the number of facets of K I; ;. This is not quite trivial, becanse K1I; ; is
unbounded.



Theorem 9 KI;; has at most 14,929,920 facets, where ¢ 1s defined as
in the previous theorem, using b = 0.

Proof: Let KI;; have v vertices, e edges, of which e, are unbounded,
and f facets. Let ¢ = a' + a’ — a* — d!, where I and k are the remaining
constraints as in the previous proofs. Let ¢g be large enough that all vertices
z of KI; ; satisfy cz < co. Then the intersection of the half space {z : ez <
co} is bounded, and has v' = v+e, vertices, ¢ = e+e, edges, and f' = f+1
facets. Because this is bounded, we can apply the Euler relation

fl=e+dv =2 (18)

Since each facet is incident on at least three edges, and each edge is incident
on exactly two facets, we know 3f' < 2¢/, giving us

fl<2 -4 (19)
Substituting back to the original problem, we have
f<2v+2, -5 (20)

To determine the number of unbounded edges of K I, ;, we will look at
the rays of KI;;. A direction d will be called a ray of a convex set X if
2+ ud is in X for all z in X, and all nonnegative . The set of rays of a
polyhedron is necessarily a cone. Every ray of KI;; must lie in the cone
K;; = {zx € R®: d'z > 0,a’z > Oa*z < 0,a'z < 0}. For any direction d
that does not lie in this cone, and any = whatever, there iz sufficiently large
@ so that z + pd is not in K; ;, and so not in K [; ;.

The four extreme rays of K, ; are solutions of linear equations with
rational coefficients, and so may be scaled to be integer vectors. To show that
these are rays of K I; ;, let d be one of these integer vectors, and let = be any
point in K% ;. The point z is some convex comhination of integer vectors
2* in K; ;. For any nonnegative u, z + ud is the same convex combination
of the vectors z' + pd. Now any of these is a convex combination of the
vectors 2 and 2* + [u]d, both of which must be in KI; ;. Since KL ; is
convex, we have £ + pd € KI; ;. Thus the four extreme rays of I_{,-,,- are
rays of KI; ;. Since we have shown that the rays of K'I;; all lie in K;; and
8o are nonnegative combinations of these four rays, these four rays are the
extreme rays of KI; ;.



Every unbounded edge of a polyhedron must run in the direction of one
of its extreme rays, so KI;; has at most four times as many unbounded
edges as vertices, that is u, < 4v. Thus we can conclude that

f<10v-5 (21)

and, by Theorem 8, substituting for m and n, we establish the current
theorem. 0O

4 Conclusion

We may now describe the set of neighbors in the four by three case as the
set of integer points in a polynomial union of the following two dimensional
polyhedra. Neighbors in the cones C;, t = 1,...,4 lie in the polyhedra

{z:a" = a;,a’ <0Vj#1i) (22)
and, for all 7 # ¢,
{z:d'z < 04,072 =0,a*z < O Vk 1, 5}. (23)

Neighbors in the negatives of these cones lie in the negatives of these poly-
hedra. Neighbors in the cones K; ; lie in the polyhedra of the form

{z:ex=1co,qi; > d'z > 0,05 > a’z > 0,—ag < a*z <0, —ayp g < alz < 0},

(24
where {t,4,k,1} = {1,2,3,4}, and ¢z = ¢y ranges over the set of equalities
determining facets of KI; ;.
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