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1. Introduction.

Equilibrium in economic models is often described by a solution or zero to a system of
simultanecus equations: z ; N — R! . The standard technique for proving the existence
of equilibrium is to transform the system by finding a function f : N — N, where N is
the closure of N, such that f{z) = z if and only if z(z) = 0. ¥ f is continuous and N is
homeomorphic to a compact, convex set, then by Brouwer’s fixed point theorem, f must
indeed leave some T € N fixed.

This fixed point approach works especially well for the Walrasian system where Nis
§1-1, the interior of the (I — 1)-simplex, and z is a continuous function that is bounded
from below, satisfying Walras Law: z(p)-p=0for p € Si:,_‘, and a boundary condition
such as: pn — p € 85,71 only if |2(pn)| — oo. Indeed, as Uzawa has pointed out, the
Gale-Nikaido-Debreu proposition that every Walrasian system has a solution is trivially
equivalent to Brouwer’s fixed point theorem. It is well-know that the Arrow-Debreu model
of consumer general equilibrium, with strictly convex and monotonic preferences, gives

rise to a Walrasian system. Furthermore, from the Sonnenschein-Debreu-Mantel theorems
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on the arbitrariness of Arrow-Debreu excess demand, it follows that the existence of equi-
librium for all strictly convex and monotonic Arrow-Debreu economies is also equivalent
to Brouwer’s fixed point theorem. Note that convexity hypotheses occur in two sepa-
rate places in the Arrow-Debreu model. Applied to consumer preferences, they guarantee
continuity of all the individual, and hence the aggregate, excess demand functions. Sec-
ondly, they guarantee that the set of endogenous variables (prices, ete.) is convex, so that
Brouwer’s fixed point theorem is applicable. For a history of the application of Brouwer’s
theorem to the Walrasian system and Arrow-Debreu economies following McKenzie [1934;

and Arrow-Debreu {1954), see Debreu [1982].

The fixed point method is precisely strong enough to solve the Walrasian system, but
there are other classes of economic models in which the space of endogenous variables need
not be convex. For example, the excess demand z in a production economy depends on
prices and the production choice y. The production choice itself may be constrained to
maximize profits in some ( nonconvex ) set ¥ at the prices p, or to satisfy some other
criterion, such as marginal or average cost pricing, given by p. In the theory of general
equilibrium with incomplete asset markets, excess demand may be thought of as depending
on the prices p, and a k-dimensional subspace L of RS which is constrained by p in the

sense that L contains the span of the columns of a matrix M(p).

More generally, let N be a subset of Sf;_g X A, where A is an auxiliary set of constrain-
ing variables. Let z : N — R represent an economic system of simultaneous equations.
Our purpose is to give a sufficient condition for there to be a solution (5,@) € N satisfying
z(p,@) = 0. In the special case that N is the graph of a continuous function ¢ : S\7! — 4,
so that N = Graph ¢ = {(p, o(p))lp € S-1}, the analysis reduces to the Walrasian sys-
tem, for which Brouwer’s theorem is applicable, provided that Walrasian-like hypotheses
are made about 2. However, when N has a more complicated structure, a more powerful
technique than Brouwer’s theorem is required. For such N, it is not even clear how to

formulate the equation z(p,a) = O as a fixed point problem. We will show, nevertheless,
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that under Walrasian-like assumptions on £, to guarantee the existence of a solution it
suffices that (1) N be an ! — 1-dimensional topological manifold; (2) the projection map
proji : N — S given by proji(p,a) = p is proper; and (3) deg(proj,) is nonzero. It is
possible to find such sets N that are not homeomorphic to any convex body.

There are two ways in which N naturally arises which shall be of central ;:oncern to
us. In the first we are given a correspondence @ : Si‘_ﬂ —+ A and N is the graph of ,
N = {(p,0)la € $(p)}. We seek (p,a) such that 2(5,a) = 0 and @ € &(p). If & is upper
hemi-continuous, then proj; is proper. Furthermore, if there is any open neighborhood
U C 81! such that , when restricted to U, &(p) = {1(p), ... +on(p)} where o, : U — A

is a continuous function and n is odd, then proj) is of nonzero degree. To see the significance

of the (I — 1)}-manifold hypothesis, consider the following diagrams:

Figures 1a,1b,1lc.

=
%(?I Y| }(P) L2

-1 1= -
SP} S-&; S::

In all three diagrams A = R, and z has the functional form 2(p,a) = 2(p) —a € R,
8o that the graph of z fits in the same diagram as the graph of . Note that z is Walrasian
-like. In all three diagrams & is upper hemi-continuous and there is a open set U on
which @ is a function. In figure 1a Graph® is not a manifold and there is no solution to
z(p,a) = 0 and a € ¥(p). In figure 1b, ® satisfies the further property that for each p,

®(p) is convex valued ( and N is also a topological manifold ). Here there is a solution.
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Indeed a familiar argument along the lines of Kakutani's fixed point theorem shows that
with convexity there must be a solution. In figure 1c, &(p) is not convex valued. But

N = Graph¢ is an (! — 1)-manifold and there is a solution,

As we have said, we have in mind one application where ® is the (aggregate) supply
correspondence of the productive sector of an economy where production is chosen ac-
cording to some rule, perhaps not profit maximization, where firms may not have convex

technologies.

In another application to financial models of general equilibrium we think of A as the
collection of all J-dimensional subspaces of some Euclidean space 5, § > J. Here RS
represents the state contingent money payoff space, and a subspace of RS represents the set
of attainable payoff vectors. It is well known that one can find a topology in which A, called
the Grassmanian, is a J(S — J}-dimensional compact manifold. Let v : §{7} — RR*/
be an arbitrary continuous function denoting the payoff of each of the J assets in each of
the S states of nature. In this application we let $(p) be the collection of all subspaces in
A that contain all the asset payoff vectors, $(p} = {a € Ale D span(v (p))} We will show
that v can always be approximated arbitrarily closely by a function ¢ : .S' 1l — RSXJ
such that, letting é(p {a € Ala O span(t )} and N = Graph®, all three properties
above hold. We can conclude that there must be some (p,@) with 2(5,3) = 0 and a € $(p),
and since the approximation is arbitrarily close, there must also be a solution to 2(p,a) =0

and a D span{v(p)}.

The second way N naturally arises is as the solution to a system of simultaneous
equations, Let [ : Sj_“f X A" — R", where we have placed a superscript r on A to suggest
that in this class of problems we take A to be a manifold of the same dimension as the
range of f. Then N = f~1(0). We seek (7,d) that siﬁultmmmly solves 2(p,d) = 0
and f(p,d) = 0. Needless to say, we cannot solve both systems unless unless we know
that f(p,a) = 0 can be solved, which is to say that there must be a § € Si7! such that

fs(a} = f(p,a) = 0 can be solved for a. Suppose there is a p such that deg(fs,0) # 0.
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Then we need only check that pros; : N = f~1{0) — S_',:{} is proper to show that the
system (z, f} has a zero.In applications it will typically be much easier to check that there

is one § at which fp has nonzero degree than it is to show that (z, f) has nonzero degree.

There are already two closely related alternatives to Brouwer’s theorem for demon-
strating the existence of a solution to the Walrasian system. In the path following ap-
proach Smale derived from Hirsch’s mathematical work, one solves z(p) = Ay for some A
and y € ®/, and then follows the solution as A — 0. In the homotopy approach, one finds
a continuous family of functions z) : N —+ ®R! such that zo has a unique solution and
z; = z. One then follows the corresponding solution to z = 0, beginning where z, = 0,
until a solution to 2, = z = 0 is found. Scarf, Eaves, Balasko, and Smale, among others,
have all used path following or homotopy techniques for demonstrating existence and [or
computing solutions to the Walrasian system, in lieu of applying Brouwer’s theorem. Of
course these same techniques have been used to prove Brouwer's theorem directly. But the
important point for us is that the path following techniques are potentially more powerful
than Brouwer’s fixed point theorem. In this paper we describe an economic framework
more genera] than the Walrasian system to which Brouwer’s theorem does not apply, but
for which these two techniques nevertheless guarantee the existence of a solution to the
resulting simultaneous equation system z. Oriented degree theory, or the related fixed
point index theory and the index theory of vector fields, has been used by Dierker [1972],
Balasko [1975], and Smale {1974] in the Walrasian setting, by, Mas-Colell (1636 | and Kehoe
[1980] in the Walrasian setting with convex production, and by Kamiya [1986) in the case
with nonconvex production. Duffie and Shafer [1985] used Mod 2 degree theory to demon-
strate the existence of equilibrium in the incomplete markets exchange economy setting.
In section 2 we provide a general framework which in principle includes these examples as
special cases, and which we hope will be applicable to other similar problems. In section
3 we give some applications. In Appendix 1 we give a second proof of our main theorem

based on first principles { which perhaps could be used as the basis of a computational
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algorithm ).

2. The Main Result.

i
Let S5 = {(p1,+-»;) € R'|p; > 0, 3 pi = 1} be the interior of the I — 1 simplex,

i=1
and let $!=! = {(p1,..., ) € Rlp; > O and }:L,lp? = 1}. In the following pages we will
nearly always use $1721, but nothing of aubsta;;:e would need to change if we substituted
§!=1. Let A be a topological space. Let N C Si7! x A. Suppose that z: S} x 4 — R
What conditions on z and N suffice to guarantee the existence (§,3) € N of a solution to
z(p,a) = 07

We begin by defining the Walrasian-like hypotheses we need for z to satisfy:

DEFINITION: The function z: SI} x A —» R! is C*-Walrasian like (C* means k-times
continuously differentiable) on a set N C St x A if it satisfies {1)~(3) below:

(1) A is a C*-manifold and z is C*.

(2) Walras Law: If (p,e) € N , then p- 2{p,e) = 0.

(3) Boundary: If (p",a") € N, and p™ — p € 35'-1, then

max limsup 2;(p",a") > 0
{s:p.<}} n

The similarity to the Walrasian system z is of course unmistakable. Note that C° means

continuous, and that continuity alone is sufficient for our existence theorems. We now turn

to N,

DEFINITION: N is C*-regular, if N is a {I — 1)-dimensional C*-manifold, a submanifold
of St} x Aif k 2 1. N is proper if the map proj; : N — St is proper, ie., if
K c S} is compact, then {(p,a) € N | p € K} is compact.

DEFINITION: (z,A4,N) is C*¥-admissable if z is C*-Walrasian-like and N is C*-regular

and proper.



REMARK 1: Suppose that & : Si_"_,_‘ —- A is a correspondence, and N = Graph®. Then
proj, is proper if and only if ¢ is upper hemi-continuous; in particular if 4 is compact

then projy is proper if and only if N is closed in Si7! x A.

EXAMPLE 1: An important kind of N arises as the solution to a system of r-simultaneous
equations which depend on r auxiliary variables and the prices p. Let A be a compact, r-
dimensional C*-manifold, and let f: S! x A — Re". Suppose that f is C¥, for k > 1,
and f is transverse to zero (i.e. if f(p,e) = 0, then rank Df(p,a) = r), which we write
f ™ 0. Then N = f~1{0) is an (! — 1)-dimensional, C*¥-manifold, and proj; : N —— Si7}
is proper. As we shall see, in the applications of the theorem we shall present, we will also
get the ontoness of proj; as well, Furthermore, in many applications a specific knowledge
of [ guarantees that N is proper even when A is not compact. Finally, this example can be
slightly generalized to the case where there is a family of C*-functions f; : T x 4; — R,
where A; is open in A and O A; = A. Wethen require that each f; h 0,and ifa € A;NA4,,

=1

and fi(p,a) = 0 for some p € Si7! then f;(p,a) =0.

EXAMPLE 2: Let Y C R be a compact set with a smooth boundary 3Y of dimension
I — 1. To each point y € @Y associate the outward pointing normal vector D(y) € §'-!.
Then the map f : $!3! x Y — R'-! given by f(p,y) = [p — D(¥)]i™? is trivially
transverse to zero, if D is a smooth function. Let N = f~1(0). Moreover, from the fact
that 5%%3; p -y must have a solution, proj;{(N) = §i3'. When Y is convex, N corresponds
to the profit maximizing choices of the firm. In the general case N corresponds to marginal
cost pricing. Note that in neither case is it necessary that for all p € S!3! , there be a
unique, or even finite number of choices y in 8Y with (p,y) € N. For example, ¥ could
display constant returns to scale over some bounded range, and then for some price there

would be a continuum of profit maximizing choices.

We turn to the last property we shall impose on N.
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We shall see that degree theory provides not only a powerful tool for determining
existence of equilibria but also for determining index theorems and generic local uniqueness,
giving a deeper insight into the structure of equilibria. For the reader unfamiliar with the

details of degree theory Appendix 2 has been provided.

Let N and Y be C° manifolds of the same dimension, and suppose Y is connected and
orientable, and that 0 € Y. Let 3 : N — Y, and suppose that 2~1(0} is compact. If N is
oriented, then the oriented degree of # at 0, written degq(%,0), is well defined. If N is not
oriented, then the mod 2 degree of %, written degz(2,0) is well defined. If degs(2,0) # O
or degz(£,0) # 0, then £71(0) # 8, and this is the basis for degree theory as an existence
tool. Degree theory can also be used as a stability tool. If the degree of 2 is nonzero, there
is a nonempty compact connected subset K of £~1{0), which is stable in the sense that
for any open neighborhood U of K, all sufficiently small pertubations g of 2 have at least
one solution z € U N g=1(0). We call such a set K a stable set of equilibria. If 71(0) is
a finite set and Z is a local homeomorphism in a neighborhood of each point in 271(0),
then degg(2,0) gives the number of points in £71(0), counted with orientation, which gives
a basis for computing index formulas. In these same circumstances, degz(£,0) counts the
number of points in £~1(0) mod 2, i.e., degz(£,0) = 1if #2z71(0) is odd and deg2(£,0) =0
if #z-1(0) is even. Since S\7} is connected and proj; : N — S'7! is proper, the degree
of proj, is also well defined and independent of the point at which it is computed. We write
dege(projy) or dega(projy) for this degree. It will turn out that for admissable (z,4,N) a
sufficient condition for the existence of a zero of z is that the degree of proj; is not zero;

for this reason we turn to some examples of computing the degree of proj;.

DEFINITION: N has the global graph property if there is a function  : SI7! — A
with N = Graph v = {(p,(p)) | P € st}

Clearly if N has the global graph property, then dega(proji) = 1. In this case also we can

orient N by the homeomorphism ¢ : S!! — N defined by &(p) = (p,(p)), and with
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this orientation degs(pron1) = 1.

DEFINITION: N has the local graph property if there is a nonempty open set U C S_'i,]_l

and a function p : U — A with NN (U x A} = Graph .

In this case we have proj7!1(p) C U x A for § € U, so that deg(pres;,p) =
dcg(praj'1|(UxA)nN,‘ﬁ). But prog'll(yxA)nN is a local homeomorphism and - since
deg{prof1) = deg(proj1,p) for any p € S!7!, this gives either |degs(proj1)| = 1 or

dega(proj1) = 1.

DEFINITION: N satisfies the generic graph property if there is an open, dense subset

U ¢ 54! and a function p : U — A such that N n (U x A) = Graphep.

EXAMPLE 3: Let A be a compact r-dimensional manifold, as in example 1 and let f :
Si-! x A — R" be transverse to zero and smooth. Let N = f~!(0). Then by the
transversality theorem, there is an open, dense subset U of S\ such that for each p €
U, Nn{{p} x A) is a finite set. We can calculate deg(proj1) = deg(projy,p) forany pe U.
Note that degz(proji,p) counts the number of elements in N N ({p} x A) mod 2, while
degs(proj1,p) counts the same elements with orientation. The generic graph property

requires that U can be chosen so that N N ({p} x A) is a singleton, forallpe U.

EXAMPLE 4: Let A = R", and suppose that f : .S',‘,,‘_t_1 X A — R" is transverse to 0 .
Furthermore, suppose that N = f~1(0) is proper and onto. Finally, suppose that for any
fixed p € SL7Y, fp : A = R" — R", given by f,(a) = f(p,a), is affine in a , i.e., there
exists C = C{p) € R" and B = B(p) € R™™" such that fy(¢) = C + Ba. Then again by
the transversality theorem and properness, there is an open, dense subset U C Si7! such
that for all p € U, N n({{p} X A) is a finite set. But from the affineness of fp, it contains
exactly one element, or else a continuum of elements, or it is empty. By the ontoness of

N it cannot be empty, so the generic graph property holds for N.
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EXAMPLE 5: A is an oriented (I — 1)-manifold, F : 4 — 5!~! is a proper continuous
map, and N = {(p,a) : p = F(a)}. Then N is proper, and in this case F = proj; o p,
where p : A — N is the homeomorphism defined by p(a) = (F(a),a). If we give N
the oriented manifold structure induced by p, then degs(p) = 1, and thus degs(F) =

degs(profi)deg(p) = dega(proz).

REMARK 2: The hypotheses that N is an ({ - 1}~dimensional topological manifold, that
proji : N — S'=! is proper, and that N satisfies the local graph property imply that the

map proj; : N — Sl is onto.

REMARK 3: Since proj; : N — S!7! is onto, we may define the correspondence ¢ :
Si~1 — A by &(p) = {a€ A|(p,a¢) € N} . The local graph property implies that there
is some open set U C .‘5,‘,_‘_._l 'such that restricted to U, the correspondence & is actually a

function ¢.

REMARX 4: Similarly one might define the correspondence Z : S{=! — R! by Z(p) =
{z(p,a)la € ®(p)} . This correspondence is nonempty-valued, and upper hemi-continuous.
Compared to the famous so-called Walras excess-demand correspondence, the only .

property that it does not satisfy is convex-valuedness.

REMARK 5: Any nonempty-valued, upper hemi-continuous, conv-ex valued correspon-
dence can be approximated arbitrarily closely by a continuous function. Indeed that is
how Kakutani’s fixed point theorem is derived from Brouwer’s fixed point theorem. But it
is easy to see that there can be N {or equivalently Z) satisfying regularity, properness, and
the local graph property that cannot be globally approximated by a continuous function

on S!=1. Consider for example the following simple situation:

ﬂil




When { > 2, N may also have the generic graph property, without being globally

representable, even approximately, by a continuous function.

NOTATION: Let H} = {z € R**! | }"z; = b}. Note that H} is an n-dimensional
hyperplanein ®*+1, and that Si7!isan o;aen subset of Hi~!. p € R will always denote p =
(3, %, ceey -}) We always consider H;* to be the n—dimensional oriented smooth manifold
with a-atlas {(H}),(¥s)}, where ¥y : H} — X" is defined by ¢¥s(z1, - 1Zn,Ta+1) =
(21,7 *+&n). SL}, as an open subset of H{~!, is always given the induced smooth, oriented
manifold structure. )

Given a (2, A, N) C* admissable, 2: N — H/~! will always denote the C* function

on N defined by 2(p,s) = (p121(p,a), -+, pizi(p, ). Note that £71(0) = 271 (0} N N.

We are now ready to state our main theorem.

THEOREM 1: Suppose (z, A, N} is C°-admissable. Then:
1) If N is oriented:

degs(2,0) = (~1)""'degs(projy).

2) If N is not oriented or even not orientable:

dega(2,0) = dega(pros1 ).

COROLLARY 1: Suppose (z, A, N) is C%-admissable. If dega(proj1) # O or degs(projy) #

0, then there is a stable set K of solutions to z(p,a) = 0, (p,a) € N.

COROLLARY 2: Letz: S!7} x A" — R! be C°-Walrasian-like, and let f : Si7} x AT —
R" be continuous. Suppose there is at least one § € S\3! such that if f3(a) = f(5,a),
then deg(f;,0) is nonzero. Moreover, letting N = f~(0), suppose proj; : N — Si- ! is
proper. Then there is a solution (p,@) to the system of simultaneous equations 2(p,a) =0
and f(p,@) = 0.
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REMARK 6: If N has the global graph property, then it is homeomorphic to § _',_;‘ and
defining z' : S} — R! by 2'{p) = z(p,(p)) Theorem 1 is reduced to the standard

Walrasian existence problem.

LEMMA 1: Suppose (z,A,N) is C*¥-admissable for some k > 0. Then there is some
open, convex set S!=1 € §'-!, with nonempty smooth boundary 3?:1 C 842}, such that
if pe SI\ S!-Y, and (p,a) € N, then £(p,a) = AMp ~ ) bas no solution A > 0. In
particular, if b : [0,1] x N — H}™} is defined by h()\, (p, a)) = AZ(p,a) + (1 =~ A)(p - p),

then h is C* and h~1(0) is compact.

PROOF: Suppose (p*,a") € N and p" — p € 8511 I i(p",a") = A*(p" - §)
for A* > 0 and n large, then li:nsup z(p",a") = li’x‘nsup A(p? — £i) < O for all § with
p; < §i, contradicting the boundary condition. So all p with #(p,a) = A(p—$), A >0 and
(p,a) € N for some a can be taken to lie inside some set §!~! satisfying the conditions of
the lemma. Since Ei—l c s, proj{‘(gz-l) is compact by the properness of proj;, and

{0,1] x proj;? (:‘5_1-1) D h~1(0). Since h~1{0) ie closed by continuity, it is compact. .

REMARK 7: The lemma shows that the “excess value demand” map 2 is homoatopic to
the trivial map (p,a} — {p —p), in such a way that the zeros of the homotopy remainin a
compact set. This trivial map is actually the excess value demand of a single Cobb-Douglas
consumer who ignores a, has endowment for the ! goods equal to If, and utility function

u(:;, aoe ,z;) = H,-z,-.

PROOF OF THEOREM 1: Define a map ¢: Si=! — H{~! by ¢(p) = p—p. The derivative
of Yo o ¢ oyt is just {(—1) times the identity map of R'~1, so degs(¢,0) = (—1)'~1. By
the product rule, for the oriented case we have deggs{¢ o progy, 0) = degs(#,0)degs(proji) =
(—=1)*~1dego(pros;). Define h: {0,1] x N — H}™! by h{t,(p,a)) = ti(p,a) + (1 - t}¢ o
proji(p,a). h is a homotopy between Z and ¢ o proj;, and h~1(0) is compact by lemma

1. Thus degs(£,0) = degs(¢ o proji,0) = (—1)~'dege(proji). In the nonoriented case, the
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only difference is that degz(¢,0) = 1, so that we get dega(2,0) = dega(prog;).

Degree theory can be used as a tool for demonstrating the existence of equilibrium
even if z is 2 correspondence. Moreover, we can dispense entirely with the boundary
condition if we suppose that z is also defined for (p,e) € S',',_"l X A, provided that we
modify the definition of equilibrium to permit _goods in excess supply with a gero price.
We combine both these observations in the following corollary to theorem 1. The idea
behind this corollary is that under suitable conditions on the correspondence Z there must
be a sequence of continuous functions z" satisfying the earlier boundary condition which

ever more closely approximate the correspondence Z when prices are strictly positive.

COROLLARY 3: Suppose A is metrizable, Z : SI=! x A — 2% jsa correspondence, and
N c 571 x A such that:
1) Z is upper hemi-continuous, convex, compact, nonempty valued.
2) p-z = 0 for all p such that there exists an ¢ € A for which (p,a) € N and
2 € Z(p,a).
3) N is compact.

4) (5!} x A)N N is an (I — 1)-dimensional topological manifold.

Let proj; denote the projection of (§\3! x A)N N into Sf{_‘_*_‘. Then degg(proji) # O or

degz(proj,) # O implies that there exists a (5,@) € N and a Z € Z(p, ) such that 2 < 0.
PRooF:
Step 1. Suppose Z is single valued, so we can consider Z as a continous function. For each
positive integer n, define 2" : i3 x A — R by 27 (p,a) = Z‘-(p,a)+;ll-(ﬁ:,——1),i =1,-,L
Then (2", 4,(S! x A) N N) is C%-admissable, so by theorem 3 and corollary 1 there
exists (p*,a") € (Si! x A) N N such that 2*(p",a") = 0. By 3) we can suppose that
(p",a") — (5,a) € N. Since we have Z;(p",a"} = (1 — ;&) for all n, it follows that
Zi(p,7) =0if p; > 0 and Z;(p,a) <0if 5, = 0.
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Step 3. We apply step 1 to approximate selections from Z. Let d be a metricon _"_"‘ x A,
and {go }aes 8 partition of unity with compact supports such that diam(supp ga) < € forall
a. Select (p®,a®) € supp g, and z® € Z(p*,a”) and define a function 2, : SiEixA— R
by z.(p,a) = z: ¢a(p,a) (2> —{pz®)v) where v = (1,1,--+,1) € ®". Then 2, is well defined,
continuous, a.nd satmﬁe:: p-2{p,a) = 0 for all (p,a). By step 1, there is a (p,a%) € N such
that z,(p¢,a¢) < 0. Let ¢ — 0 and (p,a) be a cluster point of {(p*,a%)}. Using properties
1) and 2) of Z one can readily verify that {z.(p%,a*)} has a corresponding cluster point z

such that z< 0 and z € Z(5,q).

3. Applications.

We now give some examples, applying Theorem 1 to the standard pure exchange
model, the standard Walrasian model with production, and to the problem of pseudo-
equilibrium in a model with incomplete markets, and to a model with nonconvex produc-

tion and general pricing rules.

EXAMPLE 1. STANDARD PURE EXCHANGE MODEL:

Take N = Sf‘:r‘, and any economic model which gives rise to a C°-Walrasian-like
excess demand z : S.7} — R, (A can be taken to be a one point set, and hence ignored.)
Thus proj; : S} — Si7}P is just the identity map, so dego(pros1) = 1. If 2z is smooth
and O is a regular value of 2, then 2 preserves orientation at p € £°2(0) if and only if
agn detD(1), 0 20 Y71)(2) |z=y, (p)= 1. If we assume 2z is the restriction of a homogeneous

of degree 0 function to S{7!, then a little exercise in determinates gives

agn detD(t, 0 20 Y7 )(2) o=y, (p)= 8gn det[D;2i(p)], 6,5 =1,...,0 -1

Thus we get

(-1)""! = degs(£,0) = Y agn det{Djzi(p)], 4,5=1,...,1- 1
pES—1(0)

which is Dierker’s {1972] index formula.
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EXAMPLE 2. PRODUCTION:

We consider a model (F* w? 6% Y) where F* : R, x R, — R! is agent h’s
demand function, w” his endowment vector, and 6" his share of profits. Y is the pro-
duction set. Assume F* is continuous, homogeneous of degree 0, p- F*(p,m) = m, and
limy, . g% \{0) |F*(p,1)| = +oo. Assume wh € !R , Lwh e !R++, and that 3 8% =
1,8" > 0. Finally, suppose Y satisfies i) ¥ is closed and convex; ii) Y n R, = {0},
and iii) Y = Y - R\, Let A =R, z: 57 x R — B! be defined by 2(p,y) =
¥ F*(p,max(0,pu* + 8*py)) - 3wt -y, and N = {{p,y) € S} xR : y €
3

arg maXycy py'}. We assert that degq(2,0) is well defined and equal to (1)1,

By the usual argument the attainable production set is compact, so we can modify
Y, without affecting 271(0), to satisfy: iv) ¥ = K — 8., K compact, convex. From now
on we assume Y satisfies jv). It is now easy to check that z is CO-Walrasian-like on N,
and that proj; : N — Si7! is proper. We need to show that N is an / — 1 manifold, and

compute the degree of proj;.

The procedure is outlined below:
Step 1. Define N* = {(p,y) € SI"! x R : y € arg maxp-y'}. Clearly N is an open
subset of N*. Define v = (1,1,...,1) € %', and suppose without loss of generality that

v-y < 1forall y €Y. Define a map ¢: N* — HI-1 by:

é(p,y) = (1 - vy)p +v.

Let # : ® — Y be the map which assigns to each z € R the point in ¥ at whick
(2—y)(z — y) is at 2 minimum. Then using the convexity of Y and the definition of profit

maximization, one can show:

¢ (z) = ( (z(z I‘E:()z))) w(z)) , 2€ H L

(P" asition 3. '4-2)
(This map ¢ is & trivial modification of a map in Mas-Colell [1985]) Thus ¢ is a home-

omorphism. Give N* the {I — 1)-dimensional oriented manifold structure determined by

15



the homeomorphism ¢, and N the induced manifold structure obtained as an open subset

of N*.

Step 2. We assert degs{proj,) = 1. This would be easy if N had the local graph property,
i.e., if the “supply function” were single valued on open subset of prices, but this is
probably not true in general under our assumptions. Instead we proceed by a homotopy
argument. Let proj; : N* — S.‘;'“ C H}™! be the projection on N*. Note that for
any p € SI=3, proji 1) C N, so that degg(projy,B) = dege(prosi|n,B) = degs(prosi[n),
for any p € S\!. We now compute dege(projy,p). Define h : N* x [0,1] — H{~! by
Rip,y,t) = t proji(p,y) + (1 — t)é(p,y). Clearly & is a homotopy between proj; and,
é and we leave it to the reader show that h~(p) is compact for any € S\, Thus
dego(proj1,p) = degs($,F) = 1, s0 we get degs(2,0) = (—1)'*. Computing a useful index

formula requires more structure on ¥ and more work: see Kehoe {1982], Mas-Colel! {1985).

EXAMPLE 3. EXISTENCE OF EQUILIBRIUM FOR ASSET ECONOMIES:

Let us take A = Gy{RS), the smooth compact J(S — J)-dimensional manifold of
all J-dimensional subspaces of RS. It is well known that A can be written as the finite
union of sets A = {} A,, where each A, is homeomorphic to RI(S=T) as follows. Let
G= [g;] = [Cr{z] be an § x J matrix, where G; is the J x J identity matrix I and G
is an arbitrary (S — J) x J matrix. The columns of such a matrix G span a J-dimensional
subspace of ®5. Permuting the rows of G according to some permutation ¢ of S elements

gives another matrix G° whose columns also span a J-dimensional subspace. Any a € A
can be represented by G for some G and some permutation o.

Let z : 51-! x G(R®) — R' be C° Walrasian on Si7! x G4(R). We take z to
be the excess demand in an economy where trade depends on prices p € S[7! and the
“potential subspace of trade” a € A = G;(ﬁis ). We are also given an exogenous asset
reurn matrix v : St} — RS*7. Equilibrium is a (5,3) € §i7} x A such that z(p,a) = 0
and @ = span(v(p)). The difficulty in proving the existence of equilibrium arises becaunse
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the column span of the matrix v(p) need not be fully J-dimensional and can vary with
p. As a result it is necessary to introduce the notion of a pseudo equilibrium (p,d) €
§i-} x A satisfying z(,a) = 0 and & D span(v(p}). Duffie-Shafer (1985) proved that
pseudo equilibrium always exist, and that generically all pseudo equilibria are equilibria.
In papers in this volume Husseini-Lasry-Magill [1987] and Hirsch-Magill-Mas-Collel [1987]
give alternative proofs of the existence of pseudo equilibria. Here we use our method to
give & brief proof of both the existence of pseudo equilibria and the generic existence of

equilibria. We state both theorems, then prove them.

THEOREM (EXISTENCE OF PSUEDO-EQUILIBRIA FOR ASSET ECONOMIES): Let z :
§13 x G4(RS) — R! be C Walrasian like. Let v : S5} — R5%7 be continuous. Then

there exists a (p,a) € S!=} x Gs(RS) such that z(§, &) = 0 and & O span(v(p)).

THEOREM (GENERIC EXISTENCE AND LOCAL UNIQUENESS OF EQUILIBRIA): Let E
and M be smooth manifolds (‘parameter’ spaces). Let £ : S'-! x G5(RS) x E — H™!
and v : S4} x M — R5*J be smooth. Suppose that £ is obtained from &2 Walrasian-like
z by 3,(p,a,¢) = pizi(p,a,¢). Finally suppose that for all (p,a,e,m), rankD.2 =1—1 and
rankDmv = § x J. Then for almost every (e,m) € E x M (that is, except for a subset of
measure 0), there are an odd number of solutions (5,3) € Si7! x G4(R5) to z(F,d,¢) =0

and @ = span(v(p, m))

PROOF OF BOTH THEOREMS: It is convenient to begin, as in the second proposition,
by assuming that 2 and v are smooth, and then to derive the first proposition by the
approximation of continuous functions by smooth functions.

Recall that we can write A = Gj(RS) = |JA,. Let D, = Si2! x A; X E x M. Let

d = (p,a,e,m), and if d € D,, we will also write d = (p,G3,¢,m), where G =[g;] =

[GI } and G° generates a. Define f, : D, — R7(5-7) by f.(p,G2,¢,m) = fo(d) =
2

vi(d) — Gav{(d) where v7(d) is the matrix obtained from v(d) by permuting the rows
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-4

according to o~ ! and v7 = [:},Eg] with v{ a J x J matrix and v a {S — J} x J matrix.
2

Note that f,(d) = f+(p,G3,e,m) = O if and only if the columns of v7(d} = [6{2] v{(d),

I

that is, if and only if the columns of v7 are spanned by the columns of G, | Therefore
2

for ¢ € A, a D span{v(d)) if and only if fo(p,G2,¢,m) = 0.

For any fixed (e,m) € Ex M, let Ny (o.m) = {(p,8) € S5} x As|a O span{v{p,m)}} C
S~ x A and let N, ) = U, No(e,m)- Suppose that the hypothesis of the second Theorem
above are satisfied. Then by perturbing m we can perturb v however we want, without
affecting G; or v§. Hence f, m 0. By the Transversality Theorem, for generic (e,m),
Noem) = f;"(lhm} (0) is a (! — 1)-dimensional manifold. Next observe that if a € 4,MA.,
then f,(p,a,e,m) = 0 if and only if f,+(p,a,e,m) = 0. Hence for generic (e,m) € E x M,

N(c,m) is an (I - 1)-dimensional manifold.

Furthermore, since N(,,m) is closed in S!7! x A and A is compact, projy : Nie,my —
SL‘;} is proper. To show that degy(proji) # 0 it suffices to observe that for any p € S_ﬂ_‘;_l,
v{p,m) is included in some subspace a € A. Hence proj; is onto. By the Transversality
Theorem, since N, ) and 517! have the same dimension [ — 1 and proj; is proper, there
is an open dense set U C .5’.'*_"_"I on which proj;”? is finite valued {and nonempty valued by
the ontoness of proj;). But if there is more than one subspace a € A containing all the
columns of v{p,m), then there must be infinitely many such g. (See example 4 in section

2). Hence proj; is one-to-one on the open set U, so the mod 2 degree of pros; is nonzero.

Thus for generic (¢,m) € E x M, the hypotheis of Theorem 1 are satisfied. We
conclude that if z and v are smooth, then for almost ali (e,m) € E x M, we can find (p,a)
with z(p,a,¢) = 0 and ¢ D span{v(p,m)}. But now by passing to sequences {e",m") —
(e,m), & similar conclusion must hold for all {e,m). Furthermore, for any continuous
z* : S x G (RS) — R and continuous v* : S17! — R5*7 we can always approximate
z* and v* by smooth z and v. Moreover, we can always take E = H}™! and M = R5%/J,

and define #{p,a,¢} = zi{p,a) + ¢;/p; and ¥(p,m) = v(p) + m as extensions of z and v
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satisfying the hypotheses of the second theorem. Passing to the limit (e, m") — (0,0)

yields the theorem on the universal existence of pseudo equilibria.

To prove the generic existence of genuine equilibria, we shall show that for generic
(e,m) € E x M, there is no (p,d) satisfying £(5,3,¢) = 0, @ D span{v(p,m)}) and
rankv{ (p,m) < J. It will follow that v(p,m) has full rank, hence there is a unique ¢ € A
with a D span{v(p,m)), namely a = span{v(p,m)), hence all the pseudo equilibria above

are genuine equilibria.

Let §7=1! as before be the (J—1)-dimensional sphere. Extend Z and f, to Dy x §7~! by
ignoring the last coordinate. But now consider a new set of J equations ¥ : D, x §7-1 -—
R’ given by ¥,(p,a,e,m,z) = v{(p,m)z. Then given (p,s,¢,m), and so given v{(p,m),
there is a a z € § solving ¥,(p,a,e,m,z) = 0 if and only if v{(p,m)} does not have full
rank J. But now consider the system (%, f,,¥,) : Do x §771 — HI-1 x R7(5-9) x ®7,
Remember that rankD,.2 = | —1 and that rankD,,v = § x J. The latter assumption allows
us to control v{ and v{ independently, so that we have rank D, (fo, ¥,) = J(S— J)+ J as
well as rankD,? = | — 1 Thus (2, f,, ¥,) h 0. By the Transversality Theorem, for generic
(e,m), (2, fo,¥o) : S} x Ag x §7-1 — HI-1 x R7(S—7) x R/ is transverse to 0. But
this is only possible, given the dimension of the domain and range, if (2, f,, ¥,)~!(0) is

empty. Applying this argument to each o finishes the proof.

EXAMPLE 4. INCREASING RETURNS AND GENERAL PRICING RULES:

In this section we investigate a model with 2 nonconvex production set and general
pricing rules. This model is a very special case of the model in Bonnisseau and Cornet
[1986}; the novelty here will be the computation of degg(2,0), which surprisingly turns out
to be independent (given our method of orienting N ) of the pricing rule itself. This allows
the computation of an index formula in the smooth case, but we have not carried out this
calculation. Kamiya {1986] has recently analyzed a much more general model using similar

techniques from degree theory.
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We consider an economy E = (F,Y, f), with the following interpretation: Y is the
production set. We assume Y contains any initial endowment of goods: for example, one
could take Y = Y’ 4 {w}, where w > 0 is the initial endowment vector and Y’ satisfies the
usual assumption Y' N RY, = {0}. p = f(y) is the pricing rule. For example, f(y) could be
a realization of average cost pricing, a selection from the set of break-even price vectors for
y. If 8Y is smooth, f could be marginal cost pricing (see Example 2, Section 2). F(p,y)
represents aggregate demand at prices p and production vector y. We assume any income
redistribution scheme is embodied in F.

We make the following assumptions:(1) Y € ®' satisfies i) YR, | # ;i) {y > w}nY
is compact Vw € R5and jil) ¥ =Y — R, (2) Define Yz = {y € Y : By’ € Y such that
¥’ >> y}. Then f:Yg — S~ is continuous and satisfies yf(y) > 0¥y € Ye n®R,. (3)
F:®, , xR — ®. is continuous and satisfies i) pF(p,y) = py for all (p,y) such that
py > 0; ii) If p* — p € R and py > 0, then [|F(p™,y)}} — +cc.

The basic idea is as follows. Define (z, 4, N} by:

A=
z(p,y) = F(p,y) - y
N={lpy) € 553} xYe:p=f(y)}.

A basic difficulty is that N need not be proper and z may not be C°-Walrasian, so
that Theorem 1 does not apply directly to {z, A, N). What we will do is replace {z, A, N)
with a model (z, A, N1), where N! is obtained from a new Y! and f!, such that (z, 4, N!)

satisfies the hypotheses of Theorem 3 and the changes made to Y and f have no effect on

£-1{0). This will allow us to show:
PROPOSITION: There is & choice of orientation of N such that
degs(£,0) = (~1)'"1.

PROOF OF PROPOSITION:
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Forany e € B, let V(e) = {y € R : y; > e Vi}. Fore > 0, define Y! = [Y n
v{-¢)] - ®! . Given the assumptions on Y and f, it is possible to find a ¢ > 0 and an
f1:YE — Si-1 such that

) YinV(—e) =YenV(~¢)
i) fMyy=fly) Yy eYenV(—¢/2)

iii) If y € Y2 and y; < —¢, then f}{y) =0

iv) 37> 0suchthatyfi(y) 27, VyeYl.

Note that if z(p,y) = 0 and (p,y) € N, then necessarily y € R., so that replacing
Y and f by Y! and ! can have no eflect on the equilibria, nor any effect on % in a

neighborhood of the equilibria.
We first show that N! is C%regular and proper. Define ¢ : Y1 — HI-! by:

¢(y) =y + -(1—_-;’—!11:, where v = (1,1,--.,1) e ®".

¢ assigns to each y € Y} the unique vector ¢(y) € Hi~! in the direction v from y. It is
not difficult to check, given the properties of Y,}, that ¢ is a homeomorphism of ¥} onto
H{~!. Wegive Y} the oriented manifold structure induced by this homeomorphism, so that
degs(¢) =1. N' = {(p,y) € S ' xY4 : p= f'(y)}. N! is an open subset of Graph—1(f1},
and the latter can be made an oriented (I — 1)-manifold via the homeomorphism p :
Y4 — Graph~!(f1) defined by p(y} = (f'(y),y). Note that this makes p an orientation
preserving homeomorphism, so that degs(p) = 1. We give N! the oriented manifold
structure induced as an open subset of Graph~!(f!). I K cC S!7! is compact, then
proji (K) C K x [V(—€) N Yg], 8o it is bounded. It is closed by continuity. Hence N1 is
proper.

It is easy to check that z is C°-Walrasian on N!, given the assumptions on F and the
properties of f!.

It remains to compute the degree of proj, : N1 — Si-!. Note that for any p € Si-}

there is by continuity an open neighborhood U of f}(~1)(5) such that f!(U) c Si7}!. Thus
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on U, f! = proj; o p, 8o that degs(f*,P) = degs(pros,,P)degs(p). Since degs(p) = 1 and
degs(proj1,p) = degs(prosy), we need only show that degs(f*,5) = 1. We do this by a

homotopy argument. Define h : Y2 x [0,1] — H{~! by:

h{y,t) =t (y) + (1 - t)8(v)

Clearly h is a homotopy between f! and ¢. We assert that for any 5 € S.},
h=1(p) is compact. h~!(p) is closed by continuity, so we need only show that h‘i(p’)
is bounded. We have

{tf‘(y) +(1-t)y+ Loy =5
(v,t) €r7(p) &

(v,t) € Yg x [0,1]

We assert that (y,t) € A~1(p) = y € V(-e~ (I—1)), 80 that A~1(p) C [YEnV(-e—-(I -
1))] x[0,1], a bounded set. The details are left to the reader. Then we have degs(f!,7) =
degs(4,P) = degs(9) = 1.
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APPENDIX 1: Elementary proof.

Our main Theorem 1 relied for its proof on degree theory, Here we give an elexentary
proof of a weaker theorem which can also be used as the basis of a computational procedure
to ind a zero (i.e.,an equilibrium). Note that the following theorem would have sufficed

for the application we gave to financial asset general equilibrium.

THECREM 1': Letz: St!x A — R and let N ¢ S} x A. If (z,4,N) is C!-
admissi ble and N satisfes the generic graph property, then there exists (7,8) € N such
that 2(p,3) = 0.
PROOF OF THEOREM 1':
Step 1: Without loss of generality, we may replace ; with 7 satisfying Z(p,a) =
p-pifpeds .

Take S ‘{1 , 31 open, convex bady with smooth, nonempty boundary 33';-1 such that
S 255 285125, 2510 Let d: S — [0,1] be a smooth function such that
d(p) =0 p& SII\Si and dlp) = 14 p € To". Such a function exists by standard
arguments. Then let 7: N — H{~! be defined by 3{p,a) = d@)é@, e} + (1-d(p)){5 —p).
Note that %(p, 2} = 0 for (p,a) € N only if #(p,s) = 0. Now make the change of variables

¢ — 2¢ and the claim of Step 1 is established.

Step 2: We may assume that there is an open set U C 5! and a function

¢ :U — Asuchthat (Ux A) NN = Graph p, UN3S, ' #0and if (p,a) €
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(Una5 ") x AjN N and (¢',0') € (85, ' x 4) A N and (¢',0') # (p,a) then

From the generic graph property, there is an open dense set U C 5‘_’1,"_,_l such that

(U x A)N N = Graph p, where p is a function ¢ : U — A. Since we have great
freedom in choosing 85!~! (anywhere in S"l\"S—Izzl), we may assume UN 3.-5":'l # 0. Now
take (p,a) € (U N 85, ') x A]N N.Then Z(p,a) = - p. If (p',a) € (85, x A) and
z(p',a') = (p—p') = A(—p), then p’ = p (since the ray from P through p can only interest
5. in one place because we took S/=! convex). But if (p',a’) is also in N, then by the

graph property at p = p’, a' = a = (p), and (p,a) = (¢, @’).

Step 8: The path-following analogue of Hirsch’s argument shows that there is a
(5,@) € N with Z(p,a) = 0.
Suppose there is no (p,&) € N with Z(5,a) = 0. Then we can replaceZ: N — Hi-1
by G: N — ¥_ defined by G(p,¢) = Z(p,a)/|Z(p,¢}|, where }_ is the [ ~2 sphere in HEL,

—i—

Furthermore let us denote by H : {(UN3S, 1) X AJAN — 3 the further restriction of G,
so if (p,a) is in the domain of H, then H(p,a) = G(p,a). Note that the domainof G is a
smooth (I — 1)-dimensional manifold, and the domain of H is a smooth (! —2)-dimensional
manifold. Furthermore, since every ray from P intersects 8S!~! somewhere, the range of
H contains an open set Rin ) .

By applying Sard’s theorem twice, we deduce that there must be some element y €
R C T such that both Gy and H hy. Hence G~!(y) iz a nonempty 1-dimensional
manifold. Furthermore, from the preceding Step 2 we know that H~!(y) is a single point
(p*,a*). In fact, Step 2 implies that G™1(y) N [(3'.5_‘1_1) x AN NJ is also the single point
(p*,e*) . Moreover, since H fh y, G~1(y) intersects domain H = [(U naﬁi"‘) x A) N Nj
transversely. Consequently G~1(y) n[(S!~! x A) N N| #0.

Now, by properness, L = G~1(y) nel[(SI~* x A) N N] is a compact set (where the
closure is taken in N). By following along the path G~}(y) in ¢l[(S{~?) x A) N N| starting

from (p*,a") we must come either to an end, contradicting the fact that G~1(y) is a one-
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manifold, or else come to another point of intersection of G~!(y) N a((ts‘i“ x A)NN) =

G- y)}n ((8?1'-l x A) N N) contradicting Step 2.

REMARK 7: The conditions we have imposed on N are precisely those few properties
of Si‘_{} used by Hirsch and Smale in proving that a smooth Walrasian-like excess value
demand  : §i=! — H}"! has a gero. The assumption that N has dimension ! — 1
guaranties that theset L of (p,a) € N such that 2(p,a})/]2(p,a)] is a given vector is typically
a 1-dimensional manifold. The properness assumption guarantees that Ln(gi_l X A}JNN is
compact. The generic graph property guarantees that typically L intersects (a?i“ x A)NN
in exactly one point. A picture illustrates the argument when N = S4{7!. Note that since
S ::;1 is contained in the translation of Hé“ by 5, we can easily imagine the domain and

range of Z in the same diagram.

The contradiction to the maintained hypothesis that 2 is never zero is seen in the
above diagram in the fact that the manifold L crosses itself at p*. This is inevitable since
once L gets inside S!-1 it cannot escape through any other boundary point p € 6?:_1

because § — p points in the direction p — p* only when p = p*.
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REMARK 8: It is clear that the local graph property is is only relevant for p = p°,
where L crosses the boundary of §/71. In fact if there were locally an odd number of
s € A with (p*,a) € N, the same proof would apply. Once L "enters” 5!-1 through
one point (p*,a) € N , it must Jeave through another. Pairing up points, we see there is
one (p*,a) left over through which L enters S!-1, but cannot leave S!-1 without crossing
itself. Now it can easily be shown from degree arguments introduced in section 4, that if
N satisfies the local graph property, there is an open dense set U C S_’;f such that for
each p € U, projr*(p) consists of an odd number of points. In particular we can always
choose p* € U N 3?1_1. This is one indication that by using degree theory we can greatly

strengthen this theorem.

APPENDIX 2: Degree Theory.

We give here a very brief review of the basic facts of degree theory. An excellent

reference is Dold [1980]; see also Hirach {1976] for the case of smooth manifolds.

An n-manifold is a Hausdorff topological space X which has an open covef {Walaca
such that for each a there exists a homeomorphism ¢, : Wo — RR". n is called the
dimension of X, each {Wa, ¢} is called a chart, and {Wa,9a}aca is called an atlas. If
all the “coordinate changes” ¢a 0 ¢3! : ¢a(Wa N Wz) — ¢a(WanNW5), o, @€ 4
are smooth (C), the atlas is called emooth. If all these coordinate changes {which are
homeomorphisms) preserve orientation, then the atlas is calied oriented. A manifold with
a countable base for the open sets is called smoothable if it has a smooth atlas. Such a
manifold, together with a given smooth atlas, is called a smooth manifold. A manifold
which has an oriented atlas is called orientable. An orientable manifold together with
an oriented atlas is called an oriented mani_fold. The properties of being a manifold,
dimension, smoothability and orientability are topological invariants. An open set C in a
n-manifold (smooth) (oriented) X becomes an n-manifold (smooth) (oriented) in a natural

way.
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Given a pair of manifolds X and ¥ of the same dimension, a continuous map [ :
X — Y, and a point y € Y such that f~1(y) is compact, degree theory can be thought
of as a way of “counting” the number of points in f~1(y).

Define

Cs = {(/,X,Y,y): i) X and Y are oriented manifolds of the same dimension;
if) f: X — Y is continuous;
iii) y € Y and f~¥{y) is compact;}

and

C={{f,X,Y,y): i) X and Y are manifolds of the same dimension;
ii) f: X — Y is continuous;

iii) y € Y and f~'(y) is compact.}

Let Z and Z; denote the rings of integers and integers modulo 2 respectively. We will
describe properties of maps degp : Cp — Z and deg; : C; — Za, called respectively the
“oriented degree” and the “mod 2 degree.” We can do this simultaneously: Let (C, R, deg)
denote either (Cy, Z,degy) or (C3, Z;,degz). We write deg(f,y) instead of deg(f, X,Y,y)

whenever X and Y are obvious from the context. Then the basic result is (see Dold [1980));

Degree Theorem: There exists 2 map deg : C —+ R satisfying:

D1) (normalization): deg(id,Y,Y,y) =.1

D2) (localization): If (f,X,Y,y) €C, X DU D f~y), Y DV D f(U), U open in
X, V open in Y, then:

dcy(f) X’Y:y) = deg(flUi U!V'l y)'

D3) (additivity): If (f,X,Y,y) € C and {G,}™, is a finite partition of X into open
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sets such that (f|g,, Gy, Y,y) € C Vi, then:

deg(f,X,Y,y) = ) _ deg(f]., G, Y, v)

i=1
D4) (homotopy invariance): If (f,X,Y,y), (9,X,Y,y) € C and there is 2 homotopy

h:X x [0,1] — Y between f and g such that A~!(y) is compact, then:

deg(f,y) = deg(g,v).

D5) (continuity): If (f,X,Y,¥) € C and K C Y is a compact connected set containing

7 such that f~!(K) is compact, then:

deg(f,y) = deg(/,7), Vy € K.

D6) (product rule): If (f,X,Y,y), (9,Y,Z,2) € C, Y is connected and f is proper,

then:

deg(g o f,z) = deg(g, z)deg(f,y).

D7) (nontriviality): If (f,X,Y,y) € C, then:

deg(f,y) # O implies f~1(y) # 0.

REMARK 1: D5 implies that if (f,X,Y,7) € C, Y is connected and f is proper, then

(since Y is locally compact and locally connected) deg(f,y) = deg(f,7) forally € Y. This

common value is denoted deg(f, X,Y) or deg(f), and is called the degree of f.

REMARK 2: If (f,X,Y,y) € C; and f is a homeomorphism, then deg2(f,y) = 1. If

(f,X,Y,y) € Cs and f is homeomorphism, then dege(f,y) = 1 if f preserves orientation

at f~1(y) and degs(f,y) = —1 if f reserves orientation. f preserves orientation at f )

if there is a chart {W, ¢} from the maxima! oriented atlas on X and a chart {V, ¥} from the

maximal oriented atlas on Y such that f~1(y) e W, y € V, and f(W) C V, s0 that the local

homeomorphism o fo$~! : $(W) — R" preserves orientation at ¢(f~1(y)). If Yo fod™?
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is smooth, then it preserves orientation at ¢(f~*(y)) if sgn detDyofed=1(2)|s=g(s-1(y)) =
1.

REMARK 3: Suppose (f,X,Y,y) € C, f~}y) = {£1,***1Zm},m < 00, and there are dis-
joint neighborhoods W, of z;, § = 1,---m, such that each f ]w.- is a local homeomorphism.

Then by D2 and D3, deg(f, X,Y,y) = i deg(f|w., W, fF(W),p).
i=1

From Remark 2 above, in the mod 2 case dcgz(flw,,W.-, J(Wi),y) = 1,80 dega(f,y) =
¥ /~1(y)mod 2. In the oriented case, degs{f|w.,y) = 1 if { preserves orientation at z, and
—1if f reserves orientation at z., so that degg(f,y) counts the number of points in f~(y)

with orientation.

REMARK 4: By Sard’s theorem, the situation described in Remark 3 is “typical® if X,V
are smooth and f is smooth (assuming f~*{y) is always compact). Hox;vever, there are
continuous maps g : X — Y between compact, smoothable connected manifolds of the
same dimension such that ¢~1(y) is an infinite set for every y € Y. If (¢, X,Y,y) € C and
X and Y are smoothable, however, there is always a (f, X,Y,y) € C such that f and g are
homotopic at y (in the sense of D4), [ is “close” to g, and the situation described in Remark
3 holds for (f,X,Y,y). (See Hirsch [1976] for an extensive analysis of approximation by

smooth maps.)

REMARK 5: Combining D4 and D7, we see that if {f,X,Y,y) € C and deg(f,y) # 0),
then for any ¢ : X ~— Y homotopic to f in the sense of D4, ¢g~(y) # 0. This is important
because all sufficiently “small” pertubations of f are indeed homotopic to f in the sense
of D4. For example, let f : X — R!, f~1(0) compact, and suppose X is the union of
an increasing sequence of compact sets, X = lj K,. Suppose g : X — %!, and for any
sequence z, € X\Kn,|f(zn) - 9(zn)] < -l—lf(x::)—-llfor n large. Then ¢ is homotopic to f in
the sense of D4, since for the homotopy given by h{z,t) = tf(z} + (1 — tlg(z}, A~1{0) is

compact.
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REMARK 6: Let (f,X,Y,y) € C . We call a nonempty subset K of S~ (y) stable if for
any open neighborhood U of K, there is a smaller open neighborhood Gof X, U D G D X,
such that (f |¢,G,Y,y) € C and deg{f |¢,G,Y,y) # 0. By remark 5, it follows that if
K is » stable set of equilibria, then for any neighborhood U of K, a sufficiently small
pertubation ¢ of f will have sojutions in U.

We assert that if deg(f, X,Y,y) # 0, then there is a stable subset K of f~!(y) which
is compact and connected. If f~!(y) has only a finite number of connected components,
ther. this is a trivial consequence of D3. Otherwise, it can be shown as follows. The
collection of all compact stable subsets of f~1(y) is nonempty (since f~1(y) is one of them
by D2), and it can be partially ordered by inclusion. Any chain of compact stable sets as
a lower bound; one can readily verify that the intersection of nested compact stable sets
is a compact stable set. By Zorn’s lemma there is 2 minimal compact stable set K. If K

were not connected, then it could not be minimal by axiom D3.
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