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ABSTRACT

New time and frequency domain tests for the presence of a unit root are
developed. The tests are based on generalized least squares (GLS) methods
in both the time and the frequency domains. For the time domain tests, mov-
ing average processes are assumed for the error terms on the autoregression.
For the frequency domain tests, general assumptions are made which allow for
stationary and weakly dependent error processes. The limiting distributions
of feasible GLS tests are derived under MA(l) errors inm the time domain.
This theory is extended to higher order moving average processes under an
invertibility condition. The limiting distributions of both full and band
spectrum tests in the frequency domain are also derived. All of these
limiting distributions are shown to be free of nuisance parameters. Some
results on test consistency are also reported. Extensive Monte Carlo simu-
lations are performed to study the size and power of the proposed tests in
finite samples. The computations demonstrate some of the advantages of the
GLS in terms of stable size and good power properties for a wide variety of
error generating mechanisms. Tests based on the full spectrum seem to offer
the best performance and our simulations indicate that these tests are also
superior to the time domain procedures that are currently in use such as the

Said-Dickey (1984) test.



1. INTRODUCTION

Testing for the presence of a unit root in autoregressive time series
models has been a popular topic in both the recent econometric and statis-
tical literature. The testing procedures outlined in Fuller (1976) and
Dickey and Fuller {1979) under iid errors have become standard and have
been employed in various empirical applications. Recent articles by Fuller
(1984) and Dickey et al. (1986) review the literature in the field up to
around 1985, Since then there has been a large and growing literature on
time series with a unit root and many new tests have been developed.

Said and Dickey (1984), extending the t-ratio method of Dickey and
Fuller (1979, 1981), proposed a test for the presence of a unit root in
models with ARMA errors of unknown order based on a long autoregression.

The same authors (1985) also developed a maximum likelihood method for the
same purpose in ARIMA models of known order and reported some simulations
results. Phillips (1987a) and Phillips and Perron (1988) took a nonpara-
metric approach and developed unit root test statistics that were applicable
in models with quite general weakly dependent errors. The relative perform-
ance of the Phillips-Perron and Said-Dickey’s test statistics are studied in
Schwert (1987) and Phillips and Perron (1988). Asymptotic results favor the
Z(&) procedure of Phillips-Perron but simulation results indicate that this
method suffers severe size distortions in finite samples when there is nega-
tive serial correlation in the errors., Unfortunately, the Said-Dickey
procedure also suffers size distortions and has low power in the same con-
text. There is therefore a need for new procedures which overcome these

deficiencies.



The present paper deals with this subject but adopts both time and
frequency domain approaches. Our main vehicle is GLS and this method may be
used in both the time and frequency domains. Under normality assumptions,
the methods are equivalent (or asymptotically equivalent) to maximum likeli-
hood. Thus, in the time domain, the feasible GLS estimator is asymptotical-
ly-equivalent to the maximum likelihood estimator under normality and the
problem of convergence that arises in maximum likelihood estimation of ARMA
processes is avoided by our GLS approach.

The time domain tests are developed first for MA(l) errors and are then
extended to higher order MA processes. To apply the GLS method, a matrix
which removes temporal dependence in the errors is found and estimated. The
formulae for the matrix in the case of higher order moving average processes
are based on simple difference equation recursions. After this transforma-
tion one can apply standard unit root asymptotics.

The frequency domain (or spectral regression) approach has been used in
the past to efficiently estimate the parameters in regression models with
fixed or strictly exogenous regressors. Hannan's (1963) efficient estimator
is the cornerstone of subsequent work. The rationale for the approach is
that only minimal assumptions like stationarity and weak dependence are re-
quired for the theory to apply. Engle and Gardner (1976) took advantage of
this feature to estimate a coefficient parameter in a standard regression
model under various dynamic specifications for the errors. It was found
that the frequency domain estimator performs quite well for moderate sample
sizes. The spectral regression method was also applied to regression models
with dynamic regressors in Espasa and Sargan (1977) and Engle (1980).

Readers are referred to Granger and Engle (1985) for a review of related



applications. Recently, Phillips (1988a) has shown that spectral regression
methods may be successfully used in models with nonstationary regressors.

In that paper the GLS structure of the Hannan efficient estimator is used to
obtain consistent and asymptotically efficient estimators of long run equi-
librium parameters in error correction models. We shall demonstrate that a
similar approach works well in the present context of unit root tests. The
merits of frequency domain methods in large samples are numerous. First of
all, the nonparametric treatment of the errors means that it is not neces-
sary to be explicit about the short run dynamic specification of the errors.
Secondly, the GLS based test statistic has no nuisance parameter in the
limit since the problem of temporal dependence is one of heteroskedasticity
in the frequency domain and this is eliminated by the GLS transform.
Thirdly, we may test the hypothesis of a root on the unit circle at a par-
ticular frequency. The band spectral estimator (otherwise known as

Hannan's inefficient estimator) can be employed for this purpose.

This paper is organized as follows. 1In Section 2, feasible GLS estima-
tion and associated t-statistics in the time domain are derived for models
with MA errors. This section also includes the relevant asymptotic theory
for these GLS statistics. In Section 3, models and assumptions for GLS
estimation and tests in the frequency domain are explained. Full and band
spectrum estimators are discussed together with their related t-statistics.
In Section 4, we give the limiting distribution theory of the frequency
domain test statistics. The full spectrum test statistics are shown to have
the same limiting distributions as those tabulated by Fuller (1976). In
contrast, the band spectrum estimator and its t-statistic have new limiting

distributions whose support is the positive half line. In Section 5, con-



sistency of the frequency domain tests are considered. We show that the
band spectrum estimator converges to unity even under the alternative of an
autoregressive coefficient less than unity and that the maximum power of a
one-sided test based on the coefficient estimator is 50%. In contrast, a
version of the full spectrum estimator leads to consistent tests under the
alternative. Section 6 reports extensive simulation results concerning the
power and the size of the new test statistics in finite samples. For the
time domain tests, the same experimental format as Said and Dickey (1987)
was used. For the frequency domain tests, we took a format similar to the
one in Phillips and Perron (1988). This helps us in making a direct com-
parison of the results, The tests recommended are found to show good
performance characteristics in finite samples in terms of stable size and
strong power in comparison with other unit root tests. Section 7 concludes
the paper. Proofs are given in the Appendix.

The following notation is used throughout the paper. The symbol " =» "
signifies weak convergence, the symbol " = " signifies equality in distri-
bution. Standard Brownian motion W{(r} on [0,1] is written as W .
Similarly, féw denotes the integral féW(r)dr and féWdW is the stochas-
tic integral ISW(r)dW(r) ., Brownian motion with covariance w2 is written
" BM(wz) ." All limits given in the paper are taken as the sample size

T - © unless stated otherwise.



2. GLS IN THE TIME DOMAIN WITH MA ERRORS

2.1. Preliminaries

The univariate time series model we are concerned with is

(1) yomay_ +u . te=1,2, ..., T.

In this section we shall start by assuming that {ut} follows the MA(l)

process
(2) u - e, + Bet—l , t=1, 2, ..., T
with

6] <1

Yo is assumed to be any random variable and {et] is a strictly stationary

and ergodic sequence of martingale differences. Thus
E(etlet—l’ et—2’ S el) =0 a.s5.

and we shall assume that

(1) E(ei) —elcw .

We note that under these conditions the partial sum process S[Tr] - E{Tr]ej

satisfies the invariance principle so that

-1/2 2
T S[Tr] = B(r) = BM(c™)

Real data for time series often display non-zero means and sometimes

deterministic time trends. In such instances, as exemplified recently in



Efron (1988), the residual of the ordinary least square (OLS) regression of
{yt} on a time polynomial will represent a more adequate characterization
of the data for our purposes than the raw data series [ytl . In this case

the model (1) is rewritten as

(4) Y =Yg TU o ES 1, 2, ..., T
vhere

p .
(3 Yo = Tg F 1t t o + 1pt + Y, -

The effects of filtering Ye through a deterministic tren§ such as the
time polynomial that appears in (5) are considered in detajl elsewhere (see
Park and Phillips (1988) and Phillips (1988b)). We shall state the main im-
plications below when we come to discuss the relevant asymptotics for our
methods.

We are interested in testing

(6) HO :a=1 against Hl : lal <1.

Under Ho {yt} is an integrated moving average process. We shall estimate
a in models (1) and (4) under the null with the feasible GLS method. The
model (1) and (2) was studied by Said and Dickey (1985). They employed a
one-step Gauss-Newton method to estimate the parameters a« and ¢ and to
derive their limiting distributions under the null. We shall adopt the same
one-step Gauss-Newton regression technique with an initial method of moment
estimator to estimate the moving average coefficient # . However, the
estimation of a will be based on the feasible GLS method utilizing this
estimate of ¢ . Under normality assumptions on [et} the resulting esti-

mator of a 1is asymptotically equivalent to the maximum likelihood



estimator (MLE) and will therefore be asymptotically efficient.

The variance-covariance matrix of u = [ul,

E{uu’) =

The matrix V can

vV = CC’

where C = 1

The inverse of C

¢t - 1
-4 1
82 -# 1

T— —

-0 (-nT?

Since V-l - Chl'c—l we see that C-1
.. -1 -1 2
elements of u giving E(C "UU'C y =01 .

02 1 8
] 1+t32 i
g 1+ 4
0

be factored as

is the lower triangular matrix

.y uT]'

=)

1+ 8

is

=g V

say

trivially orthogonalizes the

On multiplying Cm1

to the



model (1), we obtain

(7) y ay* te t=1, ..., T
s Lt -1 7e-1 t -1
where y_=7C.y ., = 0yys You oo Vgl 0 YE = G Yo
vl o= [y Yyo -o o yT_ll and czl in the t-th row of € . . The GLS

estimator of «

form

in (1) is derived directly from (7) and has the simple OLS

-1
~ T .2 T ~
&g = [?1Y§-1] (E1¥E.17e)
Under the null Hy y*_1 is
t-1
t-i
yi = 2y
i=0
t
1 - (=8) ot
T Yot Se1 0 Se T A1t
and it follows that
- TG - ) = (172572 Tl ey
% ~ ¢ 17t-1 17t-1%
. -1
t 2
=2_T|l - (-8)
T 21{1 o Yot st-l} ]
-1.T{1 - (- 9)
|7 z1{1 =5 Yo+ Se- 1}°c]
This equation sheds light on the role of # in the limiting distribution of
&G . Since the terms involving §# are at least as small as DP(T_I/Z) the

limiting distribution of &G

This fact gives us a great deal of convenience in hypothesis testing.

under the null is free of nuisance parameters,

It is



also evident from (8) why the initial condition Yo does not affect the
asymptotic theory. If Yo is Op(l) the terms involving Yo are also at
least as small as OP(T_l/z)

For model (4), we have

: -1
: - [ —2_T=~.2 -1_T-
(9) T(aG -a) = LT Zlyg_l (T Elyi_let)
f t P
“2.Tf1 - (-6)° = . =
T z1{1 =5 Yot St—l} ]
x (T_lzT l.:.i:flf Yy + 8§
NI =9 Y07 "e-1)%
where
S = 4.+ §,t + + 4P+ 8
t 0 1 P t

Here again, the terms involving § become unimportant asymptotically.
As earlier remarked, the feasible GLS estimator can be computed by

starting with a consistent estimate of # . Under the null, we have

(109 Ve T V1 T e

- e + ﬂet_ t=1,2, ..., T.

t 1

The feasible GLS estimator can be computed by using a consistent esti-
mate of ¢ . First of all, under the null, it can be computed by using
differences of Ye - We can also use the residual from an instrumental

* A "'1
variable estimation of a , since @y = (Etyt_lyt_z) (Etytyt_z) for
example, is consistent under the alternative, giving us the residual esti-

mate 4 Asymptotically, either choice results in the

e = Ve T %1vVe-1
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same nominal size. However, in small and moderate sample sizes, the size of
the test can be expected to be affected by the choice. This point will be
studied further by simulation methods in Section 6. Secondly, under the
alternative, using differences of Ye does not give a consistent estimate
of ¢ whereas Gt does.

The initial estimate of & (§) can be found by the method of moments
using the sample autocorrelation. Setting £(1) as the first order serial

correlation

A A x x x 2
B(1) = 2.8, - Up)(uy g = Up)/B (g = o)

we obtain for £ > 0

_ 1 LY

§ = [28(1)) {1 - [1 - 4% (1)] , 0< || s0.5
- -1+ , £(1) < -0.5
-1-c , B(1) > 0.5
-0 , (1) = 0.

We use the initial estimate @ to obtain a more efficient estimate of & .

First of all, we express et as

- <] jA
e (8) = 2 (=68,

t-1

- = -nla_

t
120 3 + (~8) ey -

Then we expand the function et(a) in a first order Taylor series around

the initial estimate # to obtain
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e (0) = e (F) - w (F)[6-F) + d_(F)
or

et(ﬁ) - wt(ﬂ){ﬂﬂﬂ] - dt(ﬂ) + e,

- _ _ zy 1, =22 2 +
wbere wt(ﬂ) aet(e)/as 9eF dt(ﬂ) 2(9 8) 9 et(ﬂ)/a ] 9-ﬂ+ and #§
lies between # and 4 . Regressing et(ﬁ) on wt(ﬁ) yields an estimator

of §-8 from which we have an improved estimator

§ =8 + Af
where
. Zve =2
86 = e (Byw (B)/Zw (D) .
Note that
et(ﬂ) - u1 - Beo , t =1
- ut Get_l(ﬂ) , t=2,73, , T
and
w_(§) = EO , t=1
- et_l(ﬁ) - Hwt_l(ﬂ) , Tt =23 ..., T.

A

The estimate # is consistent to f if the fourth moment of et exists

and 1f we set 30 = 0 . For a more detailed exposition of this approach,

see Fuller (1976). The feasible GLS estimator of a 1is then obtained by

inserting # into the GLS formulae given earlier. We shall denote the

resulting estimators by &FG and ;FG for the unfiltered and filtered

regression models respectively.
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2.2. Asymptotic Theory

In the model (7), the difference §t - yg_l under the null is simply
the martingale difference sequence {et} . Hence, the asymptotic distribu-
tion of &G may reasonably be expected to be the same as that of the
coefficient estimator in a first order unit root autoregressive model with
mértingale difference innovation terms. The latter model was studied in
detail recently by Chan and Wei (1988). Likewise for the filtered model,

we would expect the asymptotic theory to be the same as that of a filtered

unit root model with martingale difference errors.

THEOREM 2.1. Let {et} be a stationary and ergodic process of martingale
differences with finite variance (3). Then, under HO , we have

A 1 1.2
(a) T(a; - o) = joudW/jow

- 1= .., 152
(b) T(ag = a) = jode/fow

where

W(r) = %0 + er + ...+ Qprp + W(r)

and W(r) is detrended standard Brownian motion.

As discussed in Phillips (1988b), W(r) 1is the residual process from a
continuous time regression in which the %i minimize the least squares

criterion

2
1[ p]
W(K) = 1y = 9qT = .- = dr .
JolW(r) = vy = 7,7 1| dr

The following examples are given in Phillips (1988b):
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p=0, W=Wr - féw
P=1, W=B() -4, %r
-1
- 1 1
with fo = 1 Jos Jow
N 1 12 1
3, fos fos forw

Note that in the general case W(r) may be interpreted as the Hilbert
projection in L2[0,1} of W(r) on the subspace that is orthogonal to the
space spanned by the functions (j(r) = rj tj=0,1, ..., p}

Given a consistent estimator of # , we now have the following:

Fal

COROLLARY 2.2. Suppose that 6 is consistent. Then under the same condi-

tion g@s Theorem 2.1, we have

A 1 1.2
() T(ap, - 1) = IOWdW/fow

(b) T(agg ~ 1) =» Johaw/ [’ |

GF ~ 1) and T(EFG = 1) shall be employed as unit root test statistics,
just as in Dickey and Fuller (1979). Empirical percentiles for (a) are
found in Fuller (1976, p. 371) and those for (b) are given in Ouliaris, Park
and Phillips {(1988). We shall also formulate t-statistics based on

Corollary 2.1. Ve may estimate 02 by either

2 1 2.5
S¢ = T Zp8(F)

or

A A A ~ "'1 A A
2 1 ~ 2 ~ 2 -
Sp = 73 Ye () - (Etyt(ﬁ)yg_l(ﬁ))[EtY§_1(9) ] (Z.y . (8)yE_4(8))
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A

where yz(ﬁ) is obtained as indicated by using the estimate # in place

of 4 . By results of Fuller (1976, p. 348), we find that Sé is consis-

tent for 02 . The consistency of Sg to 02 follows from standard
regression theory. Using Sg and Sé , We construct t-statistics as
follows:
G, — 1
t (&) Fe
G FG 1/2
2f 2 A7t
2feota] |
€ Gy = épg ~ 1
R FG 1/2
2[5 2 )]
rR{“tVt-1
_ ape 1
t. (o Y =
G FG 1/2
s2(z 52 () -
c|*t-1
and
Gpe T 1

11172
sz[z 2 (E)
r|*Ye-1

The following result is easily obtained from Corollary 2.2.
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COROLLARY 2.3. Under the same condition as in Corollary 2.2, we have
(a) to(ap,) = féwaw[jéwz] e

() tplbpy) = féWdW/[jéwz]
(©) tg@gg) = féﬁdW/[féﬁz]l/z
@ tyGpe) = [fan/([7]

The percentiles of (a) and (b) are tabulated in Fuller (1976, p. 373) and

those of (¢) and (d) in Ouliaris, Park and Phillips (1988).

2.3, Extension to Models with Higher Order MA Errors

Now suppose the error process on (1) and (4} is MA(q) or

(11) u =e¢_ + f.e + f

t t 1%c-1 F o qet—q

where {et} is a martingale difference sequence as before. The character-

istic equation asscciated with (11) is nd + 22_1Bimq_i = (0 , whose roots
are assumed to be less than one in absolute wvalue.

The triangular matrix which orthogonalizes the covariance matrix of u

is now

D= a1
8 & 9
8y 8y &y
I aT 33 32 al )

where
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a1 =1
(12) a, = -Blat-l - 02at_2 Bqat_q , t=2, ..., T and
ao = a_l = a_2 - = 0

The elements of D are readily found from (12) by recursion. For example

if q =2 we have

a - 1
a; = ~81
a, = —9182 - 92a1
- 5% -4
a, = —€1a3 - 8282
= Ei - 26182
ag = -Ela4 - 92a3
- 8? - 33%92 + ﬂg
ag = —07 + 4026, + 39193
a, = 05 — 5070, + 66202 - o> .

Use of D 1leads to the transformed models:

(13) Ve =o¥e g +te ., t=1,2, ..., 7T

and

(14) Ye=ay._gte. ., t=1,2, ..., T
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where §t - Dty ' yt_l - Dty_ . §t - Dty T Dt§ and Dt is the

t-th row of the matrix D . Denoting by

-~

2 17 ;
% ~ [Etyt—l] EFe 1Y)
and by

2 VY o =
%% - [ztyt-l] Ee-1Ye)
the GLS estimates of a in (13) and (14) we find as in Theorem 2.1 that

A 1,2
T(4, - 1) = féde/jow :
and

- 1= ., k=2
Tla, = 1) = jOde/jOw :

Estimates of §' = (81, Ce Bq) can be obtained under the null as for
the MA(1) case. let ¢ be an initial estimate of # . Then the improved
estimator is

§ = 6 + Af
where
Af = c}l(T'lw'E)

1

Gy = T Z WV,

W = [Wi, Wé, RN W%]

e = [eg(B), ey)(D, ..., ep(B)]
W= (W (B, W (B)s s W (D))
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— - . q -~ -
e (B =8 -2 Fe B, t=1,2, ..., T

and

_ 0 ' , t=0
43 D -

e (E) - 53 (8) , t=1,2, ..., T.

i= -1 J Vi =i

Fal

The estimate § 1is consistent if (E—ﬂ) - op(T—l/A) and if e

i = —g+l, —q+2, ..., 0 are bounded in probability. Under the null, ﬁt

can be replaced by Ye = Y¢

A

Using # we may obtain feasible GLS estimates of a as in the MA(L)

case. These estimates are asymptotically equivalent to maximum likelihood

estimates when {et} ig iid N(O, 02) . Denoting the feasible GLS esti-
mates of e in (13) and (14) by aFG and EFG we find, as in Corollary
2.2, that

A 1 1.2
(15) T(dp, = 1) = [owaw/fow
and

= 1= 1-2
(16) T(ap, - 1) = Jowaw/fa .

. 2 ;
The error variance ¢  may now be estimated by either

-2 _1 2 )
SG = T Etet(ﬁ)

or

. - ~ -1
2135 (0) - =9.(0)5, 1(8))[ty§_1<g)] (B, ()91 (8))

A

. . 2 .
Both estimates are consistent to o when # 1is consistent.

The corresponding t-ratios are given by



and

; (; )=

R\CFC 172
s?|s 32 (5)]
¢l e-12

We find that these t-ratios have the same limiting distributions as those

given in the MA(1l) case. Thus,

, jéwaw
telepg) = T 172
[15+%)
: jéwaw
tgepe) * T 172
1)
- jéﬁdw
t.(a

19
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3, FREQUENCY DOMAIN URIT ROOT TESTS

3.1. Preliminaries

Our model is again based on (1) but with an error process {ut} that
is stationary with continuous spectral density fuu(A) > 0 over
-t < A < x . We shall concern ourselves with testing for the presence of a
unit root in (1) against stationary alternatives, so that the null and al-

ternative hypothesis are Hy : a =1 and H, : le] « 1 as before.

We shall assume that the partial sum process St - ZIuj satisfies the

invariance principle

-1/2

(17) V2 o B(r) m BM(w?) , O<rsl

[Tr]

where w2 - wauu(O) is the "long run" variance of u We decompose w2

¢
as
w2 - 02 + 2v
where
(18) o = E(ud) , v =2 E(ugu)
o) Zpm1 By
and we define § = 02 + 4 . The series that defines 4 in (18) is assumed

to converge absolutely so that the spectrum fuu(x) is uniformly continuous
over [-x,r] . In addition to (17) we require weak convergence of the

sample covariance between St and u viz.

t ]
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-1.T 1
(19) T 25 u, = jOBdB + 6

The conditions under which (17) and (19) hold are quite weak. They involve
rather mild moment and weak dependence requirements which are satisfied by a
wide class of time series, including stationary ARMA models whose innova-
tigns have finite variance. These conditions are discussed in detail in
earlier work (see Phillips (1987, 1988b)).

Simple variants of (1) are also allowed such as the model given by (4)

and (5) which includes drifts and deterministic trends.

3.2. Unit Root Tests
We begin by introducing the finite Fourier transforms

T ita

-1
W (A = (2nT) /zzt_lyte

-1/2 itx
w_{(A) = (22T) / Zi_lyt_le

T itx
e

-1/2
wu(A) = (2nT) ztclut

for X € [-n,m] and we transform (1) accordingly to

(20) wy(x) = aw_(2) + wu(A) .

We shall consider two estimators of o based on the regression mode (20) in
the frequency domain.

We note that under the null hypothesis the spectral density of Yo is

-2

£ ()

iAl
U

(21) £, = |1 - e
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which has a pole at the origin X =« 0 characterized by the local behavior
fyy(l) - w2/2ﬂA2 as A =+ 0 . This singularity of fyy(l) at A =0 is
the manifestation in the frequency domain of the nonstationarity in Ye
under the null. Interestingly, although fyy(A) is undefined at A =~ 0 ,
we may still estimate it there by conventional methods. Upon restandardiza-
tion, we shall show that such estimates are meaningful and converge weakly
but not in probability to well defined random elements. Corresponding to

(21) we have the cross spectrum

ir, -1
£ () = [1= e TE )

Similarly we define

2
1
£ 40 - || £, () = £, ()

ix
f—l u(A) - g

fyu(l)

Estimates of these quantities may be constructed in the usual way based on
smoothed periodogram estimates obtained from the quantities wy(A) )

w_ (X)), wu(A) or from weighted covariogram estimates that employ various
lag windows. We shall denote these spectral estimates by f—l -I(A) .

%_l’u(x) , Euu(x) . Under stationarity assumptions, such estimates are
known to be consistent (see Priestley (1981), for example). But in the
present context the behavior of these estimates has not been investigated
except in earlier work by the second author (1988a). Note finally that

under the null u, = Ayt and thus both fuu(A) and f_ may be

1l,u
calculated directly from u, or wu(l)
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The two estimators of a we shall consider are:

A _1 A
. 1 1 1
(22) &= [ZM z?-u+1f 1,-15 ) wal®y)” ] [ZM 151,y (94 )f u(¥y) ]

and

)

(23) ao - fy,—1(0)/f-l,—1(0)
In (22) we use the fundamental frequencies
w, =a, /M, j=-M+l, ..., M
3 J/ J

for M integer. The spectral estimates that appear in this formula may

then be regarded as applying within a band of width «/M centered on wj

Thus, to obtain fuu(wj) we may use the smoothed periodogram estimate

(w s w ()W ()%

) =
3 T B,
J

where the summation is over

As € Bj - (wj - n/2M, wj + x/2M)

Then fuu(w ) is, in effect, an average of m = [T/M] neighboring periodo-

N
gram ordinates around the frequency wj . As usual, we shall require the
bandwidth parameter M = « but in such a way that M = o(Tl/z) gs T+ o
{(as in Hannan (1970, p. 489)).

Both estimators & and &, are conventional spectral regression esti-

0

mates and follow directly from formulae given in Hannan's (1963) original

treatment. In popular parlance, & 1is a Hannan efficient estimate and &0
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is a Hannan inefficient or band spectral estimate. What does differ from
convention is the autoregressive context in which these estimates are being
used and the asymptotic theory that applies to them.

In the first place the autoregressive context is of importance since

are in general coherent series, due to the temporal depen-

y;_l and U,

dence in u, - This is a major departure from the regression model context
of Hannan (1963) in which the spectral regression estimators were first
developed. In the second place and as already discussed, spectral estimates
such as %—1,~1(0) that appear in these formulae are no longer consistent.
In fact, as they stand, they appear to be estimates of quantities that do
not exist. However, appropriately weighted these spectral estimates behave
orderly in the limit but as random variables rather than constants.

Associated with & and &0 we may construct the spectral analogues of
the regression t-statistics. 1In the case of the null hypothesis (2) these
are given by:

1 A

€@ = [EHTZ?-—M+1f—l,-1(wj)/fuu(wj) T(&-1)

]1/2
A A~ -'1/2 A ~
1 1
- [t aep/mney] [t e ey

and

T(&, - 1)

]-1/2 :

A o -1
t(a,) = [fuu(O)/T £y (0

- [fuucom f_l’_1<0>] £, 1 (O/T £ (0

The variance estimates implicit in these t-ratios are based on the usual

formulae for the estimated asymptotic variances of the spectral estimates &
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~ ~ "1
1|1
T[Eﬁz?—-n+1f—1,-1(”j)/fuu(”j)}

and

A ~

£ (O/TE ) _1(0)

respectively (cf. Hannan (1970), p. 442).

4. ASYMPTOTIC THEORY

Qur attention will concentrate on the four statistics S(&) = T{a-1) ,

S(&O) - T(S:0 - 1) , t(&) and t(a Each of these statistics may be

O)
used to test for the presence of z unit root in (1). Our first concern is

to develop an asymptotic theory for these tests. We have the following.

THEOREM 4.1. Under the assumptions made in Section 3.1

(2) S = [ouau/fowt
(b) S(&,) = (féde + 1/2)/]‘%&:2 ,
() t(d) = féWdW/[féwz]l/z ,

(@ (&) = (fouau + 1/2>/[Iéw2]1/2 ,

where W = BM(1)

REMARKS
(i) The limit distributions given by (a)-{d) in the above theorem are
all free of nuisance parameters. So no serial correlation correc-
tions such as those employed in the tests of Phillips (1987) and

Phillips and Perron (1988) are needed. The serial dependence in
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the u, process is, of course, automatically taken care of by the
Fourier transformation of the data that is explicit in the fre-
quency domain regression model (20). What is of additional inter-
est is that no correction either is needed for the fact that Yea1
and u are coherent in the regression (1) and even contemporane-
ously correlated when there is serial dependence in u_ . This is
explained by the fact that Ye1 is an integrated process and the
signal that it imparts is correspondingly an order of magnitude
larger (in T ) than the covariance of y and u

t-1 t
In the case of the estimate & we need to estimate the error
spectrum %uu(A) . Moreover, we use estimates of this spectrum at
the 2M frequencies {wj :j = -M+l, ..., M) . This is to be
distinguished from the time domain procedures in earlier work (see
Phillips (1987) and Phillips and Perron (1988)) where spectral
estimates are reguired only at the origin. The regression leading
to & is, of course, a weighted regression across frequencies and
the heterogeneity in the spectrum over the frequencies {wj} is
used to obtain efficient estimates in conventional weighted re-
gression for stationary time series. Since Ye is nonstationary
under the null, the weights are, in fact, not needed because the
behavior of & is dominated by the estimates that are centered on
the zero frequency where the variance of Yy is concentrated.
This leads us to the estimate &0
The band spectral estimate &0 uses spectral estimates only at

the zero frequency. Its limit distribution differs from that of

& . Indeed, noting from Ito’s lemma that
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(iv)

(v)
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1 1 1 2 11 2
jOde 5 =500 - 1) + 5 = 5W(1)
we deduce that
%W(l)z
T(ao— 1) =7T;72—>0 a.s8.
0

and also W(l)2 = xi

is therefore the half line (0,«») . This is to be distinguished

The support of the limit distribution (24)

from the support of the limit distribution of T(a-1) , which is
the entire real line.

When the model includes drift and time trends as in (4) the re-
gression statistics are constructed in a corresponding way from
detrended data. The limit distributions then have forms that are
identical to (a)-(d) of the theorem but the standard Brownian
motion W 1is replaced by the detrended Brownian motion W as in
Theorem 2.1(b}.

Tabulations for the limit distributions (a) and (c¢) of the theorem
are in Fuller (1976). They are equivalent to those of the Dickey-
Fuller statistics p and 7 (see Fuller (1976), Tables B8.5.1 and
8.5.2). The distribution of 60 is not presently in the litera-
ture. To tabulate the limit distribution we used series represen-
tations of Brownian motion (see, for example, Chan and Wei (1988))
leading to the following forms for the required Brownian function-
als:

© 22 n
W) = Zono TmrDa )
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and
[l -2 —y
(2n+l)" n
where {Zn} = iid N(0,1) . These series were truncated at

n =200 and 50,000 iterations were used to simulate the limit
distributions. The results are contained in Table 1 which details
eritical values of the limit distributions of S(&o) and t(&o)
The limit distribution of S(&O) is graphed in Figure 1. It is
sharply peaked just to the right of the origin and has a long
right hand tail. Note that in testing HO against the stationary
alternative Hl we use one tailed tests based on the left hand

tail of the statistics,

Of all of the statistics S(a is the easiest to compute, being

o’
based on the simple ratio (23) of spectral estimates at the ori-
gin. It is interesting that without further modification the
1imit distribution of $S(a) is free of nuisance parameters. As
we shall see in the experimental evidence reported later, its fin-
ite sample distribution alsc displays a robustness to the data
generating mechanism of u, - This robustness helps to deliver
tests whose size is quite stable across generating mechanisms.

However the statistic S(&O) does not lead to a consistent test,

as we shall demonstrate in the following section.



5. TEST CONSISTENCY

Under Hl v Yy is stationary and it is of interest to examine the
behavior of the power functions of the tests as T = « . The time domain
GLS tests may be analyzed as in Phillips and Ouliaris (1987) and are con-
sistent when the residuals Gt rather than first differences by, are
used in the construction of the tests. Our analysis in this section will
therefore concentrate on the frequency domain tests.

It is simplest to work with the band spectral tests S(&O) and

t(&o) . We start by observing that under stationarity

-

2
f—l,—l(o) -;* fyy(O) - fuu(o)/(l_a)

and

Y

£, 10 = £, (00 = £, (0) = £ (0)/(1-a)

Then

A

Gy = a + fu,—l(o)/f—l,—l(o) —Eﬂ a+ (l-a) =1 .

29

Thus, 60 tends to unity even under the alternative hypothesis. This sug-

gests that the S(&O) and t(& tests are unlikely to have good power.

0)

As T - » the power properties depend on the behavior of the spectral

A

estimates fu _1(0) and f—l _1(0) . Define the matrix of spectral esti-

mates

and, under H set
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g=| £ (0) £, 40 |

uu u,—

£ 4O £ (0

and

v = 2T/Mffmk(x)2dx

where M is the bandwidth parameter and k( ) 1is the lag window employed
in the spectral estimates in B - Then, from the asymptotic theory of
spectral estimates for stationary time series (e.g. Hamnan (1970}, p. 289)

we have the following limit theory

(24) e, ~ 8) = N(O,V)

wvhere

V- (jfmk(x)zdx)g ®g .

Using (23) and (24) we now obtain

1/2 4
@) WME -1 e /E 0%y - (£, 0/ D%
2
(1-a)
=¥ (67(X01 - (l—a)xlll
uu
where
X | Ry Xy | = NCOV)
*10 *n

We deduce that

Ay a1y o (pl/2,1/2
(26) S(8y) = T@y - 1) = 0 (/M%)
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under Hl . It follows that a two sided test of HO using the statistic
S(ao) is consistent as T =+ «@ . In view of the symmetry of the limit dis-
tribution (25) about the origin the power of a one sided test of HO based
on S(ao) tends to 0.50.

In a similar way we find that
A 1/2
t(ao) - OP(M )

under H, . The power properties of the t ratio test t(a would there-

1 o)

fore seem to be a good deal worse than those of the coefficient based test

S(&O) For example, when M = O(Tl/s) , which is a bandwidth choice that

minimizes a mean squared error criterion (see Bartlett (1966), p. 368), we
- 3/5 A 1/10

have S(ao) Op(T } and t(ao) Op(T ) wunder H1 .

Neither S(&O) nor t(&o) can be expected to yield good power for the
usual one sided tests of a unit root against stationary alternatives given

these asymptotic results. Moreover, t(& can be expected to perform

0)

worse in terms of power than S(&O) . This was borne out Iin our simulations
where both S(&O) and t(&o) performed poorly in finite samples.

The behavior of the full band spectral tests S(@) and t(a) is more
complicated. The results depend on the manner of estimation of the error

spectrum fuu(w) in @ . 1If we use differences u, - Ayt in constructing

fuu(w) in (22) then it is easy to see that under the stationary alternative

H

A

27 f 0y — 0 .
e2)) syay‘®

This means that the wj =0 term (i.e. j =0 ) dominates both the numer-

ator and denominator of & in (22). Multiplying through by fAyAy(o) in
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both numerator and denominator then shows that under H1

&£y (0)/f, 1(0) = &

A

as T »+ = . Thus, for the choice of estimate fuu in (22), we find that a
is asymptotically equivalent to &0 . and then the tests S§(&) and t(a)
behave like S(&O) "and t(&o) , respectively, and are therefore inconsis-

tent.

However, when the error spectrum fuu is estimated using regression
residuals ﬁt -V &yt_l the results are quite different because (27) is
no longer applicable. In general, because of serial dependence in the error
process u_ we find that the least squares coefficient & is not consis-

tent for o and hence fuu(w) is not consistent for fuu(w) . In fact,

for stationary and ergodic Y. we have
& — K( V/EGYE) - @
P YeYe1 Ye

and then

A . 31 . N
- iw - iw
fuu(w) —Eﬂ [1 - ae ] fyy(w)[l - ae ]

Since |a] < 1 . It is easy to see that the tests based on S(&) and t(&)
are consistent in this case.

In view of (27) another alternative in the construction of S(a) and
t(&) 1is to delete the spectral estimates at the origin. That is, we may
simply eliminate the j = 0 term (corresponding to the frequency we = o)

from both summations in the numerator and denominator of (22). Under the

null, this leads to no change in the limit distribution. But under the
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alternative we find that for some & > O

A CO0sS
“T-ra =7 o5 s %5 707 cosw-aé

and |a6| <1 . Thus, tests constructed in this way using S(&) and t(a)

are consistent even though the estimate & employs the error spectrum esti-
A

mate fAyAy(w) based on first differences. To the extent that the spectral

estimate at the origin fAy Ay(o) imports bias in finite samples from

neighboring nonzero frequencies these good properties are also shared by the
original full spectral estimate (22) and tests that are based on it. This

is borne out in the simulations we report in the following sectiom.

6. EXPERIMENTAL EVIDENCE

6.1. Time Domain Tests
In this subsection, we report some simulation results investigating the
powers of the tests discussed in Section 2. We shall consider the perform-

ance of p - T(&_.-1), t and t (a The statistics t (a

Fe’
and tR(&FG) are asymptotically equivalent under the null, but they exhibit

FG G(aFG) FG)
slightly different performance at small sample sizes.

The data was generated by model (1) and (2) with the initial value
€ - 0 . The {et] sequence is 1iid N(0,1) . Values of a are taken to
be 1, 0.95, 0.9, 0.8 and 0.7. Values of # are -0.8, —=0.5 and 0.5.
Attention should be paid to the performance of test when # takes negative
values, since all of the unit root tests so far are shown to be subject to

substantial size distortions in such cases (see Schwert (1987) and Phillips

and Perron (1988)). We consider three sample sizes: T =25, T = 50 and
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T = 100 . TFor each cﬁmbination of (a,B8,T) , 2,000 iterations were made to
calculate the empirical power of the test statistics on one sided tests.

The nominal size was set to be 5%. Critical values were taken from Fuller
(1976) at each sample size,

First, we report the powers of &G , tG(ac) and tR(&G) , assuming
that the true values of # are known. Note that &G is also the maximum
likelihood estimator in this case, since e, is standard normal. The sim-
ulation results are reported in Table 2. What is striking is that there is
no appreciable size distortion even at T = 25 . The power also grows
quickly with the sample size. This suggests that the test statistics based
on the feasible GLS estimator with good estimates of # should exhibit
similar properties.

In Table 3, we report results based on using differences of Ye under
both the null and the alternative. Hence, the estimate of # wunder the
alternative is not consistent. The effect of inconsistently estimating #§
on power of tests will be considered later. The initial estimate of 4 is
obtained by the method of moments utilizing the sample autocorrelation.
Following Said and Dickey (1985), we set § = *0.97 if |[#(1)| > 0.5 . The
next step uses 6§ to derive the one-step Gauss-Newton estimate of § . The
second round estimate of # is consistent and more efficient than the
initial estimate #§ wunder the null hypothesis.

Remarkably, we find that there is no significant size distortion for
negative #'s even at T = 25 . Power is fairly good for & = 0.5 . For
negative #'s , power is not as good as that when # = 0.5 . But, still,
the power for negative #8's 1is higher than those of Said and Dickey (1984)

and Phillips and Perron (1988). In general, we find that tests using dif-
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ferences of {yt} have no size distortions and are more powerful than
other time domain tests.

The effect of inconsistently estimating §é can be found in Table 4.
The results in Table 4 were cobtained using the true u, under the alterna-
tive. The estimate ¢ was obtained by the same two-step procedure as was
used for Table 2. Hence the estimate # 1is consistent. We find that power
improves remarkably for all combinations of T and 4 , especially for
negative #'s . Thus, the effect of estimating 4 inconsistently turns out
to be decreased power for all #'s across various sample sizes. This re-
sult suggests that if we can estimate ¢ consistently and efficiently under
both the null and the alternative, the power of the tests will {mprove
appreciably without impairing size.

The results in Table 5 are based on instrumental variable estimation of

a . The estimate of u_, {4

¢ was used to estimate #

e = Ve T e o
The same two-step procedure was used. Evidently, size distortions are quite
serious for negative é#°'s with small size samples. The size distortions
improve as the sample size grows., When T = 100 , we find that power of
the tests is high with # = -0.5 and ¢ = 0.5 , and that the size distor-
tions are not significant. In terms of size and power, tests based on IV
method performs better than other time domain test statistics. We expect

that eventually size distortions for negative §'s will disappear as the

sample size grows.
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6.2. Frequency Domain Tests

The frequency domain test statistics we consider are §(a) = T(a-a) ,
S(ao) - T(&0 - a) , t{(a) and t(&o) . Tests based on the coefficient
estimator are also used in Dickey and Fuller (1979) and in Said and Dickey

(1985). Our tests t(&) and t(a will be compared to Said and Dickey's

o’
(1984) t-statistic.
In the first place, data were generated by the model (1) with moving

average errors

- +
u o —e +fe

where {et} = iid N(0,1) . Yo is set to be zero. We used the Tukey-
Hanning spectral window to estimate the spectral density of u. consis-
tently under the null. The same spectral window was applied to the other
spectral estimates. We chose M = JT and M = JT/2 . As is discussed in
Hannan (1970), we need M/T - 0 and M = O(Tl/z) as T + » ., The above
rules satisfy these conditions. M = JT/2 was tried simply as an alterna-
tive. Hence, for sample size T = 100 , we tried the two choices of
M=10 and M =15 . We shall find that size distortions improve as M
increases at a cost of slightly reduced power. The simulation results re-
ported in Table 6 are based on 2,000 replications and left-side tests with
5% nominal size. The alternative chosen is a = 0.85 . Differences of Ye
were used to estimate fuu(w) under both the null and the alternative.
Hence, under the alternative, %uu(w) is not a consistent estimate of
fuu(w) as discussed in Section 5.

In Table 6, the size and power of the S(&) and t(a) tests for four

different values of # are reported. Size and power are fairly good for
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positive #4's . For negative #’s there is an appreciable size distortion
when 6§ = -0.8 and M = 5 . But we find that size distortion improves when
M = 10 . Comparing this to the performance of Said and Dickey’s (1984)
t-test (reported in Phillips and Perron (1988b)), we observe that §(&) and
t(a) are more powerful for positive #'s and are subject to less size
distortion in general. This point can be well-illustrated by graphically
comparing $S(a) , t(a) , Said and Dickey's t-test and Phillips’' z(a)
test using part of Monte-Carlo results in Phillips and Perron (1984). HNote
that the same experimental format was used in Phillips and Perron (1984).
Figure 2 displays that S(a) and t(&a) are better than Said and Dickey's
t-test and Phillips’ z(a) test in terms of size. This is especially con-
spicuous when ¢ takes negative values. Power of the tests are charted in
Figure 3. Power of S{a) and t{(a) are shown to be much higher than those
of Said and Dickey’'s t-test and Phillips’ =z(a) test. When # = -0.8 ,
all the tests are prone to show spuriously high power due to size dister-
tions. Beside better size and power, in using S(a) and t(a) , we are
not faced with the difficult choice of lag length as in the Said-Dickey's
(1984) t-test. The choice of lag length can affect test performance signif-
icantly, and it should differ from one dynamic specification to another. In
contrast, as will be seen later when we report simulations with ARMA(1l,1)
innovation processes, S(&) and t(&) both show good performance with such
simple rules as M = /T or M= /T/2 .

In Table 7, we report the power of the §(&) and t(a) tests using
true values of u instead of the difference of y, to estimate the spec-

tral density fuu(A) consistently and we find that power improves if we

estimate fuu(A) consistently under the alternative. This fact suggests
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that we may improve the power of the tests if we can estimate a consis-
tently under bogh the null and the alternative. However, using estimates of
u_ instead of the difference of Ye under the null produces size distor-
tions in the test and as a result that approach was not adopted. In any
event, power from using first differences of Y, Seems to be good and this
is explained by the argument given at the end of Section 5.

Before considering ARMA(1,1) errors we shall examine why there are
differences in the size distortions of the tests in the MA(l) case for dif-
ferent values of the moving average coefficient. Suppose that we estimate

A

fuu(A) consistently, so that we replace fuu(l) with

2 2 2 2
fuu(A) - (ae/2w)[1 + 87 + 28 cos ] , where Eet -0, for all t . Then
we have

M .
1 -1
s = f . (w)f (w.)
2MTj--M+1 1-1773 Tau )
M ~
1 2= 1
- - = b} f . (e )
2MT az j=—M+1 1 + 82 + 28 cos wj =173
—inw
n 2,012 M M e 3
(28) ~ g1+ 6 (fow )y I z 5 k|,

j=M+l n=-M 1 + 8 + 20 cos wj

for large T since

M -inw

1z 22012 4
T f_l_l(wj) ~ (1+8) aefow Te k
n=-—M
where kn is a lag window. We assume here that T_]'Cy y (n} 1is well

approximated by the limit functional féwz at T = 100 . This assumption
does not seem to be unrealistic for a sample size T = 100 and small to

moderate values of n .
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We also have

1 2o -1
Eﬁj-—§+1 —l,u(wu)fuu(wj)
M A
1 2n 1
"W 2, > 2 £1,u09)

o” j=-M+1 1 + 8~ + 28 cos w,
€ J

It follows from the proof of Theorem 4.1 in the Appendix that

~ M 2.1 -inw,
£ @)~ 2 (o JoWaw + A(n+1))e
! ] n=—M
9.1 M inw M inw,
(29) - o[ T e e+ = ame i
ni=—M n=—M
Since
o0
Al(n+l) = jfoEuouj+n+1
- Gaz , n=20
- (1+82+3)°§ , no=-=1
- ()% L n=-2, ..., M
=0 , otherwise.
\
We obtain
M —inw, iw
T a(mtlye Tk = 802 + (1 + 62 + 0)oZe Tk,
M n e e -
-M -inw
2, 2 h|
(30) +(L+870, Ze k.
n=-—2

Using (30) in (29) we have the approximation
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;Mo
= T f (W) (w.)
2Mj=—M+1 -l,u i Tuu
—-inw,
x 2.1 oo e
(31) ~ g(1+6) fOde z z 5 k
j=M+l n==M 1 + §~ + 28 cos wj
M 1 J 5 iw, M inw,
+5 I 5 0+ (1+8°+0)e Jk_ + (1+0)° T e Tk
j=-M+1 1+67+26 cos wjl n=—2

We deduce from (28) and (31) that

T(a-a) ~ (féde + b(e,M))/fcl)w2

where
M iw, M nw,
> - L Ie+(1+92+5)e Tk, + e’z e Jkn}
jm—M+1 1+8°+28 cos w.l n=--2
b(,M) = . inw
2 i " e )
(1+8) z z 5 k

j=—M+l n=—M 148 +28 cos wj

The term b(4,M) denotes a small sample bias which is largely responsible
for the reported size distortion. Of course, b(#,M) depends on # , M
and the spectral window chosen. Calculating b(4,M) for various combina-
tions of M and the spectral window, we can figure out what choices bring
the least size distortion. In this paper, only the case of the Tukey-
Hanning window was considered. The computation result in Table 8 shows that
there is a great distributional bias when M =5 and ¢ = -8 and that the
size distortion improves as M increases. Table 8 also shows how the size
distortions attenuate as T increases.

For our second experiment, we consider the ARMA(l,l) error
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u, = +
Wut—l et + Bet

t -1

The same simulation procedure as that for the MA(l) error was used regarding
nominal size, spectral window and the alternative hypothesis. For the pur-
pose of comparison, Said and Dickey's (1984) t-statistic was calculated.

Regressions were run on

-]

Ayt = (a—l)yt_1 + .Z wiAyt_i toe,
i=1
to calculate the Said-Dickey t-statistic {(on the coefficient of yt—l Y.
Lag lengths 1, 2, 5, and 7 were tried.
The computation results in Table 9 show power and size for combinations
of three different wvalues of v and four different values of # . First of

all, we find that the sizes of S§{(a) and t(a) tests are quite stable ex-

cept at § = -0,8 if we take M = 10 . Secondly, the power of the tests
are very good across all combinations of 4 and §# . The power of the
tests decreases slightly as M 1increases except when vy = -0.2 . For lag

length 1, Said and Dickey’s t-test exhibits conspicuous size distortions for
almost all combinations of v and 4 . If the lag length is 7, size be-
comes quite stable for almost all combinations, but the power of test is so
low that it is hardly useful as a statistical test. The performance of the
Said-Dickey’'s test when £ = 2 1is comparable to that of S(&) and t(&)
with M = 5 in terms of size. But the power of $(&) and t(&) is much
higher than that of the Said-Dickey's test in this case. If £ =5, the
performance in terms of size is almost equivalent to that of Sa and t,
with M « 10 . However, in this case also, the power of §(&) and t(&)

is much higher than that of the Said-Dickey t-test.
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In Table 10, we report the power of the S(&) and t(a) tests when

the true ut's are used to estimate fuu(A) . As in Table 7, we observe
that power increases by using the true values of u_ -
Now we consider the band spectrum tests, S(&O) and t(&o) We use

the critical values from Table 1. The statistics converge to their limiting
distributions quite slowly. Hence, as reported in Table 11, there are
appreciable size distortions for all values of ¢ . For Table 11, the same
experimental format was used as for Table 6. To find out the reasons for
size distortions at T = 100

, we calculate the approximate bias of

S(a If we let

0)
ut = et + Bet_l

where {et} = 1id(0, oi) we have

M

1 13 1
T @ T Gy y )
M
2 2,012 1
~ o (1+6) (jow o5 Tk,
-M
and
M M
1 2 2,01 1 1
38 £1 (9 ~ o (1+0) (f QW) 5 -i k + 5 _ﬁ A(n+)k
From
PR A(n+l)k_ = i; b+ (1+ 02+ 0 102 3
2M -M n M )+ ) g D

it follows that
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A 1 L2 (1., 1.2
T(&, ~ ) ~ [ Waw/[ow" + [§ + b (9,M)]/J'0W
where
2 2
g + (1 + 6 + e)k_1 + (1+8)° Z kn
b'(S,M)-—%+ T <
(1+6)° = k
-M n

We calculate the values of b'(§,M) at T = 100 for various combinations
of 8§ and M using the Tukey-Hanning spectral window. The result is re-
ported in Table 12. We find that the bias takes negative values so that
the distribution at moderate sample sizes is located to the left of the lim-
iting distribution. Hence it is quite natural that a left-side test using
limiting percentiles has a great size distortions across all values of #
Even if we have fairly large samples so that size distortions disappear, the
maximum power of the tests is 50% as is studied in Section 5. For this
reason, experiments with ARMA(1,1) processes are not pursued for the band
spectral tests.

Let us draw some conclusions from our results so far. First of all,
S(4) and t(4) seem to be powerful tests with low size distortion at mod-
erate sample sizes. Secondly, S(a) and t(a4) are quite robust to dynamic
specifications of the errors. They show similar good performance across a
wide class of innovation processes. Thirdly, a simple rule of M = JT is
recommended, since it reduces the size distortion that is present at
§ = —0.8 in the MA(l) case at a cost of slightly reduced power in general.
Such a rule is also robust to dynamic specifications. Hence, it would seem
that there is little need to change the rule as we have to do with other

unit root tests when there are general error processes.
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7. CONCLUSION

We have proposed new tests for the unit root hypothesis using GLS
methods in both the time and frequency domains. The proposed test statis-
tics do not involve nuisance parameters in their limiting distributions,
and, at least in the case of the frequency domain tests, quite general
temporal dependence is permitted in the errors.

Time domain tests using differences of [yt} have little size distor-
tions even for sample sizes as small as 25 and power grows with the sample
size. These tests are found to be more powerful than other time domain
tests. This is more obvious for positive moving average coefficients of
error processes. Time domain tests with estimated residuals are more power-
ful than other time domain tests including time domain GLS tests using
differences of [yt} . But they are subject to size distortions as the
moving average coefficient is close to -1, even though they are much less
serious than those of other statistics. The size distortions are, of
course, eliminated asymptotically, and the tests are consistent.

Band spectrum tests that rely on the asymptotic critical values are
subject to substantial size distortions and asymptotically, they are shown
to have a maximum power of 50%. In contrast, full spectrum tests are not
subject to serious size distortions in general and show very good power in
finite samples. We, therefore, conclude that the full spectrum tests are
to be preferred and our sampling experiments indicate that these tests out-
perform existing procedures like the Said-Dickey t-test and Phillips z(a)

and z{t) tests,.



TABLE 1

T-1

Critical Value

0.5%

1%

2.5%

5%

10%

90%

95%

97.5%

99%

99.5%

Sa

0.0001

0.0006

0.0034

0.0128

0.0485

2.2534

2.8882

3.5219

4.4048

5.0003

t(ao)

0.0001

0.0002

0.0013

0.0049

0.0194

1.3717

1.7071

1.9976

2.3388

2.5664

Based on 50,000 iterations with infinite series cut at 200.




TABLE 2

GLS with True #¢

(1) T =25
p a
0.7 0.8 0.9 0.95 1.0

~-0.8 | p 0.600 0.340 0.145 0.081 0.058
ty 0.569 0.320 0.132 0.071 0.051

g 0.619 0.363 0.137 0.068 0.039

~0.5 | p 0.583 0.349 0.152 0.085 0,056
te 0.552 0.324 0.135 0.080 0.050

te 0.615 0.362 0.141 0.076 0.040

0.5 | p 0.596 0.347 0.154 0.083 0.052
ta 0.561 0.334 0.142 0.073 0.047

e 0.614 0.368 0.147 0.070 0.041

(2) T = 50
p a

0.7 0.8 0.9 0.95 1.0

0.8 | p 0.977 0.751 0.317 0.128 0.051
te 0.970 0.747 0.312 0.129 0.050

te 0.967 0.764 0.332 0.129 0.047

-0.5 1 ¢ 0.974 0.782 0.334 0.143 0.042
to 0.967 0.766 0.320 0.137 0.042

te 0.964 0.784 0.339 0.140 0.037

0.5 | p 0.979 0.788 0.318 0.152 0.044
tr 0.974 0.777 0.312 0.151 0.041

& 0.973 0.792 0.328 0.152 0.038

T-2



TABLE 2, continued
(3) T = 100
9 o

0.7 0.8 0.9 0.95 1.0

-0.8 2 1.000 1.000 0.750 0.331 0.050
tR 1.000 0.9499 0.750 0.327 0.048

tG 1.000 0.998 0.760 0.334 0.047

-0.5 p 1.000 1.000 0.763 0.316 0.048
tR 1.000 0.99¢ 0.756 0.320 0.046

t. 1.000 0.999 0.766 0.331 0.045

0.5 0 1.000 1.000 0.763 0.293 0.050
tR 1.000 0.998 0.762 0.290 0.050

tG 1.000 0.998 0.777 0.301 0.048




TABLE 3

Feasible GLS Using 8y,

(1) T = 25
P a

0.7 0.8 0.9 0.95 1.0

0.8 | » 0.212 0.180 0.152 0.103 0.074
ta 0.201 0.168 0.144 0.098 0.067

te 0.180 0,155 0.126 0.084 0.057

-0.5 | p 0.178 0.128 0.074 0.045 0.¢20
ta 0.164 0.119 0.063 0.041 0.018

to 0.146 0.101 0.050 0.030 0.016

0.5 | p 0.396 0.241 0.104 0.067 0.037
te 0.371 0.217 0.095 0.060 0.030

te 0.307 0.179 0.079 0.046 0.023

(2) T =50
P a

0.7 0.8 0.9 0.95 1.0

~-0.8 | p 0,253 0.261 0.194 0.134 0.071
te 0.251 0.254 0.199 0.132 0.067

t, 0.247 0.249 0.187 0.124 0.065

~0.5 | p 0.365 0.305 0.164 0.084 0.024
tr 0.364 0.295 0.159 0.080 0.025

tq 0.348 0.280 0.149 0.073 0.023

0.5 | p 0.905 0.688 0.285 0.145 0.061
te 0.896 0.674 0,275 0.141 0.057

te 0.883 0.649 0.257 0.128 0.052




TABLE 3, continued

(3 T = 10C0
P o
0.7 0.8 6.9 0.95 1.0

-0.8 | p 0.232 0.324 0.286 0.186 0.047
te 0.232 0.327 0.282 0.185 0.046

ts 0.230 G.325 0.281 0.179 0.044

-0.5 p 0.619 0.672 0.457 0.209 0.036
tr 0.617 0.665 0.465 0.208 0.037

to 0.611 0.657 0.453 0.200 0.034

0.5 ] p 1.000 0.995 0.713 0.323 0.056
ta 1.000 0.995 0.707 0.318 0.058

s 1.000 0.995 0.695 0.310 0.055




TABLE 4
Feasible GLS Using True u,

(1) T = 25
9 o

0.7 0.8 0.9 0.95 1.0

0.8 p 0.549 0.292 0.156 0.123 0.074
te 0.506 0.270 0.147 0.117 0.067

te 0.572 0.295 0.150 0.100 0.057

-0.5 | p 0.518 0.210 0.081 0.044 0.020
to 0.475 0.189 0.075 0.042 0.018

ts 0.559 0.220 0.077 0.039 0.016

0.5 | p 0.624 0.317 0.125 0.073 0.037
te 0.591 0.291 0.105 0.066 0.030

te 0.657 0.332 0.111 0.062 0.023

(2 T =230
0 a

0.7 0.8 0.9 0.95 1.0

-0.8 | p 0.782 0.578 0.254 0.145 0.071
te 0.781 0.570 0.246 0.141 0.067

te 0.773 0.583 0.258 0.142 0.065

-0.5 | »p 0.821 0.739 0.236 0.086 0.024
te 0.820 0.717 0,226 0.083 0.025

te 0.819 0.736 0.242 0.084 0.023

0.5 p 0.999 0.846 0.357 0.153 0.061
R 0,992 0.833 0.347 0.149 0.057

te 0.992 0.850 0.363 0.149 0.052




TABLE 4, continued
(3 T 100
o

0.7 0.8 0.9 0.95 1.0

-0.8 P 0,952 0.771 0.486 0,233 0.047
tR 0.954 0.768 0.482 0.231 0.046

tG 0.916 0.748 0.487 0.239 0.044

-0.5 P 0.917 0.912 0.724 0.248 0.036
tR 0.918 0.913 0.719 0.249 0.037

te 0.913 0.912 0.730 0.254 0.034

0.5 g 1.000 1.00C 0.799 0.341 0.056
tR 1.000 1.0060 0.795 0.347 0.057

tG 1.000 1.0060 0.806 0.352 0.055




TABLE 5

Feasible GLS with Instrument Variable Estimation

(1) T =25
P a
0.7 0.8 0.9 0.95 1.0

-0.8 | p 0.883 0.877 0.750 0.598 0.436
ta 0.877 0.874 0.744 0.590 0.430

te 0.605 0.619 0.526 0.426 0.319

0.5 | p 0.720 0.535 0.319 0.232 0.124
to 0.710 0.528 0.311 0.224 0.120

s 0.561 0.438 0.279 0.208 0.108

0.5 | » 0.609 0.413 0.208 0.151 0.078
ta 0.587 0.400 0.197 0.142 0.072

s 0.629 0.432 0.219 0.154 0.081

(2) T =250
9 a

0.7 0.8 0.9 0.95 1.0

-0.8 | p 0.921 0.934 0.817 0.630 0.324
t 0.921 0.931 0.816 0.626 0.320

te 0.676 0.718 0.605 0.481 0.256

0.5 | p 0.79%6 0.648 0.378 0.208 0.080
ta 0.796 0.642 0.379 0.203 0.075

to 0.664 0.594 0.382 0.205 0.078

0.5} p 0.953 0.779 0.391 0,207 0.091
ta 0.950 0.765 0.383 0.207 0.084

ts 0.955 0.788 0.399 0.217 0.087




TABLE 5, continued

(3) T =100
P a

0.7 0.8 0.9 0.95 1.0

-0.8 | p 0.937 0.957 0.849 0.629 0.199
=Y 0.936 0.957 0.851 0.627 0.198

te 0.813 0.823 0.751 0.593 0.193

0.5 | p 0.848 0.794 0.635 0.327 0.072
te 0.848 0.787 0.632 0.329 0.070

o 0.817 0.779 D.641 0.337 0.070

0.5 p 1.000 0.995 0.776 0.363 0.071
1Y 1.000 0.994 0.770 0.360 0.074

te 1.000 0.9%4 0.780 0.369 0.077
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TABLE 6
S(&) and t(&) Tests:
-e + ﬂet_l ,ou =Ly, under Both Null and Alternative
Size Power
M =275 M =10 M=35 M =10
0.5 S(&) 0.020 0.015 0.929 0.868
t(a) 0.023 0.018 0.958 0.904
0.2 | s¢a) 0.024 0.018 0.936 0.859
t(&) 0.025 0.019 0.957 0.895
-0.5 | S(&) 0.105 0.040 0.999 0.956
t(a) 0.104 0.040 1.000 0.969
-0.8 S(a) 0.498 0.210 1.000 1.000
t(a) 0.494 0.209 1.000 1.000

T-10
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TABLE 7
S(a&) and t(&) Tests:
+ Bet—l , True u under the Alternative
P Power
M=25 M« 10
0.5 S(a) 0.997 1.000
t(a) 1.000 1.000
0.2 S(a) 0.997 1.000
t(&) 0.999 1.000
-0.5 S(a) 1.000 1.000
t(a) 1.000 1.000
-0.8 S(&) 1.000 1.000
t(a) 1.000 1.000

T-11



Tukey-Hanning Window

TARBLE 8
Small Sample Distributional Biases of S(&)

with MA(1) Error:

(T = 100)
P 5 8 10 15 30
0. -0.0248 0.0054 0.0092 0.0114 0.0095
0. 0.0518 0.0341 0.0280 0.0196 0.0104
G. 0.0391 0.0232 0.0182 0.0118 0.0057
0. 0.0000 0.0000 0.0000 0.0000 0.0000
-0. -0.0799 | -0.0445 | -0.0338 | -0.0207 | -0.0094
-0. -0.4031 | -0.2178 | -0.1623 | -0.0960 | —0.0410
-0. -2.2662 | -1.1849 | -0.8868 | —0.5210 | —-0.2072

T-12



TABLE 9
{(a) S(&) and t(a&a) Tests
aAl: ut = O.2ut_l + et + Bet_l
Size Power
M =275 M= 10 M=35 M =10
0.5 S5(&) 0.014 0,014 0.889 0.854
t{a) 0.017 0.016 0.929 0.899
0.2 S(&) 0.018 0.015 0.894 0.850
t(a) 0.019 0.017 0.931 0.897
-0.5 S(&) 0.076 0.036 0,996 0.940
t (&) 0.081 0.036 0.997 0.958
-0.8 | S(&) 0.437 0.181 1.000 1.000
(&) 0.433 0.181 1.000 1.000
A2: u, = --0.2\.1‘:_1 + e + Bet—l
Size Power
M =25 M =10 M=235 M =10
0.5 S{a) 0.025 0.018 0.944 1.000
t(&) 0.02¢ 0.019 0.959 1.00C
0.2 Sta) 0.030 0.021 0.958 1.000
t(a) 0.030 0.021 0.976 1.000
-0.5 S(a) 0.123 0.044 1.000 1.000
tlh) 0.121 0.043 1.000 1.000
-0.8 S(4&) 0.540 0.250 1.000 1.000
t{a) 0.535 0.246 1.000 1.000




TARLE 9, centinued
A3: u, = -—0.6ut_l + e, + Get_l
Size Power

M=25 M =10 M=25 M= 10

0.5 S(a) 0.031 0.021 0.954 0.863
t(a) 0.030 0.022 0.970 0.898

0.2 S(a) 0.033 0.024 0.968 0.874
t(&) 0.035 0.023 0.977 0.902

~0.5 S(&) 0.157 0.063 1.000 0.991
t{a) 0.152 0.062 1.000 0.992

-0.8 S(&) 0.612 0.375 1.000 1.000
t(a) 0.601 0.358 1.000 1.000

T-14



T-15

TABLE 9, continued
(b) Said and Dickey's t-test
Bl: u, - O.Zut_1 + et + 6et_1
9 Size Power
£ =1 £ =2 £ =25 = 7 =1 -2 £ =5 - 7
0.5 0.236 0.023 0.039 .039 .000 .901 0.616 .358
0.2 0.125 0.033 0.038 .040 .9%96 .862 0.441 .264
-0.5 0.205 0.068 0.040 .040 .992 .542 0.163 .107
-0.8 0.825 0.431 0.163 .067 .994 .986 0.471 .236
B2: u, = —O.Zut_1 + e + Het_l
8 Size Power
=1 R o= 2 £ =5 -7 =1 -2 2 =5 -7
0.5 0.100 0.032 0.037 .039 .989 662 0.365 .214
0.2 0.045 0.038 0.036 .039 .870 .570 0.259 172
-0.5 0.673 0.112 0.045 .038 ,994 .592 0.123 .078
-0.8 0.992 0.576 0.209 j .122 .994 L9594 0.553 .259




T-16

TABLE 9, continued
B3 u = -0.6ut_1 + e  + Bet_l
Sirze Power

£ =1 £ =2 £ =5 2 =7 = 1 -2 £ =5 =7

0.5 0.047 0.041 0.038 0.040 .833 .562 0.233 0.156
0.2 0.209 0.043 0.039 0.042 .979 .403 0.175 0.124
-0.5 0.982 0.145 0.046 0.035 .994 .659 0.111 0.066
-0.8 0.994 0.654 0.235 0.128 .999 .994 0.599 0.270




TABLE 10
t(&d) Tests:

5(a&) and

under the Alternative

+ et + Get_l , True ut
{a) v =0.2
9 Power
M=275 M =10
0.5 S{a) 0.989 1.000
(&) 0.996 1.000
0.2 S{&) 0.993 1.000
(&) 0.996 1.000
0.5 S(&) 1.000 1.000
t{a) 1.000 1.000
-0.8 S(a) 1.000 1.000
t(a) 1.000 1.000
(b vy =-0.2
P Power
M=25 M =10
0.5 S(&) 0.999 1.000
t(&) 1.000 1.000
0.2 S(a) 1.000 1.000
t{a) 1.000 1.000
-0.5 S(a) 1.000 1.000
t{a) 1.000 1.000
-0.8 S(a) 1.000 1.000
t(a) 1.000 1.000
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TABLE 10,

continued

(¢) v = -0.6

Power
Me=5 M= 10
0.5 S(&) 0.998 1.000
t(a) 1.000 1.000
0.2 S(&) 0.99¢ 1.000
t(&) 0.992 1.000
0.5 | S(a) 1.000 1.000
t(a) 1.000 1.000
-0.8 S(a) 1.000 1.000
tia) 1.000 1.000

T-18



S(a

TABLE 11
O) and t(&o) Tests: u_=e_ + fe
P Power
M =25 M e 10

0.5 S(&) 0.324 0.224
t(a) 0.327 0.223

0.2 S(a&) 0.327 0.227
t(&) 0.333 0.233

-0.5 S{a) 0.386 0.248
t{a) 0.401 0.280

-0.8 S{a) 0.640 0.361
t{&) 0.665 0.402

-1
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TABLE 12
Small Sample Distributional Biases of S(&O) with MA(l) Error:
Tukey-Hanning Window
(T = 100)
P 5 8 10 15 30
0. -0.1217 -0.0817 -0.0667 -0.0456 -0.0233
0. —-0.,1236 -0.0824 -0.0671 -0.0458 -0.0233
0. -0.,1301 -0.0847 -0.0686 -0.04064 -0.0235
D, -0.1410 =0.0886 -0.0710 =-0.0474 =0.0237
=0. —0.1653 ~0.0974 ~0.0764 =0.0497 -0.0242
=0. —0.2968 =-0.1447 —-0.1056 ~0.0620 =0.0271
-0. 1.6993 0.6498 -0.4175 -0.1931 -0.0578

T-20
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Figure 1: pdf of Sifi- statistic
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Proof of Theorem 2.1

{(a) We have

t
t-1
yi, = T 0Ty
i=1

t .
- 3 (-6)"
i=1

i

y

APPENDIX: PROOFS

Thus T(&G — a) 1is expressed as

A ‘—2T
T(uG -a) = [T 21

{

-1
‘ 2
1o 0t
1575 Jo* St—l} ]

t
~2.T]1 - (-8
'{T E1{“1 7 Yo st—l}et]

As in Phillips (1987) we now have

-2 2 21,2
T LS,y = ¥

-3/2 1
T /°ES,_; = ofW

and

-1
T 25 1%

Hence it follows that

= azféde :



1
fowdw

T(a 5

—0)5

G 1
Jo¥

i vk
{(b) We write Y¥_, &s

- t t—i—
y¥ . = Z (-8)" Ty,
t-1 i=1 i

As in Phillips (1987) we now have

-2, 22 2152
T °2, 5, 4 = o[

-3/2

- 1-
T V55, = af¥

and
-1

T =S

2,1=
2e-1%¢ 7 ¢ IOde !

from which the stated result follows directly.

Proof of Corollary 2.2

Omitted.

Proof of Corollary 2.3

Omitted.



Progf of Theorem 4.1
The proof is closely related to the proof of Theorem 3.1 of Phillips

(1988a) and so we shall only give the essential details here.

(a) Write

A -1
L. Mo .
(A1) TG-1) = |gpz 5 £, 4()f (w.)}

It will be convenient to work with spectral estimates of the same general

form and we shall use the expression

p 1 " n —inA
fab(A) T 2z _ka[ﬁ]cab(n)e
for this purpose, where
-1_T
Cab(n) = T Elatbt+n , 1l =tin=<T

and where the convergence factor or lag window k(x) 1is a bounded, even
function with k(0) = 1 , vanishing outside the domain [-1,1] .
For asymptotic analysis, we may replace fuu(wj) with fuu(wj) .

which is legitimate since f (w,) 1is a consistent estimate of £ (w,)
uu’j uu’ j

Using the Fourier series

we have



1 ; £ (0 Y E F(w.)

2MTj-TM+1 =1,-1""7§" uu ]

R S g eigﬁj/M £ (x5 /M)
i 3 -1.-1

11 °
where
5+22M-g, ~M+l = g <= M

for some integer £ and where

-1
Cy v {(n) =T zyt—lyt~1+n , 1 =t-1+n =T .

As in Phillips (1987a) we have

-1 -2.T 21,2
(A2) T Cy_y_(n) =T I Yeitan = @ SOV
Also

(A3) k(g/M) = 1

for all fixed g as T , and hence, M + «» . From the Fourier transform

of £1(a) , we deduce that
uu
ze 1 -2
(a4) [55] g = nf 007 =

(42), (A3) and (A4) now yield the required result

P -1 1.2
(A3) f—l,-l(wj)fuu(wj) = fow



as in Phillips (1988a).
Replacing fuu(k) with fuu(A) in the second factor of (Al), we

obtain

LMo _
D (w.YE {w.)
2MTj=—M+l 1,u”7j  au

@ M . igw

- 5% T %ﬁ T £, (woe Jld

ge—o | jmM+1 T &

114 °
- [5;] ngfmcy LB

Now we have

-1_T
Cy u(n) = T Zly

IA

u , t+n = T
t-1"t4n

= w2f3de + A(n+l)

where
L
A(n+l) = .2 EuOuj+n+1
j=0
Defining

we have



112 °
[*2-'1—[] = A(E-i—l)dg

gaz—-m

1 2 w @
= |= z Z Eu u .td
[2ﬂ] gm—o| j=0 07g+l+j| &

112 °
{AG) = [——] Z Eu.u,
T g= 0=j

But, using the inverse transform we have the representation

_ e 13X .
EuOEj f_ﬂe fUE(A)dA for all j

and
© .
£ ooy = T £ (nelEhig
uu uu g
- g-:—m
ix -1
= fuu(A)e 2ﬂfuu(A)
- 2ﬂeiA
Thus
PRI S X6 25 P
E(vogj) 2wf‘ﬂe dA
- en? 5 -
(A7)
= 0 , otherwise.
Using (A6) and (A7), we deduce that
112 °
(A8) [E}] Z Agl)d, = 0 .

g=—co

As before,



(a9) k(g/M) » 1

and

2 @
1 S
[——] T w (fOWdh)dg

27
g-—cn

(A10) = féWdW :

It follows from (AB), (A9) and (AlQ) that

= B f . (w)f (w.) = [Wdl as T - e
2Mj-—M+1 1,u"7§  au ] 0

giving, with (A5), the desired result.

{(b) We write

A ~
~

1 1
T(ay - 1) = 33 u,—l(o)/fﬁf f—l,-l(O)

As in (a), 1t follows that

A M 2
1 1 n w 2
WL g £, (0 - mfnj;[ﬁ]cy_y_(“) g fw e T
Next we find that
A M 2
1 1 n w 1
2 fuy (0 - Z}'ﬁn_}_:Mk[ﬁ] Cy o = 5[ + 3)

2
since A ~w and thus by Cesaro convergence



M M
1 1 1
Eﬁ = A(n+l) - iﬁ z A(n+1) + EH
n=—M n=0 -

(A1ll) and (Al2) lead to the desired result.

M
T A(n+l)
M
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