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ABSTRACT

This paper studies the properties of the von Neumann ratio for time series with
infinite variance. The asymptotic theory is developed using recent results on the weak con-
vergence of partial sums of time series with infinite variance to stable processes and of
sample serial correlations to functions of stable variables. Our asymptotics cover the null
of iid variates and general moving average (MA) alternatives. Regression residuals are also
considered. In the static regression model the Durbin—Watson statistic has the same limit
distribution as the von Neumann ratio under general conditions. However, in dynamic
models the results are more complex and more interesting. When the regressors have
thicker tail probabilities than the errors we find that the Durbin—Watson and von
Neumann ratio asymptotics are the same. But when the tail probability of the errors is at
least as thick as that of the regressors then different results apply. It is shown that for
finite variance models our results specialize to those of the Durbin h-statistic and
equivalent LM test asymptotics. Some Monte Carlo results are reported, illustrating the
effects of infinite variance errors and regressors in finite samples.
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1. INTRODUCTION

In recent years there has been a revival of interest in the properties of the Durbin-
Watson (DW) statistic for testing for serial correlation in regression residuals. The
statistic was originally designed to detect the presence of first order autoregressive (AR(1))
errors in the linear regression model and it is known to deliver good power and to have
certain optimal properties in this case. For example, the DW statistic is approximately the
locally best invariant (LBI) test against AR(1) errors, as shown in Durbin and Watson
(1971). Recent work by Kariya (1988) and King and Evans (1988) shows that the test
continues to have good power and retains the LBI behavior against other forms of error
behavior whenever the first order serial correlation coefficient is non zero. The reader is
referred to King (1987) for an historical review and for further references on the subject.

Although the properties of the DW statistic have been intensively studied by econo-
metricians, there seems to have been little work on the behavior of this test in regression
models where the errors have infinite variance. The case of regression errors in the spheric-
ally symmetric class, which admits some infinite variance distributions, has been studied
analytically; and the robustness properties of the Durbin—Watson test in this case are quite
well known—see Kariya (1977, 1980) and King (1980). But the null distribution of the
DW statistic is the same for spherically symmetric errors as it is for Gaussian errors, 50 the
assumption of spherical symmetry has no distributional effects. Similar distributional in-
variance under spherical symmetry applies to other scale invariant statistics like the
t—ratio, as has been known since Fisher (1925). In contrast, the effects of statistically
independent infinite variance errors can be substantial. Indeed, for the conventional
t—ratio it is known that infinite variance, independent draws induce a bimodality in the
density—see Logan et al. (1973) and Phillips and Hajivassiliou (1987). These major differ-
ences in the distribution of the t—ratio between spherically symmetric and statistically

independent variates with infinite variance indicate that it is of real interest to explore the



effects of the latter in the case of other test statistics and regression diagnostics. This is a
topic on which there has been virtually no work to date, with the exception of some
simulation evidence such as that of Bartels and Goodhew (1981).

The aim of the present paper is to show that an asymptotic analysis at least is well
within reach. We start by developing a limit theory for the von Neumann ratio in a non
regression context. Our asymptotics cover the null of iid variates and a general time series
alternative that allows for infinite order MA representations. Next we provide an asymp-
totic distribution theory for the DW test in static models where the regressors and the
errors have distributions within the normal domain of attraction of a stable law with
exponent a < 2. Our results are extended to dynamic regression models where they are
related to known asymptotic theory for Durbin’s h—statistic and associated Lagrange multi-
plier (LM) tests, which are now in popular use for models with lagged dependent variabies.
A Monte Carlo study is reported, illustrating the behavior of the tests in finite samples
under infinite variance errors.

Our theoretical development is made possible by some recent results in the probabil-
ity literature on weak convergence for time series with infinite variance. Ir particular,
Resnick (1986) provides many fundamental results of this type for sequences of partial
sums and Davis and Resnick (1985a, 1985b, 1986) develop a gemeral theory for sample
covariances. Qur theory is in large part an application of their results to the regression

diagnostic context.

2. THE VON NEUMANN RATIO

Let {ut} be iid and suppose u, lies in the normal domain of attraction of a stable

law of index a. We shall write this for convenience in the form
(1) u, € (a) .

Note that a necessary and sufficient condition for u; € ¥D(a) when 0 < a <2 is that the



tail behavior of u; be of the Pareto—Lévy form, i.e.
P(u; <u) =ca%u| %1 +0(1)), u<0
P(u, >1)= czaau_a(l +0(1)), u>0

as |u| -w, where a is a scale parameter and ¢,,Cy20 with ¢, +¢cy=1. (See
Ibragimov and Linnik (1871, Ch. 2) for this and for further information about domains of
attraction, normal domains of attraction and stable variates.)

We shall also assume that | uy =4 where " =" signifies equality in distribution.
This condition ensures that the distribution of U is symmetric. It is convenient but not
essential to our development (especially when 0 < a<1). If u; were strictly stable

—a

Q) a
rather than simply in ¥P(a) its characteristic function would be e s

Our first concern will be with the von Neumann ratio
(2) VN = 58(u, —u, ,)%/5%u?
2Vt t—1 17

Under (1) uf € ¥(a/2) whereas wu, , € P(a), the domain of attraction of a stable law
with index o . Note that uu, , does not lie in a normal domain of attraction and this
affects its norming sequence in partial sums such as those that occur in (2). Indeed, as
shown in Phillips (1988), the tails of the variate X =u,u, when 0 < a <2 are charac-

terized by

(3) pdf(X) = (1/2)e%a2%(&| X)X "*71(1 + o(1)) ,

as |X|-w . These tails are not of the Pareto—Lévy form, so that X does not lie in
¥b(a) . However, the function ¢n( ) is slowly varying and the form of (3) does ensure that
X € Ha) (Ibragimov and Linnik (1971), Theorem 2.6.1, p. 76).

Under these conditions suitably normed sample moments and sample serial covar-

iances of u, converge weakly to limiting stable variates. In particular, it is known (see



Davis and Resnick (1985b), p. 278) that

(4) (3520}, 87 Bjum, ;)@ (Sg, Sy)

where § is stable (and positive) with index /2, S, is stable (and symmetric) with
index a and the limit variates (SO’ Sl) are independent. These limit variates have char-

acteristic functions

tS

clg () = E(ei 0y = exp{-r(x-a/z)oos(m/4)|t| @/2(1 _ jsgn(t)tan( m/4))}

d () =Ee b= exp{-T(1-e)oos(ra/2)|t|%} , for a# 1
! exp{—(/2)|t]} , for a=1

(cf. Brockwell and Davis {1987), pp. 482—483; set C = 1 in their formulae (12.5.14) and
(12.5.15)). Note that in (4) and throughout this paper the symbol "2 " signifies weak
convergence of the associated probability measures.

Note that the norming sequences in (4) are given by
(5) a =anl/®, & =b(a a(n))l/®

where b= 3.2 .

Next we write
2.1 _ =—1 —2¢n 2y -1, 2 2y, —2¢n 2
(6) a 8 "(VN-2) = (28] L‘gutut_l)/(an Elllut) —& (v +uy)fa) Elllut .
Then, noting that 312151_11 = (n/tn(n))ll @ . we deduce from (2), (4) and (6) that

™ (n/&a(m))/ (VN-2) 25, /S

by direct use of the continuous mapping theorem. This gives us the asymptotic dis-

tribution of the von Neumann ratio under the null that {u,} is iid and in Ja).



We can proceed in a similar way under the alternative hypothesis. Let us suppose

that u, has a general moving average representation of the form

(8) Emdjet —j» dg=1

where ¢, is iid, symmetric and in ¥P(a) . It will be convenient, but is not essential, to
assume that the coefficients dj in (8) are majorized by geometrically declining weights
ie. |dj| < K@ for some K > 0 and some 0 < < 1. Then the series (8) converges a.s.

(see e.g. Brockwell and Davis (1987), p. 480). Under the usual AR(1) alternative of
(9) ut=mt—1+et’ l‘P|<1

we have d.i = p‘ directly.
The tail behavior of the density of u, , f(u) , under the alternative (8) is also of

the Pareto form. Specifically,

l/a
(10) 1(w) » (1/2)ea[B_g14,1% " 187, ful 40

(see, e.g. Brockwell and Davis (1987), p. 481). In (10) the symbol "~ " is used in the
usual sense that the difference between the expressions is o(1) . When ¢, is symmetric

stable we have the distributional equivalence

W e[l

as may be verified by looking at the respective characteristic functions.
Although second moments of u, in (8) are not finite when 0 < o < 2 we may, as

in Davis and Resnick (1986), define a pseudo-correlogram for u, by

(12) p(b) = B5_qdid; /%, d2 h=1,2,.

When a=2 and Eu% < o this is equivalent to the usual correlogram given by



(13) p(h) = E(uu, 1 )/B(ud) .

In studying the asymptotic behavior of the von Neumann ratio under the general altern-

ative (8) it follows from (6) that the dominant term is given by the sample first correlation

31 =2 Moy, /5

Indeed, we may rewrite (6) as
VN - 2(1 p(1))} = 2261 {3(1) - p(1)} + o p(1)
where aiél;l = (n/tn(n))ll @ as before.
From the limit theory in Davis and Resnick (1986, pp. 555—556) we have
fa(n))!/ oy (521519 %. s
(/&) Xp(1) - (1)} » [25_,151%] 5,15,

where

(14) f; = p(3+1) + p(3-1) — 2p(j)(1)

and the limit variates (S, §;) are independent and stable with indexes a/2 and a,

respectively, just as in the case of (4) under the null hypothesis. We deduce that

1
(/)28 — 21 - oo 2121519 %575

J 0

Collecting these results together we have:

THEOREM 1. Under the null hypothesis that u, is iid symmeiric and in JWa) with

0 < a< 2 the limit of the von Neumann statistic is given by
(15) (1/2)(0/&n(2))/ %VN - 2) 3 5,/5, .

Under the aliernative that u, is generated by (8) we have



1
(16) /2w N ~ 20— o) » [151) 5,5

In both (15) and (16) the limit variates (S, S;) are as in (4) and the constants fj in (186)
are given in (14).

REMARK (a) When a=2 the variance of u, is finite since u; € JP(2) . In this case
the limit distributions (15) and (16) are both normal but the norming factor is pl/2
rather than (n/tn(n))ll 2 n fact, §, = N(0,1) and Sy=1 as. The latter follows from

1/2

the fact that when a=2 the norming sequence is 2, =an and

n 12?11 TN a = var(u ) . Relating this to the above we may write

(17) az280ul 4 5, = [3(dU,)° = [5(aW) 2= [pdr=1 as.

where W(r) is standard Brownian motion and U (r) is a standard stable process with
index a (see Phillips (1988) for further discussion of the multiple stochastic integral
representation that appears in (17)). Also, when u, is iid and in ID(2) we have

uu, € ¥9(2) and

(18) A RPEERES (B

2 1/2

where the norming sequence for the sample covariance is & =a™n rather than

i = a.2(ntn(n))1/ 2 asin (4). Thus, when a=2 and u, € ¥p(2) we find in place of (15)
the result

(15)” (1/2)nM3(VN-2) 2 N(0,1)
under the null. Similarly, under the alternative we find that ¢, € 4(2) implies that
(16)’ (1/2)n}2(VN - 2(1 - p(1))) 2 N(0, L‘l“f?)

(cf. Anderson (1971), Theorem 8.4.6, p. 489 and Davis and Resnick (1986}, p. 555 on the

limit distribution of sample serial correlations in the finite variance case).



REMARK (b) Figure 1 shows the empirical density of the ratio §,/S, for various values
of a including the case a=2 when §,/5,= N(0,1) , as remarked above. These dens-
ities and the quantiles given in Tables 1a and 1b show that tests that are based on the

centered and scaled statistic

(19) v = (1/2)(a/ (@) %(VN-2)
and that employ critical values for the a =2 case (delivered from the standard normal

distribution) are conservative for a close to 2 but liberal as a-0.

REMARK (c) When p(1)#0, (16) shows that tests based on v are consistent. In -

particular when p(1) > 0 we see that v diverges to —w at the rate (n/tn(n))ll @,

Thus, a one sided test of the hypothesis

Hy: p(1) = 0 against H, :p(1) >0
that was based on v would reject H, when v <—v (0.05) where —v (0.05) is the 5%
nominal asymptotic critical value in the left tail of the asymptotic distribution under the

null. Such a test is consistent. Its sampling properties are investigated in the Monte Carlo

study reported in Section 4.

REMARK (d) The representations (15) and (16) in the theorem use the fact that

§; S, so that both §; and theratio §; /S, have symmetric distributions.

REMARK (e) When the alternative hypothesis is the usual AR(1)} representation (9) we
find that fj = gaJ_ 1(1 - q92) and

[z‘g:llfi'a]l/a: 1- wz)[l 4 a]—‘l/a

leading to the explicit form

- A= 101 S s,



of the limit distribution under this alternative. Again, when a =2 we have

2

(1- 902)1/ §,=N(0, 1~ )

which is the well known asymptotic distribution of the first order serial correlation

coefficient in the finite variance case.

REMARK (f) The density of the ratio §;/S, has an infinite mode at the origin when
a<2. To see this, write Z = §,/S, and note that in view of independence the joint

density of (S, Sb) factors as follows:
pdf(S,, S) = £,(S,)fg(Sy) -
Then

pdf(Z) = j %1 (So2)g(S)dS,
5p>0
and the density at Z = 0 is infinite since the integral that defines E(SO) is divergent
when a <2 . The sharp peak in the density is reflected in the graphs of Figure 1,
especially for the case where a = 0.5 . Cases such as this where there is a discontinuity in
the density pose interesting problems for kernel density estimation. In particular, to avoid
kernel smoothing over of the discontinuity it is necessary to use one sided kernel estimation
on either side of the discontinuity. This seems to be a problem that is not discussed in the

nonparametric estimation literature.
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3. ASYMPTOTICS FOR THE DURBIN-WATSON STATISTIC
BASED ON REGRESSION RESIDUALS

3.1. Regressions with independent regressors
We shall work with the linear regression model

(20) yp=c¢+bx +u;t=12..

where under the null hypothesis u, is iid symmetric with u, € ¥(a) when 0<a<?2.
We shall also assume that the sequence X, is completely exogenous in the sense either
that it is fixed or completely independent of the error sequence {ut} .

We shall further assume that the parameters ¢ and b in (20) are consistently esti-
mated by ¢ and b. When a> 1 this may be achieved by least squares methods under
rather weak conditions on x, . Indeed, Kanter and Steiger (1974), Chen, Lai and Wei
(1981), Cline (1983) and Andrews (1986) all demonstrate the consistency of the least
squares slope coefficient estimator b under a variety of conditions which ensure sufficient
regressor variability. For example, when x, is scalar, iid and lies in JP(r) with r< a
then a minor variation of Kanter and Steiger’s Lemma 4.3 ensures that b - b ; andif
a>r>1 then ¢ - ¢ also, by the weak law of large numbers. Andrews (1986) extends
this result for the slope coefficient to the multiple regressor case where each regressor may
be distributed with separate characteristic exponents I (i=1, ..., k). He shows inter
alia that consistency continues to hold even when independence between x, and u, is
relaxed provided r=max(r})<2 when a>1. However, stochastic dependence
between X, and u does affect the limit distribution theory (and, hence, that of residual
diagnostic tests) even though consistency is unaffected. When a <1 consistent estimates

of the coefficients in (20) may be obtained by various robust methods such as bounded
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influence estimators or the classical Huber M—estimator (Huber (1964)). The latter has
been shown to perform well in simulations in the present context (Andrews (1986)).

The residuals from a fitted regression are written as

-
~

§, =y, — & —b'x, = u, — (¢=¢) - (b-b)x
and the DW statistic then has the form
(21) DW = 1@, —d, )%/%a2
V% T Re—1/ 151N

Since (&,b) - (c,b) and since x, and u, are independent we find that the sample

1
variance and covariance of ﬁt behave asymptotically like the corresponding quantities for

u, upon appropriate standardization. In fact as n-+o we have

[a—zﬂnﬁz 5150, 4

-2 2 1
n “1% %n t—1] " [an 5pup & Eg“t“t—l] * (89 51) -

This leads us directly to the conclusion that the DW statistic (21) based on regression
residuals is asymptotically equivalent to the von Neumann ratio based on the regression

errors from (20). In particular, under the null for u we have
a(n)/4DW-2) 15, /5
(1/2)(a/ta(2))/ 4DW—2) 3 5, /5, .

In a similar way under the general time series alternative (8) we obtain

1/a
(1/2)(a/ta(a))! T *DW ~ 201 - (1)} » [ 151%] 5/,
Thus, the conclusions of Theorem 1 apply equally well to the standardized DW statistic

d = (1/2)(n/&a(n))/ (DW-2) .

In addition, when a =2 we find as usual that d3 N(0,1).



12

3.2. Regressions with lagged dependent variables

In models with a finite error variance the asymptotic theory for the DW statistic
changes when lagged dependent variables enter the regressor set. Use of the correct asymp-
totics leads, of course, to the LM and h statistics. The purpose of this section is to
examine how the asymptotics are affected in the infinite variance case by the presence of
lagged dependent variables. We note that recent arguments in terms of power properties
and small-sigma asymptotic behavior by Inder (1984a, b) and King and Wu (1989) have
been advanced to justify the use of the DW statistic in dynamic regressions. It seems likely
that these arguments could be extended (but with uncertain outcome) to accommodate
infinite variance errors. This would be of interest but it is not our intention here.

Let us suppose that our model has the form
(22) Vi = Wiy X+, 7]l <1

where u, and X, are as in the previous section. We shall estimate (22) by least squares
giving 7, f and suppose these estimates are consistent. This is a relatively innocuous
requirement since least squares is known to deliver strongly consistent estimates in
autoregressions with infinite variance errors (see Hannan and Kanter (1978)).

To fix ideas we shall again assume that under the null hypothesis u, is iid
symmetric and in 4% a) wher 0 < a< 2. The regressor x, in (22) will be taken to be
scalar for convenience (although extensions to multiple regressors are relatively straightfor-

ward) and to be generated by a general MA process of the form

(23) X = E?=Ogjet—j » §p=1.

Here the e, are iid symmetric with e, € ¥b(r) when 0 <r < 2. The coefficients ; in
(23) are assumed to be majorized by geometrically declining weights. As discussed in
Section 2 this implies the distributional equivalence
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51

X, = [”?=0'53"]1/I
so that the tails of the distribution of x, are Pareto with index r like those of the
innovations e, when 0<r< 2. We also assume that {et} and {u,} are completely
independent and thus x, ig strictly exogenous. Distributional results may be obtained
without imposing this exogeneity condition but they will, in general, be different from
those given below. We shall write the densities of x, and u, as h(x) and f(u),

respectively, and their tails as

h(x) = (1/2)b%|x| T, [x|-w
f(u) = (1/2)aa®u|* 7, |u| o

when O0<r, a<2.

We shall start our development of the theory with a preliminary but useful result on
the tail behavior of the product X = xu. It is helpful to employ the following index
conditionon r and a:

r<2c when a<1

(C1)
r<2 when a2 1,

Under (C1) it can be shown, as in Andrews (1986), that the least squares estimates %, B

are consistent. Moreover, from the Appendix of Phillips (1988), we have
(24) X € ¥9(q)

where q= aAr=min(ar) when a#r and XeP(a) when a=r. Both cases are
therefore included by the general statement that X € %q) .

We write the residuals from a least squares regression on (22) as
ﬁt =0, - (:7_7)yt_1 - (B_ ﬁ)xt

where
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-1
- ’ -1 ‘ ’ ’ ’ -1,
p-p= {X‘x —x'y_4(y3¥4) Y-1"} (ru—xy_(yyy ) vy

y=—nv= {y;ly_l - YLIX(X’X)_IX’y_I}“l{Y;lu = yL1X(X'x)_1x’u}
in usual regression notation. Also
(25) d_y = wu_y — (+y2 oy — (BAxu
— (ygu— (BB yu + ()2 y3_g + (B-Bx'x
+ (B-BY(AN(xy_g + x3¥_) -

The remainder of the discussion will be carried out in three distinct cases.

Case 1: 1 < a. Here the tail behavior of X dominates that of u and we have XYy 10

Y?_l, Xf € ¥9(x/2) , and XU, X0 4, ¥y qU, € P(r) . This leads to

(n/&a@)) (3-8, (a/ &))" (-) = 0, (1)

and
(ata(n)) ™ 2(B-B)xu_, = [(n/ta(a)) /X (B-B)lata(n)) " xru_]

()P tam)) % = 0 (1)

-1/a the fourth to the

In a similar way we see that upon standardization by (n/én(n))
ninth terms on the right of (25) are all op(l) as n-o. Turning to the second term we
note that y, ju, , € #(af2) if a/2<r and € Pr) if r<af2. Wrting p=rA of2

we then have



(ata(0))" %3y yu_y = [0/ E@) (G-Nliata()) /Py ju_]
[(ta()) /TP g1/ P= U x (0 g )y~ 1/ )

= 1
0,(1)
since r < a by hypothesis in this case. It now follows that

s 2nta()) % i = a2 (nm(n)) 7 %uru_y + 0 (1)#5,

Similarly

a2 %4 = 472 2y op(l) » 8-
Thus
(26) (n/tn(n))}/ qDW-2) 3 25, /5,

as in the case of regression with no lagged regressors.

The heuristic explanation behind (26) is straightforward. When 1 < a the inde-

pendent regressors x, dominate in determining the tail bebavior of the lagged regressor

1

Ti—1
tional static linear regression, leading to (26).

Case 2: r= a. In this case we proceed under the simplifying assumption that Xy is iid,

although this can be relaxed at the cost of extra notational complexity. Note that

y, = AL, + U, where Z, = E?:O"th—j , Uy = z?:o"]“t—j . Then

2
1 2_f 1 2 1 2
777 = ira ettt 7 37621Vt + %)
2 . .
b 2j 2j
:;ﬁ!—(a 2'6'7 )Sg; + (L"[‘;'r )Sgo

= [1 - 72]"1{%/3‘& + 1}2/0'50

15

in (22). Residuals from this regression then behave like the residuals from a conven-
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where S01 and 802 are independent copies of S0 . In a similar way we find

1
Zata(a) e Z1Ug g1,

+ (ab/a)(»:‘anﬂ'slj) + (s‘gqj)szj
(27) . . s1/a
= (1(a/3)1 817197 + 5519199 s,

= (=1 o) s,

2" j=0,1,..} areindependent copies of S1 .
Next we observe that, since x, is serially independent, x,y, , € ?(a) while xf €

where {S; 7 S

¥(af2?) and thus
- -1
(/@) %)~ [ %y | [Py o)
~1 1 2 -2
I N ey TPRCI s (P LT Rl CHTR

-l/a 1
—a-A - 11 fivjal 4 1) (5,159
= G, say.
Further

-2 -2/
a ‘n azlllyt——lut-—l 3 PG .

Here P‘0 is a copy of S0 and is not independent of S0 , at least as it occurs in the limit
(28).
Thus
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o~ 2ata(n)) Y Ay yu_y = [(0/B@)Y -l 22 %2 u )
s(=Ai-11 ™ 1wy + ) 1speg.
Also
s 2ta()y Y OB-pxu_y = a0/ ta(n))/ *(B-p)]
[ () xru_ () %

= o,(1)

and the remaining terms of (25) are similarly seen to be o

p(1) when standardized by
(nta(m)) M.

Finally we observe that

a_2(ntn(n))—1/ au’u_l 2P

1
and
a“2n_2/au'u * P
We deduce that
(29) (n/ta(n))}/ %(DW-2) » -2[P, /P, ~G] = H, say.

Thus when 1 = a we see that the effect of the lagged regressor in (22) is to alter
the limiting distribution of the DW statistic. This corresponds with known theory in the
finite variance case (see Durbin (1970) and Phillips and Wickens (1978), solution 7.5, pp.
423-429) where the limit distribution of the DW statistic is normal but has a variance that
depends on the variance of the limit distribution of %, ir contrast to the static regression
model. We shall now see that this finite variance case is a specialization of the general

limit theory when 1= a.
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Subcase: r=a=2. When r=a=2 both u, and x, have finite variance (since
u,, x, € ¥D(2) ). The scale factor is then 21/2 in (28) rather than (n/tn(n))ll @ Next

we observe that P0 =1 and

—2P /P, = N(0,4)

G is also normal in (29) when a =2 but it is dependent on P, . To see this we note
from (28) that G has the following more explicit representation in the general case

. . _ —2/a

(30) G = (1-P){(Bo/a)(ES, ) + (T, M 180/al *+ 1) /s
where S,q =P, . When u,, x, € ¥D(2) we may write the limit variate H of (29) as

H = —2P, + 2(1—72){(Bb/a)(Z27'S, ) + (50v15,)}/(Fb?[a%+ 1)

1 07 "1j 0725
= ~2[P; - P2] , Bay.

Now both P, and P, are normal and since Sqp = F, we have

cov(Py, Py) = cov(Py, Py (1= P)/(1 + B0 /a")

=21 - A% + ) .
Noting that
var(P,) = (1~ ¥)a’/(a” + F°b?)
we deduce that

P, —P, = N(0, 1 —2cov(P;, Py) + var(P,))

= N(0, 1 —a%(1 — P)/(a? + F?)) .

Since the variances of X and u, are finite we may write



19

al = var(u,) = 0121
b2 = var(x,) = ai
and since x, is iid we find from the usual formula (cf. Phillips and Wickens (1978), p.

427) that the variance of the limiting distribution of yn{%—7) is
_ 2 2 2 2
(31) v, = oa(1-1)(oF + Fod).

Thus the limit variate H in the finite variance (a = 2) case is simply

)

H=N(0,4(1-V,

i.e. we have
(32) yo(DW - 2) 3 N(0, 4(1 — V'Y))
leading as usual to the Durbin h statistic
h= @ r(1)/(1— v,,)lf 2, 1(1) = %8, /52
and the conventional asymptotics:
h 3 N(0,1),
which are the same as that of the LM version of this test.

Case 3: r > a This case may be handled in just the same way, s0 we present only a

sketch of the results here. Since the tails of Uy rather than x, dominate the behavior of

]
y, we find

(/) ()~ [0 %y ] - [ 2mtaca)) ™ %2 0]

T VL i (T VAL C Y
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and
a~2n 2/ QYL1“_1 * P,
s Y(ata(n)) ™ %ru_y 4 P,

a_zn_zl %us P

0
as before. This leads to
(33) (a/ta())"/ %DW - 2) 3 2[P, /P, - G*] = H"
where
(34) G = (1 = P)(Bo/a)55 s, + B, /s,

and, as before, 520 = Pl and S0 = P0 .

Observe that the limit distribution (33) is different from that of (29). This is
because the tails of u, dominate the behavior of sample moments of A when 1 > a,
whereas the tails of both Xy and u, are influential when r = a. Thus we have
" -1
1-+%| s, ,T>a

(35) a2 %y 4

C -l 2/a
-] {imjal®+1)" 8y, r=a

This implies that the limit variates G and G’ in (29) and (33) are different. However,

(35) suggests the distributional equivalence

G=kG’, k= {|ﬁb/a|°'+ 1}“210

Since 0 < k <1 we anticipate the distribution of G (an hence H in (29)) to be more
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concentrated than that of G’ (and hence H’ in (33)). The Monte Carlo resulis of the
following section corroborate this feature of the asymptotic distribution.

The results of these three cases may now be summarized as follows.

THEOREM 2. The Durbin—Watson statistic DW computcd from the residuals of o least
squares regression on the dynamic model (22) with iid regressors x, € ¥I(r) has the limit

distribution

81/5¢ r<a
(1/2)(n/a(n))/ %DW-2) 3 { P, /P, -G r=a
P./[P—G 1>a

for 0 <a<2 end r<2a. The limit variates (S, 8;) ereasin(4), (P, P,) are
independent copies of (S, S;) and G and G’ ereasin (30) and (34) respectively.
When a =1 =2 the limit theory s

(1/20/2(DW-2) 4 P, /P -G = N(0,1- V)

where V y is the variance of the limit distribution of yn(3—7) and is given in (31).

4. SOME SIMULATION EVIDENCE

In Sections 2 and 3, we gave the limiting distributions of the v and d statistics in
nonregression, regression and dynamic regression models. We now complement these
results by investigating the distributional shapes that the statistics possess ir. large and
small samples.

Since closed form expressions for the distributions are not available, we resorted to
simulation. We used the Kanter—Steiger (1974) algorithm to generate symmetric standard
stable random numbers of index a, for a<2, a#1. For a=2, we drew standard

normal random numbers. For a=1, we generated Cauchy random numbers by the
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inverse distribution function method; i.e. if x is uniform on (—x/2, x/2), then tan(x) is
standard Cauchy. We then calculated the v and d statistics and used a nonparametric
density estimate with a standard normal kernel (cf. Silverman (1986)) to deliver the pdf’s.
In all simulations reported below, the number of iterations was 20,000 for the v statistics
and 10,000 for the d statistics. We selected n = 1000 as the "large" sample size, and
n = 20, 50, and 100 as the "small" sample sizes. Values of a chosen were a = 0.5, 1.0, 1.5
and 2.0. All regressions were run without a fitted intercept. As discussed earlier this could
be modified in the static case by using robust regression methods and fitting an intercept to

obtain consistent estimates of the residuals (especially when a<1).

4.1. Large sample distribution of v and d

We first investigate the distribution of the standardized von Neumann ratio

1/2(a/1n (2))Y¥VN - 2), e<2,
—{1/2,/5 (VN -2), a=2.

Figure 1 graphs the density of v for the four values of «, as well as the pdf of the
standard normal distribution for reference. We notice that the distributions are leptokurtic
for a < 2, and that the kurtosis increases as a« | 0. On the other hand, the pdf of v in
the a=2 caseis very close to the pdf of the N(0,1) distribution. To complement the
visual information of figure 1, we give the quantiles of the distributions in Table 1a and the
probabilities of v being close to zero in Table 1b. E.g., for a= 0.5, Table 1a tells us
that the distribution of v is both leptokurtic and has very heavy tails. As o increases
towards 2, the kurtosis decreases and the tails of the distributions become thinner. In fact,
as we see from Table 1b, the probability that |v| <1 is greater when a = 1.5 than
when a=2. (This is due to the fact that the scale factor (n/ln(n))ll Y<ymoas af2.)

We also notice from table 1a that the distributions are asymmetric: the left tail is heavier
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than the right tail. This contrasts with our result in Section 2 that v has a symmetric
distribution asymptotically.
We turn to the large sample distribution of d , where d is based on the residuals

from the regression model
Yy = % + u, .

We are interested in how closely the distributions of d coincides with the corresponding
distributions of v . Recall our result from Section 3.1: 4 and v have the same limit
distribution. The pdf's of d for a= 0.5, 1.0, 1.5 and 2.0 are graphed in Figure 2,
quantiles of the distribution are given in Table 2a, and the central probabilities are
supplied in Table 2b. Overall, we see that the distributional properties of d are very close
to those of v : the distributions are leptokurtic, slightly asymmetric (the left tail being
heavier than the right tail), and heavy—tailed (especially for a<1).

4.2. Small sample distributions of d

In studying the small sample behavior of the d statistic, we seek to determine in
what respects these distributions differ from the corresponding large sample distributions
presented above. We also test how well the DW bounds test of the null hypothesis of iid
errors vs. the alternative of first order serially correlated errors performs when the errors

are symmetric stable. We continue to work with the regression model
¥y =% +u,,

where {x,} and {ut} are independent iid series with the same stable exponent a . Since
we do not include a constant term in the regression, we use the dL and dU values given
in Table 1b of Kramer (1971, p. 351). For convenience, we present the values for dL and

dy for sample sizes of 20, 50, and 100 at the 1% and 5% level of confidence (against the
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one—sided alternative of positive first order serial correlation) in Table 3. Farebrother
(1980) provides extensive tables for dp only.

The distributions of d for a= 0.5 are graphed in Figure 3. The main difference
with the large sample behavior of d is that the distributions are less leptokurtic and
become more asymmetric as n decreases. These differences apply to the cases of a = 1.0
(Figure 4) and o =15 (Figure 5) as well; in particular, the left tails become fatter
whereas the right tails do not change much compared with the corresponding large sample
distributions.

In Table 4, panel a, we tabulate the relative frequencies of the statistic DW (not
d ) being less than d, and dU for a=0.5. In general, and allowing for Monte Carlo
simulation error, the performance of the bounds tests is poor, and we get size distortions in
almost all cases. Actually, for n = 20 and a test size of 1%, the probabilities of DW being
less than dL and dU do "bracket" the 1% level, but with a very large difference in size
(0.4% vs. 4.9%). For sample sizes of 50 and 100, the bounds tests give too large a size (in
all cases greaier than 2%, i.e. the 1% value is not bracketed). If we choose a size of 5%, we
see that the actual size of the test is too large for n = 20, about correct for n = 50, and
too small for n = 100 .

Similar results obtain when we look at the performance of the bounds tests for the
cases of a = 1.0 (Table 4, panel b). For a size of the bounds test of 1%, the actual size is
too large for n =50 and n=100;for n =20 d; and dy; bracket the correct size. For
a size of 5% we get a more favorable picture: d; and dy; bracket the correct size for n =
20 and 50, but the size is too small when n = 100 . .

The bounds tests perform quite well when a = 1.5 (panel ¢ of Table 4). For a test
size of 5%, d; and dy; bracket the stated size for all three sample sizes. For a test size
of 1%, the bounds tests still yield too large a size for n = 50 and 100, but less so than
when a = 0.5 and 1.0. For n = 20, the bounds tests bracket the 1 % level.
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For completeness, we report the results of our simulations when a = 2.0, i.e. when
the errors are standard normal (panel d of Table 4). As we would expect, d; and dU
bracket the true size for all three values of n . But since DW is less leptokurtic for a = 2
compared with a < 2, the bounds are quite wide. E.g. for n =20 and a test size of 5%,
the bounds give probabilities of 3.1% and 8.0%, respectively. This illustrates that one
should, whenever possible, compute exact DW critical values when the variances are finite,
rather than simply rely on the bounds test alone. Our results indicate that this conclusion

holds a fortiori when the error variance is infinite.

4.3. Large sample distribution of d in dynamic regression models
Our final set of simulations investigates the large sample properties of the

distribution of d in the dynamic regression model
V=Wt X T Y

where |7] <1, x, is iid symmetric stable with index r, and u, s iid symmetric
stable with index a. As shown in Section 3.2, the limiting distributions of d and v are
the same when a > r, but are different when a < r. In our simulations, we held r fixed
at 1.5, while we set a equal to 1.1, 1.5 and 1.9. We considered the following values of
y= {09, 0.5}. As seen from the results of Section 3.2 the asymptotic distributions are
invariant to the sign of v, so it is unnecessary to consider negative values of .

For 7= 0.9, we have graphed the distributions of d for a= 1.5 and 1.9 (as well
as the corresponding v statistics) in Figure 6a. We notice that, for this large sample size,
the distributions of d match the corresponding distributions of v closely. For a = 1.1
(Figure 6b), on the other hand, the distribution of d is less leptokurtic and has more mass
in the region 0.5 < ]d| €< 3.0 than the corresponding distribution of v .

For a choice of 7 equal to 0.5 (Figures 7a and 7b), we see that the distributions of

d do not differ by much from those of v — even when a=1.1. We conclude that the
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presence of a lagged dependent variable does not seem to affect the behavior of the

regression diagnostics by much when the autoregressive coefficient is small, say |v] < .5.

5. CONCLUSION

This paper studies the asymptotic and finite sample distributions of the Von
Neumann and Durbin—Watson statistics in regression and dynamic regression models with
infinite variance errors. Appropriately standardized, the Von Neumann ratio converges
weakly to a simple limit given by a ratio of two stable random variables. The DW statistic
has the same limiting distribution in regressions with strictly exogenous regressors. The
results are more complex when lagged dependent variables are present. The limiting distri-
bution then depends on the relative "importance" (as measured be their tail behavior) of
the regressors and the error term.

Our simulation experiments show that the standardized statistic d is leptokurtic
when a < 2, and slightly asymmetric even when n is large. In smaller samples, the
leptokurtosis is less pronounced, whereas the asymmetry increases. In general, the conven-
tional DW bounds tests perform poorly and suffer major size distortions when a < 1.0.
Inclusion of a lagged dependent variable alters the limiting distributions when the errors
have thicker tails than the regressors. However, our simulation evidence suggests that this
effect will be important only if the coefficient of the lagged dependent variable is large, i.e.
close to 1 in absolute value.

The analysis and simulation of this paper can be extended in many different ways.
We have looked at the local power properties of tests based on the DW statistic in static
regressions and this can be extended to dynamic regressions. Throughout we have assumed
that the characteristic exponent a is known. If o« has to be estimated consistently
(together with the other parameters of the model), we would expect this to have important

finite sample and asymptotic effects. Further, our simulations might be broadened to
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include asymmetric stable variates and general infinite variance distributions that lie in the
domain of attraction of a stable law, as well as regressions with multiple explanatory
variables. Finally, there are many other regression diagnostics whose asymptotic behavior
is known for the finite error variance case but is unexplored when the error variance is

infinite. Some of these topics are now under investigation by the authors.
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(a) Quantiles

TABLE 1

Large Sample Distribution of v

30

0.5 1.0 1.5 2.0 N(0,1)
1% -503.8 10.9 -2.23 —2.35 —2.326
5% —35.8 —3.23 -1.18 -1.69 —1.645
10% 8.04 ~1.66 -0.836 -1.33 -1.282
40% —0.0024 -0.039 —0.062 =0.27 -0.253
60% 0.0009 0.019 0.041 0.25 0.253
90% 7.09 1.50 0.792 1.24 1.282
95% 2.90 2.82 1.14 1.61 1.645
99% 341.8 8.69 1.99 2.33 2.326
(b) Central Probabilities: P(|v| < x)
0.5 1.0 1.5 2.0 N(0,1)
0.2 0.448 0.390 0.382 0.195 0.197
0.5 0.553 0.542 0.626 0.387 0.383
1.0 0.599 0.703 0.863 0.684 0.683




(a) Quantiles

TABLE 2

Large Sample Distribution of d

31

0.5 1.0 1.5 2.0 N(0,1)

1% —438.4 -10.95 -2.20 —-2.32 —2.326
5% —34.0 -3.24 -1.17 -1.70 —1.645
10% -7.74 -1.70 —0.84 -1.34 -1.282
40% —0.0183 -0.0899 —0.131 -0.29 —0.253
60% 0.0103 0.0658 0.102 0.21 0.253
90% 7.30 1.50 0.79 1.25 1.282
95% 27.7 2.79 1.12 1.61 1.645
99% 314.0 8.15 2.00 2.29 2.326

(b) Central Probabilities: P(|d]| ¢ x)

0.5 1.0 1.5 2.0 N(0,1)

0.25 0.441 0.385 0.376 0.199 0.197
0.5 0.519 0.534 0.622 0.391 0.383
1.0 0.594 0.700 0.867 0.685 0.683




TABLE 3

Lower Bound (d;) and Upper Bound (dy)

Significance Points of the Durbin—Watson Bounds Test,
One Regressor, No Intercept Term

1% 5%
n dp dy dy dy
20 0867 1041 1108 1300
5 1287  1.363 1464 1544
100 1503 1542 1634 1674

Source: Kramer (1971), Table 1b, p. 351.



TABLE 4

Frequencies of DW < d; and DW < dU

33

(a) a=05
1% 5%
n P(DW < d;) P(DW <dy) P(DW <d;) P(DW < dy)
20 .0044 .0493 0637 .0949
50 .0346 0385 .0442 0507
100 .0238 .0258 .0296 .0314
(b) a=1.0
1% 5%
n P(DW < d;) P(DW < dU) P(DW < d;) P(DW < dy)
20 0037 0245 .0381 .0802
50 0229 0314 .0451 05690
100 0224 0251 0368 .0446
() a=15
1% 5%
n P(DW < d;) P(DW <dy)  P(DW <dp) P(DW < dyy)
20 0038 0214 .0323 .0780
50 .0137 0213 .0381 .0620
100 0135 0177 0376 0523
(d) a=20
1% 5%
n P(DW <d;) P(DW<dy) P(DW<dy)  PDW<dy)
20 .0051 0197 0310 .0801
50 0074 .0147 0351 .0658
100 .0064 .0122 0396 0585
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