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NONPARAMETRIC TESTS OF MAXIMIZING BEHAVIOR

SUBJECT TO NONLINEAR SETS

*
Rosga L. Matzkin
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This paper extends the axiomatic theory of revealed preference to
choices that are generated by the maximization of a strictly concave and
strictly monotone function subject to nonlinear constraint sets. 1
characterize finite sets of observations on choice behavior that are
consistent with the maximization of a strictly concave and strictly monotone
objective function. Both nonconvex and convex choice sets are considered.
The analysis applies, for example, to consumers who face either regressive
or progressive taxes and to households that produce commodities according to
either a convex or a concave production function, For choice sets that
possess convex and monotone complements, my characterization provides =&
nonparametric test for the maximization hypothesis. For choice sets that
can be supported by unique hyperplanes at the chosen elements, the result
provides a nonparametric test for the strict concavity and strict

monotonicity of the maximized function.

KEYWORDS ! nonparametric tests, axioms of revealed preference, nonlinear
choice sets, representations, rationalizations, convexity, concavity,

monotonicity.

*
Financial support of the National Science Foundation through grant

No. SES-8720596 is gratefully acknowledged. I am deeply indebted to Marcel
¥. Richter for his helpful advice.



1. INTRODUCTION

Recently, there has been increasing interest in the development of non-
parametric tests to determine whether observed consumer behavior Iis
consistent with the existence of a utility function that belongs to a
certain class. This paper contributes to the development of this theory by
extending the axiomatic theory of revealed preference to choices that are
generated by the maximization of a strictly concave and strictly monotone

function subject to nonlinear constraint sets.

The nonparametric revealed preference conditions can be employed to test
for utility-maximizing behavior and to provide nonparametric inferences
about the parametric or nonparametric functional form that can be imposed on
the utility function. For example, demand data may be determined to be
inconsistent with the existence of any utility function. Or, the data may
be consistent with the existence of a utility function but inconsistent with
the existence of a strictly quasi-concave utility function. In the latter
case, it would be inappropriate to specify, for example, a Cobb Douglas
utility function. In contrast to parametric methods, which obtain this
information by testing conditions on estimated parameters, the revealed
preference methods do mnot require a parametric specification of the

objective function.

Richter (1966, 1971), Afriat (1967a, 1967b, 1972, 1973, 198l1), Varian
(1982, 1983), Diewert and Parkan (1985), Yatchew (1985), Chiappori and
Rochet (1987), and Matzkin and Richter (1987) are some of the studies that
have presented algebraic, nonparametric, revealed preference tests of

consumer behavior.
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These nonparametric tests have not been fully extended to choice
situations involving nonlinear choice sets. This extension 1is desirable
because many choice models frequently encountered in economics involve such
sets. Consumers or firms with monopsony power, consumers facing either
regressive or progressive taxes, households producing commodities according
to either a convex or a concave production function, and social plamners
facing a production possibilities set exemplify economic situations in which
the set of feasible alternatives faced by an economic agent is determined by

a nonlinear function.

In this paper, I extend the theory of nonparametric revealed preference
tests to apply to these kinds of nonlinear choice sets. The results
determine whether, given a finite number of observations on the choice sets
and the alternatives chosen by economic agents, the observed choice behavior
is consistent with the maximization of an objective function within a
certain class. This function is interpreted as the utility or production
function of the economic agent in the examples described above. The
observations may be generated by a single economic agent or by identical
economic agents. In the former case, our results concern the existence of a
utility or production function for the agent; in the latter case, they
relate to the existence of a function that is common to all the observed

agents.

Currently, there are two methods of specifying nonparametric revealed
preference conditions, the method of inequalities and the axiomatic method.

The former method starts by specifying a system of inequalities determined
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by the observations and tests whether the system has a solution. The latter
method proceeds by testing whether or not the observations satisfy certain

axioms (i.e., combinatorial conditioms).

In previous work, the system of inequalities has been derived for data
from demand behavior subject to budget sets determined by either unions or
intersections of linear sets. The inequalities are linear when budget sets
are intersections of linear sets and nonlinear when the budget sets are
unions of linear sets. The solution of the system yields a set of values
and supergradients of a utility function that could have generated the

observations.

The method of inequalities is mot practical because of the large number of
equations and unknown variables required for a typical problem. For
example, for a data set of size n , to test for the existence of a concave
utility function requires one to determine whether there exists a solutien

. . 2 s
of dimension 2 n for a system of n” inequalities.

The axiomatic method, in contrast, is simpler and faster to implement.
For example, the test for the existence of a concave utility function only
requires one to check for certain symmetries in an n X n matrix of 0's and

1's.

Presently, the use of axiomatic conditions has been limited to the
analysis of data that arise when the budget set is determined by one linear

function. In this paper 1 extend the study of axiomatic conditions to the
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analysis of data generated subject to choice sets determined by multiple

nonlinear functions.

The choice sets studied in this paper belong to the class of sets that
possess convex and monotone complements and to the class of sets that can be
supported by a hyperplane. 1 call the first type of sets co-convex and

the second type of sets supportable.

In Section 2 1 describe the basic model and define the main concepts.
Section 3 presents the results for data generated subject to co—convex sets.
Section 4 presents the results for data generated subject to supportable
sets and for data generated subject to both co-convex and supportable sets.
I summarize the main results in Section 5. Appendix A contains the notation
and presents the definitions of the terms employed in the paper. Appendix B
contains the proofs of the main lemmas that are employed in the proofs of
the theorems in the paper. Appendix C contains statements and proofs of

auxiliary lemmas.

2. THE MODEL

Our objective 1is to characterize finite sets of observations on choice
behavier that could have been generated from the maximization of a common
objective function. An observation consists of a set of alternatives and a
chosen alternative from the set. If a maximized function exists, we call it

a representation for the observations.



5
Formally, we will represent each observable choice by a pair (B,h(B)),
where the choice set B is a subset of alternatives in a set X and
h(B) € B 1is the chosen element l. For example, B may be the budget set
that a consumer faces and h(B) the demand of the consumer. We will be
concerned with two types of choices, co-convex choices and supportable
choices. Topological properties of the set B and its complement B¢ are

meant to be relative to X .

DEFINITION 1: A pair (B, h(B)) will be called a co-convex choice in
XcRK if
(i) B cCX,
(ii) BC is an open, convex, and monotone subset in X , and

(iii) for all e > 0 such that h(B) + e € X, h(B) + e € B,

DEFINITION 2: A pair (B,h(B)) will be called a supportable choice in
xc /X ir
(i) B c X and if
(ii) there exists a neighborhood N of h(B) and a unique s € R§+ such that
(ii.1) Bc{xeX | sx=<1),
(ii.2) s h(B) =1,
(ii.3) Nc X,

(ii.4Y B n ¢l(N) 1is closed and convex, and

(ii.5) [(B - RE) NK] CB .

In other words, a choice (B,h{(B))} 1is co-convex if the complement of the

alternatives set is an open, convex, and monotone set and if the sum of the
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chosen element with any nonnegative wvector different from © does not
belong to the choice set. A choice (B,h(B))} 1is supportable if the set of
alternatives can be supported at h(B}) by a unique hyperplane with a
strictly positive normal, and if B 1is closed, convex, and decreasing in a

neighborhood of h(B)

Suppose for example that B 1is characterized by a function g : X = R

according to
(1) B = (x €X| gx) <0)

and that g(h(B)) = 0. Then, if g 1is a monotone increasing, continuous,
and quasi-concave function, (B,h(B)) is a co—convex cheoice; if g 1is
monotone increasing, convex, and differentiable at h(B), (B,h{(B)) is a
supportable choice., Figures 1, 2, and 3 show co—convex choices and Figures
1 and 4 show supportable choices. Figures 2 and 3 show choices that are

not supportable, while Figure 4 shows a choice that is not co-—convex,

Many choice problems frequently studied in economics involve co-convex
and supportable choices. We next present a few simple examples and
thereafter describe how our results can be applied to each of these

examples,

(a) perfectly competitive consumers
Consider the problem of a consumer who chooses a consumption bundle of K
commodities from a set of affordable bundles. Suppose that the price of the

th . . . .
k commodity is and that the income of the consumer is 1 . Then,

Pi

the set of affordable bundles for this consumer is defined by
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K K
B=(x€R | E _, p ¥ = I

Figure 1 shows the graph of this set.

(b) household production

Consider the problem of a household that has income 1 and chooses a
consumption bundle of K commodities from a set of feasible and affordable
bundles. Suppose that each commodity k € {1,...,K-1} can be purchased in

the market at a price The Kth commodity can only be produced by a

Py
household technology, which is characterized by a strictly increasing
preduction function £ : R+ -+ R+ . The input z for the production of the
Kth commodity can be purchased in the market at a price gq. In this case,

the set of affordable consumption bundles for the household is given by

K K-1 -1
B={x€R, | Zeo1 P ¥ t 4 £ (x) = 1)

Figure 2 presents a possible graph of this set B for the case in which the
production function £ is strictly convex; and Figure 4 presents a possible

graph of B for the case in which f 1is strictly concave.

(c) social planners

Consider the problem of a social plamnner that chooses an aggregate
production plan from the set of aggregate production possibilities set,
Suppose that the economy produces K commodities from a fixed quantity X
of an input. Each commodity k € {1,...,K} is produced according to a
strictly increasing production function fk: R+ -+ R+ . Then, the set of

feasible aggregate production possibilities faced by the social planner is

defined by
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K

K -1 =
B=-{xeR, | T _, f ()= X)

Figure 2 presents a possible graph of this set B for the case in which
K = 2, f1 is linear, and f2 is strictly convex. Figure 4 presents a
possible graph of this set for the case in which K =2, f1 is linear, and

f2 is strictly concave.

(d) charitable organizations
Consider the problem of an organization that chooses a bundle of K inputs
to produce a single commodity, which it supplies at no cost. Suppose that

the organization has a fixed amount C of funds assigned for the production

of the commodity. Each input k € (1,...,K-1} can be purchased at a wage
L The Kth input is internally produced according to a strictly
increasing production function f : R+ —+ R+ , which employs an input =z
whose price is gq . Then, the set of input bundles that are affordable and

feasible is

X

K -1 -1
B={xe€&R, | S Pe¥ ta o= C

k
Figure 2 presents a possible graph of this set for the case in which the
production function f is strictly convex; and Figure 4 presents a pessible

graph of B for the case in which f is strictly concave.

{e) gquantity discounts

Consider. the problem of a consumer that has income I and chooses a
consumption bundle of K commodities from a set of affordable bundles. Each
commodity k € {1,...,K-1} «can be purchased in the market at a price Py -

The price of the Kth commodity is pi if the quantity purchased is
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*
smaller than Xy and the price is if the quantity purchased is larger

5%

* 1 2 1 _* 2 _*
than Xy where Py > Py and Py Xyx = Py *x- Then, the set of affordable

consumption bundles for this consumer is given by

K -1 1 *
B={(x€R, | z§=1 P X tPgX = I if *y < Xp and

-] 2 *
-1 pk xk + pK xK < I if xK = xK ).

Figure 3 presents a graph of this set,

(f) monopsonists
Consider the problem of a consumer who has income I and chooses a
consumption bundle of K commodities. Each commodity k € {1,...,K-1} can

be purchased in the market at a constant price The consumer is the

Py
only buyer of the Kth commodity. The suppliers of the Kth commodity behave
in a perfectly competitive way and their aggregate supply function is

strictly increasing and strictly convex. Then, in this case, the set of

affordable consumption bundles for the consumer is
K K-1
B={x€R, [ By PR ¥ tt(x) xS T}
where t:R+4 R+ is the strictly increasing and strictly convex function

determined by the aggregate supply function of the Kth commodity. Figure

4 presents a possible graph of this set.

Given a finite number of observations {Bi’ h(Bi)}I.:=1 , on any of the

choices described in the above examples, we will be able to determine
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whether each h(Bi) could have been chosen to maximize a common strictly
concave and strictly monotone function. Such a function will typically be
interpreted as the (common) utility function of the consumer(s) in examples
(a), (e), and (f), the (common) utility function of the household(s) in
example (b), the utility function of the social planner in example (c), and

the production function of the charitable organization in example (d).

We next provide formal definitions of the sets of observations that we

will consider and of the objective functions we will be concerned with.

DEFINITION 3: A finite set (B, h(B;));_, will be called a co=convex
choice space in X if for all i=I1,...,n, (Bi’h(Bi)) is a co-convex choice

in X.

DEFINITION 4: A finite set (B, h(B)),_; will be called a supportable

choice space in X if for all i=1,...,n, (Bi’h(Bi)) is a supportable

choice in X.

DEFINITION 5: 4 finite set (B, h(Bi))g_l will be called a mixed
choice space in X if for all i=1,...,n, (Bi'h(Bi)) is either a co—convex

choice in X or a supportable choice in X .

DEFINRITION 6: A function vV : X+ R is a regresentationz for a
choice space (B, h(B,))7_, in X if for all i=1,2,...,n and all

vy € Bi such that y = h(Bi)’ V(h(Bi)) > V(y)
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Hence, a choice space is a finite set of choices; and a representation
for a choice space is a function that assigns to each chosen bundle the

highest value it attains on the corresponding choice set.

The above definition of a representation is stronger than the definition
of rationalization employed by Afriat (1967a, 1967b, 1972, 1973, 1981),
Varian (1982, 1983), Diewert and Parkan (1985), and Chiappori and Rochet

(1987). These authors define a rationalization for (B h(Bi)}t.:_1 to be

g
any function V* : X - R such that for all 1i=1,2,...,n and all y € Bi'
V*(h(Bi)) > V*(y). Matzkin and Richter (1987) have called this function V*
a sub-semirationalization, because the observed chosen element is included
in a set generated from such V¥ . While rationalizations in the sense of
Afriat, Varian, Diewert and Parkan, and Chiappori and Rochet are maximized
over each choice set on a subset that contains the observed chosen bundle,

representations, in the sense of this paper, are uniquely maximized over

each observed choice set at the observed chosen bundle. {See Matzkin and

Richter (1987, Section 5) for further discussion about this topic.)

We will employ revealed preference conditions to determine the existence
of representations. The conditions are imposed on a preference relation
inferred from the observed choices. Following Samuelson and Houthakker, we
define the direct and indirect revealed preference binary relations 5 and

H on X by3:

DEFINITION 7: =x Sy iff x =y and for some B, y € B and x =~ h(B)
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DEFINITION 8: x H y iff for some (possibly empty)

sequernce wl, Caey wr € X , xS wl . . .8 wr Sy .

In other words, x 1is directly revealed preferred to y (x S y) 1if y
is different from x and if x 1is chosen when y can be chosen; and x
is indirectly revealed preferred to y (x Hy) 1if there exists a sequence
cf directly revealed preferred choices such that x 1is directly revealed
preferred to the first element in the sequence and the last element in the

sequence is directly revealed preferred to vy .

DEFINITION 9: A budget space (B, h(Bi))’l?_l is said to satisfy the
SARP (Houthaker’s Strong Axiom of Revealed Preference) iff

for all x, y in X , x Hy implies not(y § x)

According to this definition, {Bi, h(Bi)]?=l satisfies the SARP 1if the

binary relation H inferred from [Bi’ h(Bi))gul is asymmetric.

Richter (1966) showed that the SARP is a mnecessary and sufficient
condition for the existence of a reflexive, transitive, and total binary
relation generating choice behavior subject to abstract choice sets. TFor a
finite number of observations, this is equivalent to the existence of a
representation. This result, however, does not guarantee the existence of a-
concave, continuous, or even monotone representation. Matzkin and Richter
(1987) showed that the SARP is a necessary and sufficient condition for the
existence of a strictly monotone and strictly concave representation, when

each budget set Bi is determined by one single hyperplane and a finite
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number of observations are available. 1In the next section we will show that
for co-convex choices the SARP is still a mnecessary and sufficient
condition for the existence of a strictly concave and strictly monotone
representation. We will shoﬁ that for supportable choices the SARP 1is not
sufficient for the existence of such a representation. A characterization
of supportable chcice spaces that are consistent with the existence of a

strictly concave and strictly monotone objective function will be provided.

Tests for strictly concave and strictly monotone representations are
important because of their wide applicability. In empirical applications,
it is typically assumed that the maximizing function is strictly monotone
and strictly quasi-concave, in order to pguarantee that the constraint is
binding and that the maximizing bundle is unique. A test for the consis-
tency of data with a strictly monotone and strictly quasi-concave function
is therefore desirable. Strict concavity implies not only strict quasi-
concavity but also concavity. Concavity is an important property by itself,
since it guarantees that the function is continuous and that the own-price
partial derivatives of perfectly competitive demand functions are bounded

from above (cf. Jordan (1982) and Hurwicz, Jordan, and Kannai (1984)) .

In Section 3 we will prove the main representation theorem for co—convex
choice spaces. Supportable and mixed choice spaces will be analyzed in

Section 4.
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3, CO-CONVEX CHOICE SPACES

In this section we show that a co-convex choice space possesses a
strictly concave and strictly monotone representation if and only if it

satisfies the SARP

This result extends the axiomatic theory of representations to apply to
co—convex budget sets. Existing axiomatic results about representations
apply only to demand data generated subject to budget sets determined by one
linear hyperplane. Under those conditions, the existence of concave
representations has been shown by employing the observed linear hyperplanes
to delimit the upper contour sets of the representations. This delimiting
technique cannot be employed when the budget sets are co-convex, however,
since in this case anv hyperplane containing the chosen bundle may lie
strictly inside the budget set. Hence, to prove that the SARP implies the
existence of a strictly concave representation when budget sets are
co—convex, it is necessary to devise a new, completely different approach to

constructing a representation.

This new method, which extends ideas in Matzkin (1986), proceeds by
estimating the upper contour set of any given observed bundle from
information about the bundles that were revealed to be "not worse" than the
chosen bundle. This approach eliminates the dependence of the estimation of
the upper contour sets on hyperplanes determined by a price or a marginal

price. Strictly convex upper contour sets are obtained by constructing
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strictly convex approximations of convex sets, in the spirit of Eggleston
(1969). A utility function with the desired properties is then obtained by

employing a result of Kannai (1974).

We next state and prove Theorem 1. All notations and definitions are
specified in Appendix A. The proofs of Lemmas 1 - 3 are presented in

Appendix B.

THEOREM 1: Suppose that {Bi, h(Bi)}?sl is a co—convex choice space In
a convex and compact subset X of RK .  Then, {Bi, h(Bi))?_l satisfies
the SARP if and only if there exists a strictly concave and strictly

monotone representation for {Bi, h(Bi))? 1 4.

The main part of the proof of Theorem 1 consists in showing that the
SARP implies the existence of a strictly concave and strictly monotone

representation. This is performed by three lemmas.

Lemma 1 shows that if {Bi' h(Bi)}ril_=1 satisfies the SARP there exist
"indifference classes" c(l),...,C(T) and corresponding "upper-contour"
sets Z(1),...,Z(T) for c(1),...,C(T), which are concave and monotone

subsets of a bounded subset H of RK.
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LEMMA 1: Let {Bi, h(Bi)}?=l be a co-convex choice space in a compact
and convex subset X of RK. Let D = h(Bi) | i=l,....,n } be the set of
chosen bundles. Suppose that {Bi' h(Bi))?-I satisfies the SARP . Then,
there exist a partition C(1), . . . , C(T) of D and sets zZ(1l),
Z(T) in RK satisfying
(L1.1) Z(1), ..., Z(T) are convex and monotone polyhedrons in a compact

subset Ho of RK ,

(L1.2) ¥te{l, ... ,T) and Vi€ ({1, ..., n} such that
h(Bi) € C(t) , Bi nZzZ(e) = (h(Bi)) ,

(L1.3) vYte(l, ..., T-1) Z(t+l) c int Z(t) ,

(L1.4) ¥eef(l, ... ,T) and Vi€ {l, ..., n) such that
h(Bi) e C(t) , b(Bi) € T(Z(t)

Lemma 2 shows that if there exist convex and monotone "upper-contour"
sets Z(1y,...,Z2(T) of the "indifference-classes" c{1),...,C(T), then

there also exist strictly convex and strictly monotone "upper-contour”

sets Y(1),...,Y(T) of the "indifference-classes" c(l),...,C(T).

LEMMA 2: Let (Bi’ h(Bi)}?=l be a2 co—convex choice space In a convex
and compact subset X of RK. Let D = { h(Bi) | i=1,....,n } be the set
of chosen bundles. Suppose that €(1), . . . , C(T) is a partition of D

and that subsets Z(1), . 2(T) of RX satisfy (L1.1) - (L1.4).
Then, there exist subsets Y(l),....Y(T) of RK satisfying

(1.2.1) Ve e (1, , T) Y(t) is compact ,
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(L2.2) ve e (1, ... , T} Y(t) is strictly convex and strictly
monotone in the compact subset HO of RK,
(L2.3) vee(l, ... , T-1) Y(e+l) C int Y(t) ,
(L2.4) vee{l, ... ,T) and vi e {1, ... , T} such that
h(Bi) € C(t), Y{t) n Bi - {h(Bi)} , and
(L2.5) vee(l, ... ,T) and V¥ie {l, ... , T) such that
h(Bi) € C(t), h(Bi) € 3Y(t)

Lemma 3 shows that if the '"upper-contour" sets Y(t) satisfy (L2.1)-

(L2.5), there exists a strictly concave and strictly monctone representation

n
for (B, h(B))}_;

LEMMA 3: Let {Bi’ h(Bi))?=l be a co-convex choice space in a convex
and compact subset X of RK. Let D = { h(Bi) I i=1,....,n } be the set
of chosen bundles. Suppose that C(l), . . . , C(T}) 1is a partition of D
and that subsets Y(1), . . . , Y(T) of RK satisfy (LZ2.1) - (L2.5).

Then, there exists a strictly monotone and strictly concave representation

n
for {Bi’ h(Bi)}iel'

PROOF OF THEOREM 1: By Lemmas 1, 2, and 3 it follows that if
[Bi, h(Bi)}2=1 satisfies the SARP, there exists a strictly concave and
strictly monotone representation for {Bi, h(Bi)]I.::=1 . It is well known

that the existence of such a representation implies that {Bi, h(Bi)}2=l
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satisfies the SARP (cf. Richter (1966, 1971)).

Theorem 1 provides a nonparametric test for the consistency of co-convex
choices with the existence of a strictly concave and strictly monotone
objective function that generates them. Moreover, the result of Theorem 1
together with the results in Richter (1966) imply that, for finite sets of
observations on co—convex choices, the existence of a strietly concave and
strictly monotone representation is observationally equivalent to the

existence of a reflexive, transitive, and total rationalization.

We next state formally the equivalence result.

DEFINITION 10: A binary relation T is a reflexive, transjitive, and

e e e .

total rationalization for a choice space {Bi’ h(Bi)}?-l in X if

(i) T 1is reflexive, transitive, and total, and
(ii) for all i=1,2,...,n and &ll y € Bi such that y = h(Bi)’

h(Bi) Ty and not( vy T h(Bi) ).

COROLLARY 1: Suppose that {Bi’ h(Bi))?-l is a co-convex choice space
in & convex and compact subset X of RK . Then, there exists a strictly
concave and strictly monotone representation for {Bi, h(Bi)}Iz_I if and
only if there exists a reflexive, transitive, and total rationalization for

n
(Byr BBy )4
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The proof of this corollary is immediate from Theorem 1 and Richter

(1966).

Remark 1 in Matzkin and Richter (1987) shows that, without additional
assumptions, it 1is mnot always possible to obtain a differentiable

representation for a co-convex choice space that satisfies the SARP.

4. SUPPORTABLE AND MIXED CHOICE SPACES

In this section we present necessary and sufficient conditions under
which supportable choice spaces and mixed choice spaces possess a strictly
concave and strictly monotone representation. For supportable choice
spaces, these conditions are expressed in terms of their supporting choice

spaces, the definition of which follows:

DEFINITIOR 10: Let {Bi, h(Bi)}?zl be a supportable choice space in a
K . i RK
subset X of R . For each i=1,...,n , let s €& o be such that for

all yeB, s'y=1 and s h(B,) = 1. Define C; and h(C;) by

C,=(xex] s'x=< 1) and h(C,) = h(B,)

Then, the supporting choice space 2 of {Bi' h(Bi))?_l is

I
(Cyr BOCOTi

This definition implies that the supporting choice space of

[Bi’ h(Bi))?=l is a set of supporting choices (Ci’h(ci)) such that for
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each 1 , Ci is a choice set determined by a hyperplane that supports Bi

at h(Bi)

The following theorem characterizes supportable choice spaces for which

there exists a strictly concave and strictly monotone representation.

THEOREM 2: Suppose that {Bi, h(Bi)}?_l is a supportable choice space
in a convex and compact subset X of RK . Let (Ci’ h(ci)}?-l be the
suppeorting choice space of {Bi, h(Bi)}?-I . Then, there exists a strictly
monotone and strictly concave representation for {Bi’ h(Bi))?=I if and

only if (C,, h(C))] , satisfies the SARP .

The main part in the proof of Theorem 2 consists in showing that a
: ; . n .
strictly concave and strictly monotone representation for {Bi’ h(Bi)}i=l is
. . . n
a strictly concave and strictly monotone representation for {Ci, h(Ci)}i=1

This is shown by means of the next lemma:

LEMMA 4: Let  (C_, h(Ci))?gl be the supporting choice space of a
supportable choice space {Bi' h(Bi))? 1 in a convex and compact subset X
on RK, and let V: X - R be a strictly concave and strictly monotone

fer some

. n
representation for {Bi, h(Bi))i=l . Suppose that h(Cj) 5 h(Ck)

J,ke {l,...,n}). Then, V(h(Ck)) < V(h(Cj)).
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PROOF OF THEOREM 2: Suppose first that the supporting choice space
(C,, h(cH)T_, ©of (B, h(B))]_, satisfies the SARP . Then, by
Theorem 1 it follows that there exists a strictly concave and strictly
monotone representation v: X =+ R for {Ci. h(Ci)}L1 , Since
lCi, h(Ci)]Iil_1 satisfies the conditions of that Theorem. Since Bi C Ci
and h(Bi) - h(Ci), it follows that Y ils a representation for

n
(B,, h(B)]_, -

We show next that if V is a strictly concave and strictly monotone

] n n . e
representation for [Bi, h(Bi)}i=1 , {Ci, h(Ci)]i_1 satisfies the SARP .

Suppose that [Ci, h(Ci)}?=1 does not satisfy the SARP . Then, there
exist r,t € {1, ...,n} such that h(Cr) H h(Ct) and h(Ct) S h(Cr) . By

the definition of H it follows that for some (possibly empty) sequence

{g, ..., v} ¢ {L, ., m}
(T2.3%) h(Cr) S h(Cq) 5§ ... 8 h(Cv) 5 h(Ct) 5 h(Cr)
By Lemma 4,

(T2.2) h(Cj) S h(Ck) = V(h(Ck)) < V(h(Cj))

Then, since (T2.1) and (T2.2) imply a contradiction, we can conclude that if

there exists a strictly concave and strictly monotone representation for
n n cps

[Bi, h(Bi))i=1 , {Ci, h(ci)}i=l satisfies the SARP .

This completes the proof of Theorem 2.
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The observational equivalence between the maximization of any function
and the maximization of a strictly concave function, which was shown to hold
for co-convex choice spaces, can not be obtained for supportable choice
spaces. Figure 5 shows an example of a supportable choice space that
satisfies the SARP , while its supporting choice space does not satisfies
the SARP. Then, by the results in Richter (1966) and Theorem 2 above, this
supportable choice space possesses a representation but it does not possess
a strictly concave and strictly monotone representation. This argument
implies that the result of Theorem 2 can be employed to test
nonparametrically the strict concavity and strict monotonicity eof

representations, given that a representation exists.

FIGURE 5
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5. CONRCLUSION

We have extended the axiomatic theory of Revealed Preference to apply to
finite sets of choice data that are generated subject to nonlinear choice
sets. Our results apply to choices over sets that possess convex and
monotone complements, called co-convex choices, and to choices over sets
that can be supported by a unique hyperplane at the chosen element, called
supportable choices. Examples of economic situations involving these type
of choices are consumers or firms with monopsony power, consumers facing
either regressive or progressive taxes, households producing commodities
with either a convex or a co—convex technology, and social planners facing a

production possibilities set.

We have shown that the SARP characterizes finite sets of co-convex
choices generated by the maximization of a common strictly concave and
strictly monotone objective function. This provides a nonparametric test
for the consistency of co-convex choices with the maximization of a strictly
concave and strictly monotone function. This also implies that maximization
of such a function is observationally equivalent to the maximization of a

reflexive, transitive, and total binary relation.

We have also provided a characterization of finite sets of supportable
choices generated by the maximization of a common strictly concave and
strictly monotone objective function. This characterization has been

expressed in terms of the supporting choices. We have shown that a finite
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APPENDIX A

In this appendix we present the notation and definitions employed in the

paper.
K

If x = (xl, e xK) and y = (yl, “ees yK) are vectors in R then
x>y iff vk e {1, ..., K} x >y + % >y {iff vke (1, ..., K},
X > Yi and x »y ; and x 2z y iff Vk € {1, ..., K} Xy > Yi
RE - {x € Rxlx = 0} , Rf+ - (x € Rg|x >» 0} . For all x in RK )

n 2 ' K K K
x| - Zj_l(xj) denotes the Euclidean norm in R ; d: R* X R - R, de -
notes the Euclidean metric (d(x,y) = |x-y|)

Suppose that T is a binary relation on a set X . Then, T is
reflexive if Vv x e X xTx ; T is transitive 1if ¥ x, y, z € X such
that x Ty and y Tz, xTz; T is total if Vx, y€X such that
X »y , either x Ty or y Tx or both x Ty and ¥y Tx; T is

asympetric if ¥ x, y € X such that x Ty, it is not the case that

y T X,

For >0, N(x,n) = (z|d(x,z) < n) denotes the neighborhood of radius

n around x ; and for r >0 and a € RK , P(a,r) = [y|[d(y,a)]2 =< r2]
denotes the sphere of radius r with center in a , G(a,n) = {(x l a-
n,...,m) £ x < a+ (n,...,m) } denotes the "box" with center a and

diameter 2 n, and if p € X and lpl=1 , ®p.x) « ( ¥y | Py =-px)

denotes the hyperplane passing through x and with normal p .
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If P 1is any statement, —(P) denotes the negation of P . @ denotes
the empty set and \ denotes set subtraction. If A 1s a subset of RK ;
then 1int(A) denotes the interior of A , ¢l(A) denotes the closure of
A, and OJA = A\int(A) denotes the topological boundary of A ; diam(A) =

sup { d(x,y) | x, y € A}

A subset A of H C RK is convex if Vx, y€ A and B € [0,1] : fBx +
(1-8)y e oA ;, A 1is strictly convex iff ¥vx, y€ A and x wy , and all g
€ (0,1) : Bx + (1-B8)y € int(A) . The subset A C H 4is monotone in H if
VX € A and Ve € RE such that x + e € H, x + e € A ; AcCcH is

decreasing in H 1f V¥x € A and Ye € RE such that e = 0 and x + e €

H, x - e € int(A) ; A CH 1s strictly monotone in H if ¥x € A and
Ye € Ri such that e » 0 and x + e € H, x + e € int(A) . The convex
hull of A , denoted conv(A) , is the set ({x € RKIfor some xl, eees x° e
A, &1, Ceey a> € R (Z% al =1 & x = E? ajxj) } : the convex monotone
+ j=1 j=1
hull of A , denoted com+(A) , 1is the convex hull of the set (A + RE)
K . . . K
The set A C R is a polyhedron if there exist By --s 8g € R such
S S

t ¥ -

tha X € A, 3c1, » Cg € R+ such that Zﬁ_l cj 1 and Eﬁnl cj qj

= 1 . An element x of a polyhedron A of RX is an extreme point of A

if there exist x X, € A and X € (0,1) such that X, ¥ X and

1' 72 2
X - Axl + (1uA)x2 . If A C RK is a polyhedron, T(A) is the set of all

extreme points qj of A for which there does mot exist another extreme

point 9 of A and e € RK such an qj - g, + e,

k
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If G is a convex subset in RK , and f 1is real valued function on G,

f is concave iIf V¥x, y € ¢ and B € [0,1] , f£(fx + (1-f)y) = Bf(x)
+ (1-p)f(y) ; £ is strictly concave If V¥x, y € ¢ and S E€ (0,1) ,
£(Bx + (1-8)y) > BE(x) + (1-@)f(y) : f 1is convex If Vx, y€ G and
B e [0,1] , £(8x + (1-B)y) = BE(x) + (1-p)f(y) : £ is strictly convex if

vV, yet¢c and g€ (0,1) , £(fx+ (1-ﬁ)j) > BE(x) + (I-f)f(y) . £ is
quasi-concave if V¥Vx € G the set (y € G|f(y) = f(x)) is convex; f s
strictly quasi-concave if ¥x € G the set ({y € G[f(y) > f(x)) 1is strictly
convex; f is guasi-convex if |x € G the set (y € Glf(y) = f(x)) |is
convex; f is strictly gquasi-convex if Vx &€ G the set ({y € Gl £y

< f(x)) is strictly convex; f is g¢ontinuous if Vyx € G the sets

{x € G|f(x) z d} and (x € G|f(x) < d) are both closed in G ; f 1is
monotone if V¥x, y € G ! x >y = f(x) 2 f(y) ; and f is strictly

monotone if V¥x, y € G : x >y = f£(x) > £(y)

If A 1is a closed and bounded set in RK and % € RK , we define the
S-distance from x to A by S(x,A) - infld(x,y) |y € &)
For each r > 0 , we define the S-neighborhood of radius r around A by

NS(A,1) = (x € RN |S(x,A) < 1)

Then S-distance between any two closed and bounded sets A and B in RK )

is then defined with respect to the metric

A(A,B) = 61 + 62 ,

where 6. = inf(§ > O|B c NS(A,§)} , and §

1 - inf{§ > O]|A c NS(B,6))

2
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APPENDIX B

In this appendix we present the proofs of Lemmas 1 - & , which were

stated in the proofs of - Theorems 1 and 2 in Sections 3 and 4. The proofs

of Lemmas 1 - 4 employ Lemmas Al - A5, which are stated and proved in

Appendix C,

PROOF OF LEMMA 1: Define the sequence of sets C(1l), C(2), ... and
associated sets D(0), D(1), D(2), ... , recursively as follows:
Let D(0) =D . For t=1, 2, ... define C€(t) by for all i=1, ...,n

(1.1) h(Bi) € C(t) iff there does not exist h(Bj) € D(t-1) such that

h(Bi) H h(Bj)

So C(t) 1is the set of elements in the range of h which are not revealed

preferred to any elements of D(t-1) . For each t we define D(t) by
(1.2) D(t) =D\ uzglc(s)

Note that
for t =1, 2, ..., C(t) =@ 1f D(t-1) » @ .

Since, if C€(t) = @ , then by (1.1), for all h(Bi) € D(t-1) there exists
h(Bj) e D(t-1) such that h(Bi) H h(Bj) . Since D(t-1) thas a finite

number of elements, there must exist a finite sequence
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h(Bi)’ h(Bj), cen h(Br) of elements of D(t-1) satisfying

h(Bi) Hh(B,) H ... H h(Br) H h(Bi)

3

But this contradicts the SARP . Hence, C(t) » & .

Hence, U;_lc(s) strictly increases as t 1increases, until the D(t)

sets become empty. Therefore, there exists a first T such that

D(T) = @&.
Clearly then, C(1), ..., C(T) 1is a partition of D .
We proceed mow to obtain the sets Z(1), ..., Z(T). We first note that

there exists n > 0 such that

(1.3) vi, j € {1, ..., n) such that h(Bi) » h(B,) and ~(h(B ) S h(Bi))

3 J

N(h(B,), ) C Bg

Since, if h(Bi) » h(Bj) and —(h(Bj) b h(Bi)) then by the definition of

s, h(Bi) & Bj . Since Bj is a closed set, there exists qlJ > 0 such

ij c . s % I AP
that N(h(Bi),n Yy C Bj. Hence, n = min(y |1, j =1, ..., n} satisfies
(1.3).

Since n > 0, we can define a decreasing sequence of positive numbers

n(l), 5(2), ... by:

(1.4) n(t) = (&) °n for t =1, 2,

Further, we can define a large enough compact set H0 by

15) H=(xer| v cx=v)
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where wl = (v,...,V) € RK and wz = (k,...,k) € RE are such that vx € X,
(vi2n,...,v+2n) << x << (k-2%,..., k=2n).
For t =1, ..., T, we define

(1.6)  S(t) = D(t=1)\C(t) ,

(1-7) E(t) - UyES(t)G(y' ﬂ(t)) ’ and

(1.8)  2(t) = com™ [C(t) U E(t)] n E® ,
K K
vhere G(a,r) = { x€R Ja-r<x=<a+r}) for x=(r,..., 1) €R .
Z
”
L~

h(By) €8(D)

Z(1)
-~
o~
/ h(B,) €5(1)
/
/
/ S L L L
h(B.) EC(1)
1
3 By £,
FIGURE B1

Hence for each t , S(t) is the set of bundles in D(t-1) that are

revealed preferred to some bundle in DP(t-1) , E(t) 1is the union of boxes
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of diameter 2n(t) around each of the revealed preferred bundles in
D(t-1) , and Z(t) 1is the intersectiom of HO with the convex monetone
hull of the not-revealed-preferred bundles in D(t-1) and the "revealed-

preferred boxes™ in D(t-1) . (See Figure Bl)

We prove now that these Z(t) sets satisfy (L1.1)-(L1.4).

Proof of (11.1): This is immediate from (1.8).

Proof of (11.2): Let h(Bi) € C(t). Then, by hypothesis and (1.8), h(Bi) €
Z(t)y n Bi. By (1.8), the definitions of C(t) and E(t) , and the
monotonicity and convexity and B; it follows that for any 2z € Z(t) such

that =z = h(Bi), z € Bg. Hence, (L1.2) follows.

Proof of (11.3): Let y belong to Z{t+1l). Then, by (1.8) and the
definition of com+ ,

+ 0

y € [com (C(t+l) U E(t+1))] n H

- [conv] (C(t+l) U E(t41))] + Ri) N wl .

Let then w € conv[{C(t+l) U E(t+1})] and e € RE be such that
0
(1.10.1) y=w+e€H

To show that w € int Z(t) we proceed as follows:.
For any x € C(t+l), x € S(t) by (1.1), (1.2) and (1.6); hence, by
(1.7), x € int E(t). Since by (1.8) E(t) ¢ Z(t), int E(t) C int Z(t).

Hence,
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(1.10.2) C(t+1) < int Z(t).

For any =x € E(t+l), there exists by (1.7) y € S(t+l) such that x €
G(y, n(t+l)) . But then by (1.6) and (1.2), y € S(t) , and by {1.6), =x €
int G(y, n(t)) . Hence, by (1.7), x € int E(t), which by (1.8) is included

in int Z(t). Therefore,
(1.10.3) E(t+l) c int Z(t)

By (1.10.2) and (1.10.3), w € com+[C(t+1) W E(t+l)] c int Z(t) , where
by interior we mean interior relative to HO.

Hence, from (1.10.1), y € int Z(t) + e , which implies by (1.8) that
y € int(Z(t) + e) = int Z(t)

We have then shown that for t =1, ..., T-1 , Z(t+l) € int Z(t)

Proof of (L1.4): To see that h(Bi) is an extreme point of Z(t}), suppose

that there exist Xy, X € Z(t) and X € (0,1) such that h(Bi) = Ax., +

2 1
c c c
(1 A)x2 . Then, by (1L1.2), %) € Bi and X, € Bi . Hence, h(Bi) € Bi by
the convexity of Bi , which contradicts the fact that h(Bi) € Bi'
Moreover, if there existed an extreme point ¢q, of Z(t) and some e > 0

such that h(Bi) - qj + e then, since by (L1.2) qj € B:, the monotonicity
of B; would imply that h(Bi) - qj + e € B: , which again is impossible.
Hence, h(Bi) € T(Z(t)).

Q.E.D.
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PROOF OF LEMMA 2: For each t and each r > diam(l-lo), we will let
¥(Z(t),r) denote the intersection of HO with all spheres P(a,r’) with
radius r’' < r and center a that satisfy
(2.1.1) 2(t) C P(a,r’') , and
(2.1.2) for all y € HO, a>y.

After proving some properties of these ¥(Z(t),r) sets, we will define
Y(t) to be equal to ¥(Z(t),r) for a sufficiently large r . We will

first show that for each t there exists r, large enough such that

(2.2) ¥(Z(t),rt) is compact,
(2.3) ¥(Z(t),rt) is strictly convex and strictly monotone in Ho,
(2.4) ¥(Z(t),rt) C int ¥(Z(t-1),rt_1) , and

(2.9) v 1 such that h(Bi) € C(t), ¥(Z(t),rt) N B1 - (h(Bi)].

Proof of (2.2): Let r > diam (HO) . Then, ¥(Z(t),r) satisfies (2.2)

since, by its definition, ¥(Z(t),r) is the intersection of closed and

bounded sets.

Proof of (2.3): Let r > diam(HO) be given. It is clear that ¥(Z(t),r) ;

since it is the intersection of convex sets. To see that ¥(Z(t),r) 1is
strictly convex, we follow the argument given in Eggleston (1969, Theorem
34): Suppose that Xy, Xy € ¥(Z(t),r) . Then, ¥(Z(t),r) must contain the

intersection of all spheres of radius r' < r that contain both x, and

1
X, - Hence, all points in the segment (xl. xz) are interior points of

¥(Z(t),r) . It then follows that ¥(Z(t),r) 1is strictly convex.
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To see that ¥(Z(t),r) 1is strictly monotone in HO, suppose that x €
¥(Z(t),x), e > 0 , and x + e € Ho. Since x € ¥(2(t),r}, it follows from
the definition of ¥(2(t),r) and (2.1.2) that | a - x |° = r'® for all
P(a,r') satisfying (2.1.1) and (2.1.2), Since e>0 and x + e € HO,
for all such a and r’, [ a - x - e H2 < Ja-x |2 < r'2. Hence, x + e
€ int (¥(Z(t),r)). It then follows that ¥(Z(t),r) 1is strictly monotone

in HO.

Proof of (2.4): Note that by (Ll1.1) the Z(t) sets are compact, therefore

by (L1.3) and the definition of A there exists 6t > 0 be such that for
all x € Z(t) and all y € 2(t-1), [ x -y | > 6, By Lemma A3 there
exists r' such that for all r = r', A(¥(Z(t),r), Z2(t-1})) < St. By the
definition of A and ¥(t-1,r) this implies that for all r = r’,

¥(Z(t),r) c int Z(t-1) c int ¥(Z(t-1),r) . Hence, (2.4) follows.

Proof of (2.5): To prove (2.5) we will show that

(2.6) Vi such that h<Bi) € C(t),

ny >0 and r, such that VvV r > r,

(2.6.1) ¥(Z(t), ) n B, n J(t, i) = | h(Bi) } , and

there exists

i
(2.6.2) ¥(2(t),r) N B, N Je, )¢ = g,

vhere J(t,1) = G(h(Bi),ni).

The statement of (2.5) follows then immediately from (2.6).
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Proof of (2.6); To prove (2.6.1) we will construct a monotone polyhedron
D(i) for each i such that h(Bi) € C(t). The set D(i) will contain
Z(t) and it will intersect Bi only at h(Bi) . (See Figure B2.1)

We will then show that for a large enough r ¥(Z(t),r1) n J(t,i) 1is

i
included into D(i) n J(t,i) . (See Figure B2.2)

Let t be given and let {1 € (1,...,n) be such that h(Bi) € C(t). By
(L1.1) there exist [ql,...,qJ} = T(Z(t)). By (L1.4) we can assume

w.l.0.g. that q; = h(Bi)' By (L1.2) and the closeness of Bi there

exists & > 0 such that for j=2,...,J
[+
(2.7 6(a;.8) c B . Let
(2.8) D(1) = com” { h(B), 6(q,.6), - . . , 6(ay8) ) N .
Then,

{(2.9) D(i) is & polyhedron that is monotone in Ho.

The next step is to show that,
(2.10) h(Bi) € T(D(1)) ,
(2.11)  Z(t) \ (h(Bi)) c int D(i), and

(2.12) D) \ (h(B) ¢ ni.

oof of 10): Suppose that (2.10) is not true. Then, by (2.9) there

exist al’ ey EJ e T(D(i)), al,...,aJ € R+ , and e € RE such that Ej »”
. J -
h(Bi) (j=t,...,J), =1 aj =1 , and h(Bi) - zj-l aj qj + e. By (2.8)
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Z(t)

D(1)

FIGURE B2.1

¥(2(t),x,)

FIGURE B2.2
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c
i

B; imply that h(Bi) € B;, which contradicts the fact that h(Bi) € Bi'

and (2.7) aj € B {( ~1,...,J). Then, the convexity and monotonicity of

Hence, (2.10) follows.

Proof of (2.11): Let D = e¢l(D(1)) . Then D 1is a closed subset of H
and by (2.9) ﬁc = int (D(i)) 1is & monotone and convex subset In H. By

(L1.2) h(Bi) € Z(t); by (2.8) h(Bi) € D ; by (L1.1), (Ll.4), and (2.8)
h(B;) + R, C D° ; and by (2.8) and (2.7) for all y € T(Z(t)) such that
¥y h(Bi)’ y € De. Then, letting B, A, and X in Lemma Al be respectively
D, Z{(t), and h(Bi)’ we obtain from lemma Al that Z(t) \ {h(Bi)} C Ec -

int D(i).

Proof of (2.12): By hypothesis, Bi is closed and B; is monotone and

K ¢
and h(Bi) + R+ C Bi' By (2.8),

convex in H. Moreover, h(Bi) € Bi
h(Bi) € D(i). And, by (L1.2), it follows that for all y € Z(t) such that
y = h(Bi)' y € B; . Then, letting A, B, and x in Lemma Al be respectively
D{i), Bi' and h(Bi)' we can conclude that D{i) \ {h(Bi)} C Bg. Hence,

(2.12) follows.

These results imply that D(i) is a monotone polyhedron that intersects
Bi and Z(t) at h(Bi)' it includes Z(t), and it is included in B;. We
will now employ €2.10)-(2.12) to show that for a large enough r and a
small enough box J(t,i) that contains h(Bi) ,  ¥(Z{t),r) n J(t,i) 1is
included into D(i) n J(t,i). From this it will follow that ¥(Z(t),r) N

J{t,i) 1intersects Bi n J(t,i) only at h(Bi)' Hence, we will next show
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that

ny >0 and r, such that VvV r = r,

( ¥(Z(t),r) N J(t,8) ) < (D) nJ(t, 1)) ,

{2.13) there exists

where J(t,i) = G(h(Bi),ni).

Proof of (2.13): By (2.9) and (2.10) D(i) has a finite number of faces
A1, ...,AQ adjacent to h(Bi)' Let pl,...,pQ be their normals. By (2.9)

ijRE (j=1,...,Q). By (L1.1), (2.9), and (2.11), for all j in (1,...,Q)

and all x € Z(t) such that x # h(Bi), X > pj h(Bi). It then follows by

Fj
(L1.1), (L1.4), and Lemma A? that for each j € { 1,...,Q ) there exists a

sphere P(aj,rj) such that (see Figure B2.3)

(2.14) aj >> y for all y € Ho,
(2.15) Z{t) C P(aj,rj), and
(2.16) P(aj,rj) is supported by the hyperplane ¢(pj,h(Bi)) at h(Bi)'
Let
Q
(2.17) P1 = ﬁj'l P(aj.rj).

Then, by (2.14), (2.15), (2.17), and the definition of ¥(Z(t),r) (see

Figure B2.4 )

(2.18) ¥(z(t),r) c P, for r > r = max (, | 3=1....,Q) ,

and by (2.16) and (2.17)

(2.19) P C(xeRK|

. Py x 2 py h(B) J-1,...,Q)
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FIGURE B2.3
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FIGURE B2.4
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Let n; > 0 be small enough such that
G(h(Bi)’”i) N T(D(1)) N T(Z(t)) = (h(B)}.
Then, by (2.19) and the definition of pl,...,pQ

The statement of (2.13) then follows from (2.18) and (2.20).

We next employ (2.13) and (2.12) to complete the proof of (2.6.1):
It 1is clear that h(Bi) € ¥(Z{(t),r) n Bi n J(t,i) , since, by
hypothesis, h(Bi) € Bi and, by definition, h(Bi) € Z(t) € ¥(Z{t),r) and

h(Bi) € J(t,i). Let x € J(t,i) and suppose that x € B and x » h(Bi).

i
Then, by (2.12) ¥ € D(i), which then implies by (2.13) that x €

¥(2(t),r) n J(t,i). Hence, (2.6.1) follows,

To show now that (2.6.2) is satisfied, let J(t) = u ( J(t,i) | h(B,) €
C(t) 1. Let d+* be the minimum distance between any x € ( Z(t) N
cl(J(t)c)!ﬂ HO } and any y € ( Bi N cl(J(t)c) n HO). The compactness of
Bi N HO and Z(t) imply by (L1.2) that d¥ > 0. By Lemma A3, there exists
T such that for all r > r, A(¥(Z(t),r), Z(t)) < d. 1t then follows that
for all r > r and all i such that h(B,) € C(t),

¥(Z(t),r) N B, n cl(I(t)") = @.

1
This proves (2.6.2)

We have then shown that (2.6) helds. Then, also (2.5) holds.
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We now define, for each ¢t =1,...,T,
Y(t) = ¥(Z(t),rt).

where rt is large enough so that (2.2)-(2.5) are satisfied. Then, the

Y(t) sets satisfy (L2.1)-(L2.4).

~To see that (L2.5) 1is satisfied, suppose that h(Bi) € C(t). Then, by
(L2.4), h(Bi) € Y(t). 1If h(Bi) € int Y(t), then, since by (L2.4)
Y(r) \ {h(Bi)} C Bz, the convexity of Bg implies that h(Bi) € B;' which
is a contradiction. Then, (L2.5) must hold.

Q.E.D.

PROOF OF LEMMA 3: Let P* be any sphere containing HO and with center

a€ RK such that Vz € HO , z << a . We define the compact set H by

*
H=({x¢€ RK | x € P and x < w2 1

Clearly, vt e {1, ..., T} , Y(t) nH =Y(t)
Define the sets Y(T+l) and Y(0) by:

Y(T+1) = {w?} and Y(0) = H .
Then, it is clear that

(3.1) Y(T+l) and Y(0) are strictly convex and compact sets, and

(3.2) Y(T+l) C int(Y(T)), and Y(1) C int(¥(0)).
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Then, from (3.1), (3.2), and (L2.1)-(L2.3) it follows that

(3.3) vt e (0, 1, ..., T, T+l}, Y(t) is a strictly convex and strictly
monotone subset in H.
(3.4) vee (0,1, ..., T, T+l), Y(t) is compact, and

(3.5) vte{l, ..., T, T+1}, Y(t) C int Y(t-1).

From (3.3), (3.4), (3.5), and Lemma A4 it follows that there exist numbers

(3.6) z, <z, < ... <z

0 1 T < Zr41

such that (see Figure B3):

T+1
(3.7 anY(s) X {zs} - Bn+ conv(us_oY(s) X (zs})

1

We let Y = conv(uziéY(s) X {zsl) .  Following Kannai (1974) and Mas-

Colell (1974}, we define f : X - R by

(3.8) f(x) = max(z|(x,z) € Y} for x€X .

Note that f is well defined, since X c H . Then,

(3.9 £( ) 1s a continuous, concave, strictly quasi-concave and

strictly monotone function on X

The concavity and continuity of f follows from (3.7) and (3.8), and the
strict quasi-concavity and strict monotonicity of £ follows from (3.3),
(3.7), and (3.8). From (3.7) and (3.8) it 1is clear that Ay, ...,

dY(T+1l) are level sets of the function f .



3Y(2) x{zz}

\BY(l) x iz}
= 5Y(2)
IY (1)

3Y (0)

FIGURE B3

Let now s : R - R be any strictly monotone and strictly concave

function, and let v =135 + £ . By (3.9}

(3.10) v is & striectly monotone and strictly concave function.
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We will next show that
(3.11) v 4is a representation for (Bi. h(Bi)]:-l on X .

Let t belong to O, ..., T+l , let 1 be such that h(Bi) belongs to

C(t) , and let y € B be such that y = h(Bl) . By (L2.5) and (L2.4),

i

h(Bi) € JdY(t) and Bi n Y(t) = [h(Bi)} . Hence by (3.7) and (3.9)

f(h(Bi)) -z, and for all y € Bi such that y » h(Bi) ,

f(y) < f(h(Bi)) . Since v is strictly monotone, v(y) < v(h(Bi))
Hence, (3.11) follows.

This completes the proof of Lemma 3.

Q.E.D.

PROOF OF LEMMA 4: Let x° = h(Cj) and xk = h{C By the definition

k)'

of supportable choices it follows that there exists a neighborhood N of x

]

such that Bj N cl(N) 1is a nonempty, convex, and closed set. Let A - ( Bj
nKN ) - RE. Then, A 1is also a nonempty, convex, and closed set. Moreover,
x € dA, and sj is the unique wvector in RE+ satisfying A C [ x € RK | sJ

¥ <1}, and sJ xj = 1. By Lemma A5 and the definition of A it then

follows that

(T2.3) for all y e Cj such that s y<1l,

there exists X € (0,1) such that rxd s Q- vye By

Suppose that for some y € Cj A xj and V(y) = V(xj).

1f sJ y <1, (T2.3) and the strict concavity of V imply that for
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APPENDIX C

In this appendix we state and prove Lemmas Al - A5, which have been

employed in the proof of Lemmas 1 - 4,

LEMMA Al: Suppose that A cC H cC RF is a polyhedroﬁ that is monotone in
H, B c H is a closed set, and B ¢ H is a monotone and convex set. If
there exists x € A such that x € B and ((x + Rf) nH)C BC, and for all

¥y € T(A) such that y » x, y € B , then A A\ Ix) C BS.

PROOF: let z € A be such that z » x. Since A 1is a polyhedron that

is monotone in H and X € A there exist Qys---045 € T(A) \ (x},
CO'Cl""’cJ € R+, and e € RE such that

A1.1)  c, + zj=1 g =1,

(Al.2) ey X + E§_1 cj qj +e = z , and

(Al.3) Cg ™ 1

Since B 1is a closed set and qj € AN\ {x} for all j=1,...,J,

- c

qj € int B .
If ¢y = 0, the monotonicity and convexity of B¢ and (A1.1)-(A1.2) imply

that z € B°.
If y # (0, then since qj € int Bc for j 2 1, there exists ¢ > 0 such
that for all § = 1 N(qj,e) c B, Let £ = (e/2,...,e/2) € RK. Since

(Z;_l cj e/ C ) e RE » X + RE c Bc, qj - £ E Bc, and B° 1is convex and

monotone, it follows from (Al.1)-(Al.3) that

z = C. X + Eq C, .+ e
0 j=1 %5 9
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- co(x+(2§_1cjyco))+2§_lcj (qj-.;))+e

€ B

Hence, A \ {x} C Bc.

Q.E.D.

IEMMA A2: Suppose that A CHC RK is a polyhedron that is monotone in
H. Let x € T(A) and suppose that for some p € Ri and all y € A such
that y»x, px<py . Then, there exists a sphere P(a,r) such that
A2.1. a> y for all y e H,
A2.2, AcC P(a,r), and

A2.3. P(a,r) is supported by the hyperplane &{(p,x) at Xx.

PROOF: Let X € R, be large enough such that
(A2.4) for allyeH, =x+2xp > y, and
(A2.5) for all extreme points 9, of A such that q  * X

x> |lX-qj|12/(2(qu-Px))

Let P(a,r) be the sphere with a -x+ A p and r = | A pl.
Then, P(a,r) satisfies A2.3 by construction, and it satisfies A2.1 by

(A2.4). To see that P(a,r) satisfies A2.2, suppose that y € A . Then,

y - Ei_l bS 9 + e for some b1""'bJ € R+ such that zi-l bs = 1, some
e > 0, and some extreme points Qpee-0dy of A. Since y € A it follows

from the definition of a , (A2.5), and the assumption that y = X, that

by -al?
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sl b q e -alf’

shz g bga el

<=l b fa -x-ap]

- b (la - xfP+lapl?-22p (g, -n)

2
< zi_l b, ( 2ap(a -0 +frpl®-22p( -%)

2
- % b |ap|

2
Iae |
2

= T
Hence y € P(a,r) and then P(a,r) satisfies A2.2

Q.E.D.

LEMMA A3: Suppose that A C Rx. is a polyhedron that is monotone in a
compact set H C RK . Let ¥(A,r) denote, for r > diam(H), the intersection
of H with all spheres P(a,r’) of radius r’ < r and center a such that
A C P{a,r’) and for all y € H , a >> y. Then

l.imr_.‘m A(¥(A,r), A) = 0 .

PROOF: Suppose that the lemma is not true. Then, by the definition of
A, there exists y € H such that y g A and y € ¥(A,r) for all
sufficiently large r.

Let z denote the element of A that is closest to y. Since A 1is s
monotone polyhedron in H, ¥y = z-¢ for some e > 0 , z € 0A, and there
exists an hyperplane &(p,z) with p € RE that separates A from y. Let
qj be an element of T(A) that is closest to z. If qj = 2z, then any

sphere P(a, r') with z € 8P(a, r') and with a > y for all y € H, r’' =
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r, and A Cc P(a, r') will not contain y , contradicting the hypothesis
that y € ¥(A,r) for all r. Hence, we can suppose that z lies in a face
A of A that is adjacent to qj and that p =- P, is the normal of As.
Since ¢&(p,z) separates A from vy,

(A3. 1) ps qj -P, 2 > ps Y.

Let Al,...,AQ be the faces of A that are adjacent to qj. Let pl....,pQ

denote respectively, the normals to Al,...,A

Q
enough, as = 1-{/(Q-1)) , ak =& (k ¥ s5), and p' = 23‘1 ak pk , we have

Then, for ¢ > 0 small

that from (A3.1)

(A3.2) P'Y = 23_1 a Py < 23_1 a P9y - P’ 4

Moreover, for all extreme points q of A for which q * qj’

' . Q '
(A3.3) Pidg = By % P9 > Zel A P 9y T PGy
since for all k a > 0 and for some k q ¢ Ak' .
Suppose that w &€ A and w = qj. Then, w = Ei 1 bs q, + e for some
b.,...,b, € R such that EJ b = 1, some e 2 0, and some extreme
1 J + s=1 s
points SIRERRRLE of A. It then follows from (A3.3) and the assumption
that w » qj that
p'w
Q
Tl B Py ¥
Q
Tkel % Py (Fgoy By g, + ©
Q
25} T b, 8 Py g,
Q
> I z! b %k Pk 9
Q s=1 s
™ Jee1 2 Py 9

=P qj'
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Hence,
(A3.4) for all w € A such that w » qj p' w>p' qj.

From the assumption that qJ € A and (A3.4) it follows that there exists
P(a,r) such that for all y € H a >y, AcCP(a,r), and P(a,r) is
supported by &(p',qj) at qj. But then, since by (A3.2) p'y < p'qj, it
follows that y € P(a,r) and hence, y ¢ ¥(A,r). This contradiction

completes the proof.

Q.E.D.

LEMMA A4 (Kannai, 1974): If Tt (i =1, ..., m) are compact and convex

subsets of @ set H in RK , and
' cinert -1, ..., D),
. 1 2 m
there exists real numbers t < t < ... < ¢ such that

BKTi X {ti} C 6K+ conv(UT- Ti X {ti})

1 1

( ajA denotes the boundary of A in the topology of r/ J.
We guote Kannai (1974):

‘The proof of this lemma is a formal elaboration of the
geometrically obvious fact that the slopes of the supporting
1w (elyy-vhich join al('ri

hyperplanes-of conv{u x [tl} to

m
T

i+1 _ , i+l i-1
aKT X {t } form a decreasing sequence of positive numbers,
so that the next convex set (which is smaller) can be "squeezed

in.’
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LEMMA A5: Suppose that A C RK is a nonempty, convex, and closed set
* &
such that v xe A, (x - R{) cA. Let x € 8A and s € — be the
unique vector in R§+ such that
*
Ac(xe€ o | sx=<1) and sx =1,

Then, if y is such that s y < 1 , there exists ) € (0,1) such that

AX +(l-2)ye€A.

PROO¥: Let y € RK be such that s y < 1 . Suppose that V A € (0,1),

*
A x + (1 - A) y & A. Then, by the separating hyperplane theorem there

exists p, € RK , P, #* 0, lp Il <=, such that
by A A

(A5.1) V x € A p, X <p, (A X 4 (-2 Y.

Suppose that a coordinate Py 1 of Py is negative. Then, since for any

XxXeA, (x - RE) C A , there exists a large enough K such that,
*
w=2x - {K,0,...,0) €A and Py V=P, X - pJ\’1 > Py (ax + (1-2) ),
contradicting (A5.1). Hence,
(A5.2) Vv X € (0,1) P, z 0.
Take a sequence {An}:‘l such that An -+ 1. We can assume w.l.o.g. that

-1. o a
"PA" Hence, there exists a subsequence {Ani}i-l of {An]n-l and
p € RK such that
lpl =1, p20, p, *P,and A -1

i i
By (A5.1) it follows that
*
(A5.3) V¥V x € A and large enough i PX=P (An x + (1-An } ¥), and
i i

(A5.4) VXEA pxX=<PDPZIX ,
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where (A5.4) 1is obtained from (AS5.1) by letting An - 1.
i

* *

Let ¢ be such that p x = ¢ . By translating x if necessary, we can
assume w.l.o0.g. that ¢ >0 . Llet p’' = p /c. Then,
(A5.5) p' x =1

and from (A5.3) and (AS5.4),

1A

*
(A5.6) P’ x p’ (An x + (l-An ) ¥Y) V¥ x € A and large enough i, and

i i

*
(A5.7) P'x = p'x ¥Vx€eEA.

By (A5.5) and (A5.6),

(A5.8) p'x =1s=p’' (A %X + (L-A_) )
oy ny

Since by hypothesis sy<1l=3=s x*, -] (An x* + (l-An ) ¥) < 1; hence,
i i
it follows from (A5.8) that

(A5.9) p' = s.
Moreover, by (A5.5) and (A5.7}),
K
(A5.10) Ac{xeR | p' x<1}) and p'x = 1.

*
Let p =~ap' + (l-a) s for some 0 <a <1 . Then, since s € RE+
“

p’20, Ac{xeR|sx=<1) and s x =1, it follows from (A5.10)
that

* * * * %
(A5.11) p € R§+, p s, AC{xE€E RK | p x<11}),and p x =1,

This contradicts our hypotheses about the vector s . Hence, if sy <1,
*
there exists X € (0,1) such that A x + (1 - X)) y € A,

Q.E.D.
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