Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

9-1-1988

Nonparametric and Distribution-Free Estimation of the Binary
Choice and the Threshold-Crossing Models

Rosa L. Matzkin

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Matzkin, Rosa L., "Nonparametric and Distribution-Free Estimation of the Binary Choice and the
Threshold-Crossing Models" (1988). Cowles Foundation Discussion Papers. 1133.
https://elischolar.library.yale.edu/cowles-discussion-paper-series/1133

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/1133?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1133&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Note:

COWLES FOUNDATION FOR RESEARCH [N ECONOMICS

AT YALE UNIVERSITY

Box 2125, Yale Station

New Haven, Connecticut 06520

COWLES FOUNDATION DEISCUSSION PAPER NO. 889

Cowles Foundation Discussion Papers are preliminary
materials circulated to stimulate discussion and
critical comment. Requests for single copies of a
Paper will befilled by the Cowles Foundation within
the limits of the supply. References in publications
to Discussion Papers (other than acknowledgment that
a2 writer had access to such unpublished material)
should be cleared with the author to protect the ten-
tative character of these papers.

NONPARAMETRIC AND DISTRIBUTION-FREE ESTIMATION
OF THE BINARY CHOICE
AND THE THRESHOLD-CROSSING MODELS

by

Rosa L. Matzkin



NONPARAMETRIC AND DISTRIBUTION-FREE ESTIMATION
OF THE BINARY CHOICE

AND THE THRESHOLD-CROSSING MODELS

by
*
Rosa L. Matzkin

Cowles Foundation
Yale University

December 1987

Revised : September 1988

ABSTRACT

This paper studies the problem of nonparametric identification and
estimation of binary threshold-crossing and binary choice models. First,
conditions are given that guarantee the nonparametric identification of both
the function of exogenous observable variables and the distribution of the
random terms. Second, the identification results are employed to develop
strongly consistent estimation methods that are nonparametric in both the
function of observable exogenous variables and the distribution of the
unobservable random variables. The estimators are obtained by maximizing a
likelihood function over nonparametric sets of functions. A two-step

constrained optimization procedure is devised to compute these estimators.
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1. INTRODUCTION

In recent years, thére has been increasing interest in the study of
binary threshold-crossing models and binary choice models. These models
have been employed to study a wide variety of problems. The applications
have included labor force participation, choice of education, and choice of
mode of transportation. The analysis of these models has been originally
parametric and most recently semiparametric. This paper introduces a fully
nonparametric analysis.

In binary threshold-crossing models the value of a dichotomous observ-
able variable y 1s 1 if the value of a function h plus the value of a
random term 5 is above some threshold value; the value of y is O
otherwise. The value of h depends on observable exogenous variables. For
example, h may denote willingness to work as a function of socioceconomic
characteristics, and 5 may denote a function of unobservable variables
influencing the individual’s willingness to work. The variable y then
equals 1 when an individual participates in the labor force, and vy
equals zero otherwise,

In binary choice models, h 1is the difference between the values of a
subutility, V, evaluated at the observable attributes of two alternatives.
The value of 15 is the difference between the values of a subutility, e,
evaluated at the unobservable attributes of the two alternatives. The
observable variable y equals 1 when the value of h plus n 1is grater
than or equal to zero. In a well known application of this model, the first
alternative is commuting by bus and the second commuting by car. In this
application, v is a function of cost, time, and socioeconomic
characteristics, and e denotes the wvalue of a function of unobservable

attributes.



In the past, the estimation of threshold and discrete choice models has
proceeded by specifying parametric structures for the function h and for
the distributioﬁ F of ¢ . Unlike the estimation of linear models,
however, an erroneous specification of the distribution F may cause the
estimator of the parameters of the correctly specified function h to be
inconsistent, In pioneering work, Manski (1975,1985) proved that it is
possible to estimate the parameters of h consistently without requiring
the distribution of n to be parametric. Recently, many other
distribution-free methods of estimating h ([V] or (h,F) {[(V,F)] have
been developed. The maximum likelihood distribution-free estimator of
Cosslett (1983) for binary choices, the maximum rank correlation estimator
of Han (1987) for generalized regression models, Ichimura’s (1986) estimator
for single-index models, Klein and Spady’s (1987) estimator for discrete-
choice models, and Stoker’s (1985) average-derivatives estimator are some of
the new distribution-free estimators that apply to the limited dependent
vafiable models studied in this paper. All these methods still rely on a
parametric structure for h .

Matzkin (1987) presented a method of estimating a monotone and concave
subutility function V 1in polychotomous choice models. This estimation
method provided a strongly consistent estimator of the function V . The
method did not require V to possess a parametric structure, but it did
require the distribution of the random terms e to belong to a parametric
family. The parameters of the distribution of e were also consistently
estimated. Another estimation method in the seﬁiparametric vein is the

flexible form methods of Gallant (1981,1982).



In this paper, we Introduce a nonparametric, distribution-free method
of estimating the functions h and F 1in the threshold-crossing model and
the functions V and F in the binary choice model, without requiring
either h [ V ]} or the distribution F of 9y to possess a parametric
structure. This new method exploits the knowledge economists possess about
properties of the function h [V] ; for example, h (V] may be known to
belong to the set of concave, monotone, and linearly homogeneous functions.
Instead of estimating h [V] from a parametric family of functions, the
new methods obtain an estimator of h [V] from a subset W of functions
possessing this particular set of properties, or some other set of
properties that may be implied by economic theory. The function F 1is only

assumed to belong to a set T of increasing functions whose range lies in

the interval {0,1]. Since economic theory does not in general imply any
properties for F , it is desirable to develop methods that do not require
F to satisfyWany specific conditions, ' ’

Section 2 defines formally the binary threshold-crossing and choice
models. Section 3 presents a set of conditions on the set W of functions
h [ V ] under which it is possible to identify (h,F) [ (V,F) ] within
W x I . This section alsoc discusses the application of these
identification results to develop various new nonparametric, distribution-
free methods by combining and modifying existing semiparametric methods.
Section 4 contains examples of sets of functions that possess properties
typically assumed in microeconomic theory and satisfy the identification
conditions presented in Section 3.

Section 5 presents a strongly consistent est:[.u.tation method for (h,F)

[ (V,F} ]. The method is based upon the combination and modification of



Cosslett’'s (1983) distribution-free estimator and Matzkin’s (1987)
semiparametric estimator. This new estimation method proceeds by maximizing
a likelihood function over the set (W x T) . In Section 6, we prove that
this estimator is strongly consistent. The proof is based upon Wald's
(1949) result about the strong consistency of the maximum likelihood esti-
mator. Section 7 presents some brief concluding remarks and summarizes the

main results of the paper.

2. THE MODELS

The binary threshold-crossing model and the binary choice model are
described below. An extensive list of empirical applications of these

models can be found in Maddala (1983),

3 binary threshold-crossing model:
In this model, we assume that the wvalue of an observable dichotomous

variable y 1is determined by

(1) y = l[h¥(r) - n = 0]

K

In (1), r € T_ denotes a vector of observable exogenous variables, Tt C R,

t
h* : Tt-+ R is an unknown function, and g5 is an unobservable random
variable. 1l[+] 1is a logical operator that equals 1 when [s] 1is true
and equals zero otherwise. The random variable »n is assumed to be inde-
pendent of r and to possess an unknqwn cumulative distribution function

F¥ : R + [0,1] . The vector r 1is assumed to possess an unknown probabil-

ity density function g that induces a probability measure G .



The probability that y = 1 when the vector of observable variables is
r will be denoted by Pr(y = 1|r) . This probability depends only on the
value that h* attains at r and the value that F* attains at h#*(r) ,

since by (1), Pr(y = l|r) = F¥(h*(r))

The conditional 1log-likelihood of a sample of N independent

observations x(N) - [yi, ri]lf_1 when h* =h and F* = F 1is then
() ¥ i i i
L(x*"7, h, F) = = {y log(F(h(r)) + (1 - y )log(l - F(h(xr™)))}
i=1

The binary choice model:
In this model, the value of the dependent observable variable, y, which
equals one when the first of two alternatives is chosen and equals zero

otherwise, is assumed to be determined by

(2) y = LV*(r)) + e; = V¥(r,)) + e

1 2]

In (2), rj € Td denotes a vector of observable attributes corresponding

to alternative j (j ~1, 2) , V& : Td =+ R is an unknown subutility func-
tion, and ej is an unobservable random term representing the value of a
subutility function on unobservable attributes corresponding to alternative
j (=1, 2).. For each alternative j , the vector rj may include the
alternative, j € A , socioeconomic characteristics of the consumer, s € § ,
and attributes of the alternative, rj € Tt .  Hence, Td C (AX S x2Z)
The vector (s, z, 22) is assumed to possess a probability density, g,
that induces a probability measure G .

The random vector (el, e2) is assumed to be distributed independently
of (s, zq, 22) and to possess an unknown probability density. Let g

denote (e, - e The random wvariable n is then distributed

1 2?



independently of (s, z5, 22) with an unknown cumulative distribution
function F* : R = [0,1] , which is induced by the density of (el, e2).

The probability that y = 1 given (rl, rz) is then

Pr(y = 1|r;, 1,) = F¥(V¥(x;) - V*(z,))

* * *
This is a binary threshold-crossing model with h (rl, r2) =V (rl) -V (rz)
and n = e, — e .

The conditional log-likelihood of a sample of N independent

i *
observations X(N) - [yi, ri, r;}bil_l when V* =V and F =TF 1is then
N N o4 1 1 1 i 1
v, - 2t ey - vl + ayhtesa - v - Ve
i=1

3. IDENTIFICATION

In this section, we study the identification of nonparametric functions
(h*, F*¥) and (V*, F*) , within sets of nonparametric functions, in the
models described in Section 2.1

We say that a pair of functions (h*, F¥*) [(Vk, F*)] 1is identified in
a éet (WxT) if h* belongs to W , F* belongs to I' , and any other
pair (h,F) {(V,F)] that belongs to (W xT) and is different from (h¥*,
F*) [(V*, F*)], induces a different probability density on the observable

dependent variable. We say that two distribution functions F and F' are

different if they attain different values on a set of positive Lebesgue

1 The identification of binary threshold-crossing and binary choice
models in which h¥* belongs to a set of linear-in-parameters functions and
F* belongs to a set of nonparametric functions has been analyzed in Manski (1986).



measure with respect to n , and we say that two functions h and h’ [ V
and V' ] are different if they attain different values on a set of positive
probability measure with respect to r . The formal definition of

identification follows.

DEFINITION: The pair (h*, F*) [ (v', F') ] is jdentified in the set
(WxT) if for any pair (h,F) [ (V,F) ] in (W x T) such that (h,F)
# (h*, F*¥) [ (V,F}) » (V#, F*) ] there exists a set D in the support of
the probability density g such that for some value y’ of y and all

relD
Pr(y = y'|r; h, F) » Pr(y = y'|r; h*, F*)

[respectively, Pr(y = y’lr; V, F) = Pr(y = y’lr; Ve, F*) |.

In the models that have been described in Section 2, all we can observe
from the data are the frequencies with which y =1 for given values of r
in the support of g . These frequencies are determined by the composition
of two functions. To identify (h*, F*) 1in a set (W x I'), this set needs
to satisfy conditions that will allow us to separate the influence of F¥*
from the influence of h* . Similarly, in binary choice models, to identify
(V¥, F*) 1in a set (W X ') we need to separate the influence of F* from
the influence of the difference between the wvalue of V* at two points.

The following set of assumptions allows such a separation,



Assumptions on the set of functions W :
W.1l. In the threshold-crossing model,‘w ig a set of real-valued, continuous
functions with domain Tt'
W.1'.In the binary choice model, W 1is a set of real-valued, continuotis
functions with domain Td.
W.2. In the binary threshold-crossing model, h* € W.
W.2'.In the binary choice model, V* € W.
W.3. In the threshold-crossing model,
there exists a subset T of Tt such that
(i) for all h, h' € W and all r e T
h(r) = h'(r) , and
(ii) for all h e W and all t in the domain of F*,
there exists r € T such that
h(r) = ¢t .
W.3'.In the binary cHoice model,
there exists a subset T of § x Z such that
(i) for all V, V' € ¥ and all (s, zz) €T

v(2, s, z2) = V'(2, s, 22) , and

(ii) for all Ve W and all t in the domain of F*,
there exists (s, zz) € T such that
v(2, s, z2) =t .
W.4, In the binary choice model,
(i) if for 1 =1, 2 , rj - (j, s, ;j) € A XS x i , then for some
Ze€z, all se€s, andall VeEW, V(l,s,2) =0 ;
(ii) 1if for j =1, 2 , rj = (3, zj) € AX Z , then for some z € Z ,

and all VeWwW, V(l,z) =0 ;



(iii 4if for j = 1, 2 , rj € § x Z , then for some 2z € Z , all
s€S, and all VeW, V(s,z) =0 ;
(iv) if for j = 1, 2 , 2y € Z , then for some z € Z and all

Vew, V(z)=0.

Section 4 presents several examples of sets, W , of functions
satisfying these assumptions,

Assumption W.1 [ W.1'}] guarantees that all points in the domain of the
functions in W will be observed. The continuity assumptions on the
functions in W also will be employed to prove the consistency of our
estimators, Note that when the support Tt is a finite number of points,
the continuity assumption is trivially satisfied.

Assumption W.3 [ W.3' ] is critical for our results. Assumption W.3(i)
[ W.37(1) ] allows us to separate the influence of F* from the influence
of h* (or from the difference between the wvalue of V¥* at two npints) on
the ﬁrobability distribution of y . Since all functions In W attain the
same values at T, a difference in the probability of y given r € T and
(h,F) can only be accounted for by a difference between F and F*
Similarly, in the binary choice model, a difference in the probability of vy
given (zl, zz) € {(1,5,2} x T and (V,F) can only be accounted for by a
difference between F and F* . Assumption W.3(ii) { W.3’(ii) ] guarantees
that the range of h over r € T (or the range of vx(l,s,z) - V#(2, s,
zz) over (s, 22) € T ) contains the support of F* ., This assumption
insures the identification of F* from any F such that F = F* . Since,
if F(t) = F*(t), by Assumption W.3(1i) [ W.3'(ii) ] there exists r* € T

(or (s*, z%) € T ) such that for all h e W , h¥%(r%¥) = h(r*) = t (or,
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for all Ve W, Vx(l, s*, z) - V¥(2, s*, z§) = V(1, s*, z) - V¥(2, s*, 2})
= t ). Hence, Fx(h*(r%*)) » F(h(r*)) (or,
FR(V&(1, s*, z) - V%(2, s*, z§)) = F(V(1, s*, z) - V(2, s*, z§)) ).

Note that in binary choice models in which V* 1is a function of the
alternatives, the set T need only exist in the domain of V*(2,.) . Note
also that in the binary choice model, the set T may be a subset of
(s) xZ , for some 8 € S, or a subset of § x r , for some rez; in
other words, the functions in W may be assumed to attain the same values
only for a particular value of socioeconomic characteristies or only for a
particular value of attributes of the alternatives.

Assumption W.4 is only required in the binary choice model; it guaran-
tees the identification of (V¥, F*) from any (V, F*) such that V = V¥,
Assumption W.4(i) is analogous to the identification assumptions made about
vk, wheg V¥ {s assumed to be linear In parameters and to depend on
socioeconomic characteristics of the consumer and Wlternative specific
constants. Assumption W.4(1i) is the same as assumption W.4(i), except that
it applies to the case in which V* does not depend on socioeconomic
characteristics. Assumptions W.4(ii{i) and W.4(iv) apply when the value of
V¥ at the observable attributes or characteristics does not depend on the
alternatives. In this case, a consumer will attain the same V-utility value
at any two alternatives that possess the same attributes. The meaning of
Assumptions W.4(iii) and W.4(iv) is that all functions in W will attain
the same value at some vector of attributes z € Z . This normalization is
necessary because the probability of y pgiven (zl, 22) depends only on

the difference of V¥ between two alternatives.
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Assumptions on the set T :

F.1. I 1is the set of all monotone increasing functions on R with values
in [0,1].

r.2. e’ .

r.3. ™ 1is striectly Increasing.

Assumptions TI'.1 and TI'.2 guarantee the compactness of the set T to

which F* belongs. This property will be important in proving the strong
consistency of our estimators. Assumption TI.3 will allow us to identify
(h, F*) from (h*, F*) when h » h* or, in the binary choice model,
(V, F¥) from (V*¥, F¥) when V » V*. In the threshold-crossing model,
this identification property holds because if h(r) = h*(r) the strict
monotonicity of F* implies that F*(h(r)) » F*(h*(r)) . In the binary
choice model, this holds because when V(2, s, z2) » V*(2, s, 22) for some
(s, 22) € § X Z , Assumption W.4 and the strict monotonicity of F* will
imply that F*(V(1, s, z) — V(2, s, z,)) * Fx(V*(1, s, z) - V(2, s, z,))

If, on the other hand, V(2, s, zz) = V*(2, 5, 2 for all (s, zz) €S x?2

97

, it must then be that V(1, s, zl) “ Vk(1, s, 2 for some (s, zl) € 8§ x

1)
Z. In this case it follows that for any z, € Z the strict monotonicity of
F* implies that Fx(V{1, s, zl) - V(2, s, 22)) w Fx(Vx(1l, s, zl)
- V2, 5, 2,))

Asgsumptions I'.1-T'.3 are also made in Cosslett’s (1983) semiparametric

distribution-free method.
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Assumptions on the probability density g :
G.1. In the binary threshold-crossing model, the support of the probability

measure G of the vector r of exogenous observable variables is

-~

Tt , the domain of h* , -

G.1'.In the binary choice model, the support of the probability measure G
of (s, Zqs zz) is § x 22
G.2. In the binary threshold-crossing model, at least one coordinate of r
possesses a Lebesgue density conditional on the other components of r.
G.2',In the binary choice model, either
(i) there exists a coordinate sk’ of s € § such that the
probability density of s, ~ conditional on the remaining
coordinates of (s, Z1s z2) € S X 22 is a Lebesgue density, or

(ii) there exists a coordinate of z € Z such that the

2"
probability density of (z1 ke % k,). conditional on the

-remaining coordinates of (s, z 22) € S5 X 22, is a Lebesgue

1'
density.

Assumption G.1 [G.1l'] guarantees that the elements in the domain of the
functions in W can be observed with positive probability. If this
assumption was not satisfied, we could not distinguish h* [ V* | from an
h [ V] that differs from h* | V& ] only at the unobserved points.
Assumption G.2 (G.2'] is made in all semiparametric distribution-free
‘methods of estimating binary threshold-crossing and choice models; it
guarantees that all points in the domaln of F* will be attained with

positive probability.
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Our main results in this section are the following theorems.

Identification in the threshold-crossing model:

THEOREM 1: Suppose that the binary threshold-crossing model satisfies
assumptions W.1-W.3, T.1I-T.3 and G.1-G.2. Then, (h*, F*) is identified in

(W x T)

Identification in the binary choice model:

THEOREM 2: Suppose that the binary choice model satisfies assumptions W.1’,

W.3', W.4, I'.1-T.3 and G.1'-G.2’. Then, (V*, F*) is identified in (W x T).

The proofs of Theorems 1 and 2 are presented in Appendix A. Examples
of sets of functions W that satisfy _our identification conditions are
discussed in the next Yection, '

The identification results of the theorems above can be employed to
develop strongly consistent estimation methods for (h¥*, F¥) [(V¥, F*)] or
for h* [V¥]. In particular, existing semiparametric methods can be
combined and modified to be nonparametric in both h* [ V¥ ] and F* and
still provide consistent estimators. This requires, as a first step, to
restrict h* [ V* ] to belong to A subset of a sget of functions W
satisfying the Assumptions W.1-W.3 [ W.1’'- W.3', and W.4 ] stated above.
As a second step, additional restrictions on T and W are impesed to
Insure the strong consistency of the estimation method. In Section 5, we

describe one such estimator and in Section 6, we prove its strong

consistency. This estimator is based upon Cosslett's (1983) semiparametric
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distribution-free method and Matzkin's (1987) method. An example that
demonstrates how the basic identification results obtained in this paper can
be applied to develop a strongly consistent estimator of a function h* of
cbservable exogenous variables In generalized regression models is given in

Matzkin (1988),.

4. EXAMPLES

In this section, we present several examples of sets of functions W

that satisfy the assumptions made about W in the previous section.

EXAMPLE 1: 1In this example, we consider sets W of homogeneous of degree
one funct:ioi%,2 for the threshold-crossing model.

Suppose that Tt - RE and that the domain of F* is bounded below by
0. let r* € int(Tt) and a € R be given, and let W be the set of all
continuous and homogeneous of degree one functions h : T, - R such that
h(r*) = a . Assume that r 1is distributed with a Lebesgue density with
support Tt . Then, W satisfies Assumptions W.1 and W.3. The set T of

Assumption W.3 is the ray (r € Ttlr = Ar* for some X € R} . Since for all

heW and all r in this set T .

(1.1) h(r) = h(Ar*) = Ah(r*) = Aa

2
A function h : T + R 1is homogeneous of degree one if, for all r e T
and all A =0, h{(Ar) = Ah(r)
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for A € R for which r = Ar* | W satisfies W.3(1i). Since all functions
in W map T onto [0,) , W satisfies W.3(ii).

The assumption that W 1is a set of homogeneous of degree one functions
implies that each function in W can be determined by one level set and
that the value of the function increases linearly across level sets. The
rate of increase in the value of the functions in W 1is determined by the
specified value a at z*¥ . Different functions in W attain the same
values at r* and at the ray T that passes through r* , but differ in

their level sets. (See Figure 1.)

\\“{r e Tt|h'(r) - a)

a——(r & Tt|h(r) = a)

FIGURE 1

Semiparametric, distribution-free methods of estimating threshold-
crossing models typically assume that h¥(r) = r #* for some parameter §%

which belongs to the set

(1.2) (6 e R¥|jo| = 1)
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Fixing the norm of the parameter values is analogous to our assumption that
h(r*) = a ; both fix the rate of increase of the functions. Linearity of
the functions in r , however, implies not only that the functions are
homogeneous of degree one, but also that their level sets are hyperplanes.

(See Figure 2.)

7~
r2 yd
yd
e
-
‘\‘{r e Tt| r §'= a}
- T.{r?® )
- a— —{r € . r -0
5
FIGURE 2
EXAMPLE 2: In this example, we consider sets of functions that are

additively separable into the value of one variable and any continuous
function of the remaining variables. This set will allow us to identify
(h*, F*) 1in the threshold-crossing model.

Let E be a subset of RK'l, and let W be the set of all functions

h: RXE—-R for which there exists a function t : E - R such that

(2.1) t(0) - 0, rand

(2.2) h(rl, Tos ees rK) - + t(rz, . rK) for all r €R
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Assume that O € E; that r is distributed, conditional on (r2, ...,

1 %)
with a continuous distribution; and that the support of G is R x E. Then
W satisfies Assumptions W.1l and W.3 for the threshold-crossing model. The
set T of Assumption W.3 is the ray (r € RK|rk -0, k=2, ..., K} . By
(2.1) and (2.2), all functions in W attain the same values at any elements
of this set T . Moreover, they map T onto R and hence, this W set
satisfies Assumption W.3(ii). By the assumptions made about G , T is
included in the support of G.

Note that the conditions on this set of functions are very weak. Apart
from the additive separability in (2.2), the normalization condition (2.1),
and the continuity of the ¢t functions, no additional restrictions need to
be imposed in W to identify (h*, F*) . If it is desirable, in some

particular application, to impose additional properties on the functions in

W , Theorem 1 will still hold.

EXAMPLE 3: We consider in this example sets of functions that are
additively separable into a homogeneous of degree one function and a
continuous function. We will show how the conditions in W.4 can be imposed
on these sets to identify (V*, F*) in the binary choice model.

Assume that the vector z € Z has a continuous distribution,
conditional on s . let s €8, ze€eZ, and a € R be given, Let W

be the set of all continuous functions om A X S X Z such that for all V

in W there exist functions v : AXS~+R and w : Z - R satisfying

(3.1) v(l,s) =0 for all s € § ,
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(3.2) v(2,s) = 0,

(3.3 w 1is homogeneous of degree one,

(3.4) w(z) =0 , and

(3.5 for all (j,s,z) e Ax S xZ, V(j,s,z) =v(j,s) + wi(z)

If the support of G 1is § x 22 and V*¥ € W, the set W satisfies

Assumptions W.1'- W.3’, and W.4. By (3.1) and (3.4), W satisfies Assump-
tion W.4. By (3.2)-(3.4) and arguments similar to those given in Examples 1
and 2, W satisfies Assumption W.3' with T = {(s, ZZ)IS -8, z, = xz for
some A = 0}

This particular example is widely applicable because the functions v
of socioeconomic characteristics are not required to possess any particular
properties other than continuity. In applications in which economic theory
has no Particular implications about these functions, this is a very useful

feature.

EXAMPLE 4: We consider in this example an alternative set of additively
separable functions for the binary choice model.

For any s € §, let s - (51, 85 Assume

-k o Sp1r Skl ot )

that the coordinate S of s € § possesses a continuous distribution,
conditional on (S—k'zl’ZZ)

let s€8, ze€2Z and a € R be given. We will let W be the set
of all continuous functions on A X 8 X Z such that for all V € W there

exist functions t : Ax S >R and w : Z » R satisfying

(4.1) s, + t(l, S—k) =0 for all s € 8§ ,

k
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(6.2) €(2, E_k) —a,
(4.3) w(z) = 0 , and
(4.4) for all (j,s,2) €AX S X2, V(j,s,2) = s + t(j, s_) + w(z)

Assume that the support of G 1is 8 X ZZ, and that V* € W. Then, by
following arguments similar to those given for the sets of functions W in
Examples 1, 2, and 3, it is easy to show that any set of functions W
satisfying the conditions (4.1)-(4.4) satisfies Assumptions W.1l’, W.3', and

V.4,

5. ESTIMATION

In this section, we present a particular method of estimating the pair
of functions (h*, F*) in the binary threshold-crossing model and the pair
(V*, F*) in the binary choice model. The method proceeds by finding the

pair (h,F) [(V,F)] that maximizes the likelihood of the observations over

the set (W x1TI)
Since for any finite number of observations, the wvalue of the

likelihood £ at any function h € W [V € W] depends on h [V] only
1 N
r

y + 0y

through the wvalue that h (V] attains at the vectors r
(1, st oz, @8t 2, L @, ST ), @ Y, 21, the maxtmiza-
tion of £ over W can be transformed into the maximization of Z over
the set of all finite dimensional vectors (hl, ces hN)
[(Vi, Vé, cee Vf, Vg)] » for which there exists a function h e W [V e W]

for 1 = 1, ..., N (V(j, sI, zJ?) - vJ? for

with h(rl) = nt
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i=1, ..., N; j =1, 2) . Similarly, since the value of the likelihood

function Z at any F €T depends on F only through the value that F

attains at hl, cns hN [ V%, ce ey Vg ] , the maximization of 2 over T
can be transformed into the maximization of £ over the set of all vectors
Fl, S FN [ Fi, F%, cens F?, Fg ] for which there exists a function
FeTl with F(h) =F , i=1, ..., N [F(Vji)-F;, 1=-1, ..., N ;
} =1, 2 1. Cosslett (1983) characterized the set of vectors Fl, cens FN
for which there exists a function F el with F(hi) - F1 (I1=1, ..., M),
and Matzkin (1987) characterized the set of vectors hl, I hN [ Vi,
ceey Vg ] for which there exists a concave and monotone function h [ V ]
with bl =nwieely , 1-1, ... N [vji-vcrji), 1=1, ..., N §j=1,2].

We next employ the above characterizations and demonstrate how to estimate
nonparametrically a binary threshold-crossing model in which the set W
satisfies the conditions in Example 1 and a binary choice model in which the

set W satisfies the conditions in Example 4.

Let us consider first the binary threshold-crossing model. We will

assume that h* belongs to the set W of functions h : Tt -+ R that

satisfy the conditions in Example 1 of Section 4 and that, in addition, are

concave, monotone increasing, and possess subgradients bounded by
Be Rf . From the theory of optimization it follows that these or similar

properties are satisfied by any indirect utility function or profit

function,
Suppose that N independent observations {yi, rl}lz_1 are given,
where ri € Tt C RK . For each 1 =1, ..., N we denote h(ri) by hl

and F(hi) by Fi - Then, the estimation method proceeds by finding the
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values of h' e R, T - e€eRY (1-0,1, 2, ..., N, N+1) , and FlL eR
(i=1, ..., N) that maximize

Ny i 1 i
(5.1) Z {y log F" + (1 - y)log{(l -~ F)}

fml
subject to
(5.2) Weo, B8l ca, P20, &,
(5.3) o« el i1 r-0,1, ..., N N1
(5.4) nt - ol b, 1-0,1, .., N el
(5.5) 0 < T"<B, i=0,1, ..., N, N+l
(5.6) 0 <= Fr<l, i=1, ..., N,
(5.7) FL-Fy i -bY) 20, i, r=1, ..., N.

. 0 N+1
The constraint in (5.2) characterizes vectors (h”, ..., h Y for

which there exists h : Tt - R with h{(0) =0 and h(r*) = a .

Constraints (5.3), (5.4), and (5.5) are in the spirit of Afriat’s
(1972) inequalities. In Lemma C.1 in Appendix G, we show that they charac-
terize vectors for which there exists a-monotone, concave, homogeneous of

degree one function h : T_ + R whose subgradients are bounded by B and

t
which satisfies for i =0, ..., N+l1 , h(ri) - hi . The constraints in
(5.6) and (5.7) characterize vectors Fl, . FN for which there exists
Fel with F' =Fh’) , i=1, ..., N .
Suppose that ﬂo, .o QN+1 . 50, ey %N+1 . | El, ey ;N is a

solution of the above maximization problem. Then, a particular estimate of



22

(h*, F*) can be obtained by interpolating between these obtained values.

For example, we may interpolate linearly between Fl, ey FN and employ
A A ~ A+
the following interpolation for ho, v hN+1 . To. e TN 1 :

h(r) = min (T% z]i =0, 1, ..., N, N+1 )

This interpolation is based upon Afriat (1972).
Following Cosslett (1983), we propose to solve the constrained

maximization problem presented in (5.1)-(5.7) in two steps. The first step

proceeds by finding, for any given wvector (ho, . hN+1) . the wvector
fl, ey ?N that solves the following problem:
N i i i i
Maximize X (y” log F + (1 — y )log(l - F )}
i=1
(5.8)
subject to 0 <F 51, i=1, ..., N
@ oFywl -8 20, t,r=1, ..., 8.

This can be donme by employing an algorithm introduced by Asher et al.
(1955). The optimal value of the objective function of (5.8) that is
obtained from this algorithm depends only on ho. R hN+1 . In the second

step, the optimal wvalue of the objective function 1is maximized over all

vectors (ho. e e hN+1) that satisfy (5.2)-(5.5) for some To, e, TN €
RK . The algorithm of Asher et al. (1955) is described in Cosslett (1983,

p. 773); its main steps are repeated in Appendix C.

For particular applications, some of the properties assumed about the
functions in W can either be eliminated or changed. This would only re-
quire eliminating or changing some of the cénstraints in (5.2)-(5.5). F&r

example, the functions in W may be assumed to be convex instead of con-
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cave; this would only require reversing the inequality sign in (5.3). They
may not be required to be monotone, in which case 0 may be substituted by
=B in (5.5). 1In addition, they may not be required to possess uniformly
bounded subgradients, in which case the second inequality in (5.5) is

eliminated.

Let us consider now a binary choice model, We will assume that V*

belongs to the set W of functions V : A x § x Z - R that satisfy the

conditions in Example 4 of Section 4. We will also assume that the
functions w : Z + R are concave, 2 C RK , the vectors z1 and 22 are
continuously distributed conditional on s, the vector S_k has a discrete

distribution conditional on (S-k'zl'ZZ) with Q peints of support, ;, "is

k
one of the Q points, and that the values of the functions t are bounded

by Bl € R and 32 €ER (ae€ {Bl, BZ] ).

Let {yi, si, ri, r;]g_l be N independent observations. For each i
and functions t , w, and F , we will denote t(2, sik) by ti . w(zé)
i i i i i i .
by wj , and F(w1 ~ 5 - tT - w2) by F° . Then the estimation proceeds
by finding wvalues ti . w; , and Fi for i =1, ..., N, j=1, 2,
subgradients T; € RK for {=1, ..., N, 3 =1, 2, and a subgradient T0
€ RK that maximize
N i i i i
(5.9) Z{y log F + (1 = y)log(l — F))
i=1
subject to
0 0

(5.10) S =3
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(5.11) tf -t if st=s', i, v=0, ..., N
1
(5.12) B st sB,, 1=1, ..., N
(5.13) wi < W' o+ Tv(zi - zv) i, vl N, jje=1, 2
- J c c j c ] H] ] .y ] L 14
(5.14) w; < Tozj , i=1, ...,N; j=1,2
(5.15) O=<w -T2z, v=1, ..., N; e¢=1, 2
c c c
(5.16) 0<F'<1, i=1, ..., N

(5.17)  (FF - Fv)((wi - sl-

K t - wz) - (wl - s

il V-l, ...,N.

Constraints (5.10)-(5.12) correspond to our assumptions on the t
functions, constraints (5.13)-(5.15) correspond to our assumptions on the w
functions, and constraints (5.16) and (5.17) correspond to our assumptions
on the F functions., A constraint of the form (5.11) needs to be imposed
when it is likely that we observe repeatedly a point in the domain of a
function.

The calculation of the estimator proceeds in two steps, similarly to

the estimation of the threshold-crossing model described above.

The maximum likelihood estimation method that has been just described
involves solving a large constrained optimization problem and maximizing a
discontinuous function. In simulation experiments, exterior penalty methods

(cf. Fiacco and McCormick (1968) ) proved to be a fruitful approach to solve



25

these kinds of problems.
In the next section, we show that the maximum likelihood estimation

method described in this section is strongly consistent.

6. CONSISTENCY

In this section, we show that the estimators of (h*, F*) and of
(V*x, F*), obtaiped by maximizing the likelihood of the observations over
(W x T), are strongly consistent. This result requires adding some
assumptions to the identification assumptions stated in Section 3.

The strong consistency of the estimator of F* is obtained with re-

spect to the metric dr : T xTI'» R defined by
(6.1) d.(F, F') = JIFce) - F'(t)|e‘ut"dt .

where the integration is with respect to the Lebesgue measure and over the
support of F* . The strong consistency of the estimator of h* [V*] is
obtained with respect to two different metrics, dw and d; . The metric

dW t: WX W-+R 1is defined by
(6.2) d_(h,h') = [|n(r) - h'(r)|e—"r“dG(r)

in the threshold-crossing model, and by

2 “I¢s,zp)]
(6.3) 4 (V,Vv') = zﬂst,%)—wq,azﬂh dG(s, z

v Z,)
j=1 1 “2
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in the binary choice meodel. .The‘alternative metric dé : Wx W=+ R 1is

defined by

(6.4) d!(h, h') = inf ( t| G(r € T.| |h(r) - h'(r)] > t}) = 0}

for the threshold-crossing model and by

(6.5) d/(V, V') = inf { t] 6Cl(s, z,, z2)||vcj, s, z,) - V'], s, zj)| >t

]
for some } € (1,2}}) = 0}

for the binary choice model. Hence dw is a modified zl norm and d; is
the essential supremum norm with respect to the probability measure G .
We next present the set of additional assumptions on W and G that

will be made in Theorems 3, &, 5, and 6,

Assumptions on the set of functions W :

W.5. The set W 1is compact with respect to the metric d.W

W.5'. The set W 1is compact with respect to the metric dé .

W.6. For all functions h in W , the wvalue of h possesses an
absolutely continuous distribution,

W.6'. For all functions V in W , the value of V possesses an
absolutely continuous distribution.

W.7. The functions in W are monotone increasing.

The compactness assumptions substitute for the usual assumption that
the probability density of the observations tends to zero as the norm of the

parameters tends to infinity. Compactness is also employed to prove the
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measurability of the supremum of the probability densities over
neighborhoods in the space (W x I'}). Assumption W.6 [ W.6'] 1is needed to
prove the almost sure continuity of the probablility density of the
observations in the pair (h,F) [ (V,F) ]. Assumption W.7 1is only
employed when the consistency results are with respect to the metric dw'
This assumption, together with Assumption W.1l, guarantees that convergence
with respect to dWr implies pointwise convergence. This pointwise
convergence is employed to prove the continuity of the probability density
of the observations in the pairs (h,F) [ (V,F) ] and the measurability of

probability densities over neighborhoods in the space (W x I')}.

ssumptions on the probability densit
G.3. In the binary threshold-crossing model,

I |log g(r)| g(x) dr < = .

G.3'.In the binary choice model,

J |1og g(s,z;.2,)| g(s.2;.2,) d(s,2,,2,)) <= .

Assumption G.3 [G.3’'] is needed to prove the integrability of several
functions of the probability density of the observations. Many probability
densities satisfy this assumption; in particular, any bounded density whose

support is compact satisfies Assumption G.3 [G.3’].

The consistency results are stated in Theorems 3 and 4 for the

threshold-crossing model and in Theorems 5 and 6 for the binary choice

model. Theorems 3 and 5 concern the case in which the convergence of hN [

to h*¥ [ V¥ ] 1is with respect to the metric dw . Theorems 4 and 6

A

VN ]
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Y

state the consistency results for the case in which the convergence of hN
[ VN ] to h* [ V& ] 1is with respect to the metriec d‘” . We next state

the theorems.

THEOREM 3: Suppose that the binary threshold-crossing model satisfies

Assumptions W.1-W.3, w.5-W.7, I'.1-T-3, and G.1-G.3.

If for each N (N =1, 2, ... ) (h,, FN) € (W x T') maximizes the

N
(¥)

likelihood of N Independent observations x over (W x T) then

Pr{ limd (h,, h*) = 0 and lim d (F,, F*) =0 } = 1 .
~4 r
N N~

THEOREM 4: Suppose' that the binary threshold model satisfies Assumptions

W.1-W.3, W.5’, w.6, I'.1-T'.3, and G.1-G.3.

If for each N (N~ 1, 2, ...) (hN, FN) € (W x T') maximizes the
(N)

likelihood of N independent observations x over (W X T) then

Pr { lim d‘;(hN, h*) = 0 and 1im dI‘(F , F) =0 } =1

N-+o N

THEOREM 5: Suppose that the binary choice model satisfies Assumptions W.1’-

W.3',W4-W.5, W.6'’, W.7, P.I-T.3, and G.1'-G.3".

If for each N (N =1, 2, ...) (VN, FN) € (W x ') maximizes the
(N)

Iikelihood of N Iindependent cbservations x over (W X T) then

Pr{.limdw(V,V*)-O and limdP(F,F*)-O}-l.
N-ow N+
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THEOREM 6: Suppose that the binary choice model satisfies Assumptions W.1'-
W.3', W.4, W.5'-W.6’, T.1-T.3, and G.1"-G.3".
If for each N (N =1, 2, ...) (v, FN) € (W x ') maximizes the

(N)

likelihood of N independent observations x over (W X T) then

Pr { lim d;(V , V) = 0 and lim dP(F , F¥) =0 ) =1

N N

The proofs of Theorems 3 and 4 are given in Appendix B. The proofs of
Theorems 5 and 6 are similar to the proofs of Theorems 3 and 4 and are
therefore omitted,

An example of a set of functions satisfying the assumptions in Theorem
3 (Assumptions W.1-W.3, and W.5-W.7) is the set W of all functions

h : Tt + R that are (i) monotone and concave, (ii) homogeneous of degree

one, and (iii) satisfy h(r*) = a , where r* and a are common to all
functions h in W, Tt - R++ , and g 1is a continuous density function
with support Tt .  The estimation of h over this set of functions has

been described in Section 5. That this function satisfies W.1-W.3 was shown
in the discussion of Example 1 in Section 3. By (i)-(iii) these functions
satisfy W.6 and W.7. By Lemma C.2 in Appendix C, this set of functions
satisfy W.5. An example of a set of fgnctions w satisfying the
assumptions of Theorem 4 1is the set of functions that satisfy (i)-(iii)
above, and possess a compact domain and uniformly bounded subgradients.

Examples of sets of functions that satisfy the assumptions in Theorems
5 and 6 can be constructed in a simllar way. The compactness of the set W

in binary choice models is pguaranteed if the set of funections V(1,+) and
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the set of functions V(2,¢) is compact. Assumption W.6' holds if for each
VeW, V(,s) and V(2,+)} satisfy W.6’.

Suppose, for example, that W is the set of functions V ; AX S8 xZ -+ R
that satisfy the conditions in Example 4 of Section 4 with the additional
conditions on the concavity of the functions w , the uniform boundedness of
the functions t , and on the finite number of elements of the domain of t,
which were imposed in Section 5. That this set satisfies Assumptions W.l’,
W.3', and W.4 was shown in Section 3. For any V in this set, V(2,+)
satisfies W.6' by the. additive separability of V(2,+) into the
continuously distributed vector Sp - A possible way of guaranteeing that
V(l,+) satisfies W.6' is by imposing a positive uniform lower bound on the
first coordinate of all subgradients of w . Monotonicity can be imposed by
a bound of 0 on the subgradients. By Lemma C.3 in Appendix C, this set is
compact if the set of all w functions is compact and the set of all ¢t
functions is compact. Since the domain of the t functions is a finite
number of points and the wvalues of these functions are uniformly bounded,
the set of all t functions is compact with respect to dw and d;
Compactness of the set of w functions with respect to dw will hold if,
in addition to being concave, they are monotone. If we require that Z be
compact and the subgradients of the w functions be uniformly bounded, the

set of w functions will be made compact with respect to dé .

The above examples and the statements of Theorems 3-6 show that the
maximum likelihood estimator of {(h*, F*) [(Vx, F*)] is strongly
consistent under very general assumptions on the set (W X I') to which

{(h*, F*¥) [(V*, F*)] 1is assumed to belong.
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7. SUMMARY

In this paper, we have considered the nonparametric identification and
consistent estimation of the pair of functions (h*, F*¥) and (V¥*, F*),
respectively, in the binary threshold-crossing and binary choice models.
The two models were described, and it was shown that (h*, F*) and (V¥,
F*) can be identified in sets W x I of pairs of nonparametric
functions. This identification result requires that all functions in W
attain the same values on a subset of thelr domain and that they map this
subset onto the support of F* .

We gave several examples of sets of functions W  satisfying the
conditions required for the identification of (h*, F*) [(V¥, F*)] . The
functions in these sets W «can be assumed to satisfy properties that are
typically derived from economic theory.

We introduced particular estimation methods for (h*, F*) [(V*, F¥)]
These methods are based upon Cosslett (1983) and Matzkin (1987) and proceed
by maximizing the 1likelihood functions over (W x IN). A two-step

constrained optimization procedure is used to compute these estimators. We

showed that this maximum likelihood estimator i{s strongly consistent.
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APPENDIX A

In this appendix, we present the proofs of Theorems 1 and 2. The

statements of these theorems were presented in Section 3.

PROOF OF THEOREM 1:
If (h,F) €e WxT) and (h,F) » (h*, F*) then either F » F* or
F=F+ and h = h* . We will present the proof for each of these two

cases separately.

Case 1: F » F* |
Since F = F* , there exists some D C R possessing positive Lebesgue
measure such that Ve €D , F(ec) = Fx(c) . Since’ F and F* are

increasing there exists a point of continuity t € D of both F and F¥*,
with F(t) = F*(t) . Then, there exists § > 0 such that either

(A.1) V' € (t—6, t+§) , F(t') < F*(t') , or

(A.2) Yt! € (t=§, t+8) , F(t') > F*(t')

Let r* € int T be such that h*(r*) = h(r*) = t . By Assumption W.3 such
a r* exists. By G.2, the continuity of h and h*, (W.1), and the fact

that T ¢ T.. there exists & >0 such that the probability measure of the

set N(r*, &) n Tt is positive and V¥r € N(zx*, £) n Tt ,
h*(r) € (t—§, t+6) and h(r) € (t=§, t+6) ,

where N(r*, ¢) denotes the neighborhood with center r* and radius ¢

From (A.1) and (A.2) it then follows that V¥r € N(r*, &) n Tt
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Pr(y = l|r; h, f) = F(h(r)) » F(h*(r)) = Pr(y = 1|r; h*, F%)

By the definition of identification, this proves that (h*, F*) |is

identified from any (h, F) € (W x T) for which F = F*,

Case 2: F=F+¢ and h = h* .
Since h » h* , there exists B C '1‘t possessing positive probability

measure such that for all r* € B either

(A.3) h{r*) > h*(r*) , or

(A.4) h(r*) < h*(r*)
Since F* 1is strictly increasing by Assumption I'.2 it follows that
¥r € B, Pr(y = 1|r;h,F) = F(h(r)) » F*(h*(r)) = Pr(y = 1|r;h* F*),

Hence (h*, F*) is identified from any (h, F) when h = h* and F = F%x .,

This completes the proof of Theorem 1.

PROOF OF THEOREM 2:
Let (V, F) € (W X T) be such that (V, F) = (V¥, F*) ., Again, we

distinguish between two cases.

Case 1: F = F* .

Since F » F*, and F and F* are increasing, there exists a point of
continuity, te€ R, of both F and F* and a 4§ > 0 such that either
(A.5) Vt’ € (t-6, t+6) , F(t’') < F*¥(t’') , or

(A.6) Vt' € (t=§, t+8) , F(t') > F*(t’)
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Consider the set T in Assumption W.3. Let (s*, zi) € T be such

that

Vk(2, s*%, zi) =t .

The existence of (s*%, 25) is guaranteed by Assumption W.3(ii). By

Assumption W.3(i),

V{2, s¥, z;) -t .

By Assumption W.4 it then follows that
Vk(1l, s*, z) — V¥(2, s*, z%) =t and

V(1, s*, z) - V*(2, s*, z§) -t .

The analysis is similar for the cases in which the domain of the func-
tions V in W is AX2Z, S§xZ, or Z . Let r¥* = (s*, z, z§) . By

Assumptions G.2 and W.l, there exists ¢ > 0 such that the probability

measure of the set N(r*, ¢) n § x 22 is positive and for all

r= (s, zl, zz) € N(r*, £) n S‘x 22

vx{(1l, s, zl) - V*¥(2, s, z2) € (t-5, t+§) and
(A.7)

V{1, s, zl) - V(2, s, 22) € (t—§, t+§)

From (A.5), (A.6), and (A.7), it follows that

¥r = (s, zq, 22) € N(x*, g) N § x 22

Pr(y = 1|{r;V,F) = F(V(l,s,z,) - V(1,s,2,))

1)

» F*(V*(I,S,Z - V*(lss:22>)

1)
~ Pr(y = l|r; vx, F*)
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This proves that (V*, F*) is identified from (V,F) whenever F* = F .

Case 2: F = Ff and V = V*
Since V = V%, there exists (S xZ

positive probability measure such that either

(A.8) for all (s, 22) €S x EZ , V{2, s, zz) * Vk(2 s, 22) , Or
(A.9) for all (s, z,) € S x 22 ., V2, s, z,) = V%(2, s, z,) and
for some (s’, zi) € 5 x Zl’ v(l1, s', zi) » Vx(1, s', zi)

If (A.8) is true, it follows from Assumption W.4 that

(A.10) v(Q, s, z) - V(2, s, z,) # V¥(1, s, z) - Vk(2, s, z,)

If (A.9) is true, it follows that for any zé € 22

(A.11) v(1, s', zi) - V(2, s°, zé) =~ V{1, s', zi) - V*(2, 8!, zé)

By I'.3 it then follows that, for all (s, zl, 22) € N(r*, ¢e) n S n 22

Pr(y = 1|r;V,F) = F*(V(1, s, 2)) - V(2, s, 2,))

» Fx(Vx(1l, s, zl) - Vk(2, s, 22))

= Pr(y = 1l|r; v*, F¥)

Hence, (Vk,  F¥) is identified from (V, F*) vwhenever V » V*

completes the proof of Theorem 2. Q.E.D.

1 X 22 ) € 8§ X 72 possessing

This
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APPENDIX B

In this appendix, we present the proofs of Theorem 3 and 4 of Section
6. The proofs are based upon an adaptation of Wald’s (1949) result about
the strong consistency of maximum likelihood estimators. To make Wald's
result applicable, we mneed to prove that our models possess the required
identification, compactness, continuity, measurability, and integratibility

properties. The identification property that is employed in the proof of

Theorems 3 and 4 was proved in Theorem 1. The identification property
necessary to prove Theorems 5 and 6 was proved in Theorem 2. The
compactness, continuity, measurability, and integrability properties

employed iq_the proofs of Theorems 3 and &4 are proved in Lemmas 1-5 below.
Similar lemmas with almost identical proofs can be employed to prove
Theorems 5 and 6.

Before stating and proving the lemmas, we will introduce some
additional notation. First, define the metrics m : (WX T) x (WxTI) -~ R+

and m' : (WXT) X (WxT)~+R_ by
w[(h, F), (h', F')] = d (h, h') + dl-.'(F. F') and

m'{(h, F), (h’, F')] = d'(h, h') + d.(F, F')

The metrics d , d' , and dr were defined in Section 6.
w W
Next, let x denote the vector of observable variables (y,r) and f

denote the probability density of x . Then, for any (h,F) € (W x T),

£(x;h,£) = g(r) [F(h(x))17[1 - F(h))]
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The set X will denote the support of f and P* will denote the
probability measure induced by £(«; h*, F*) .

Define now the functions f' , f" , f* , and f** by

£'(x; h, F, ¢) = sup{f(x; h’, F')|m[(h’, F'), (h, F)] < ¢} ,

£"(x; h, F, ¢) = sup{f(x; h’, F')|m'[(h’, F'), (h, F)] < £} ,

£'(x: h, F, ¢) if f'(x: h, F, ¢) = 1
f*(x; h, F, ) =
1 otherwise ,

' f"(x; h, F, ) if f"(x; h, F, ¢y =1
fxx(x; h, F, ) =
1 otherwise ,

for sufficiently small & > 0 .

We next present the Lemmas,

LEMMA 0: Suppose that {hk}:_1 is a sequence in W . Then,

(0.1) if W satisfies W.1 and W.7 and hk -+ h with respect to dw .

hk(r) -+ h(r) for all r € Tr N

(0.2) if hk - h with respect to d; , then hk(r) -+ h(r)

for all r e Z .

PROOF: Statement (0.2) follows from the definition of d& . To prove (0.1)
we note that by the monotonicity of the functions in W (W.7) and the con-
vergence of [hk} to h w.r.t. dw , 1t follows that for all «r € Tt
such that r 1is a point of continuity of h , hk(r) <+ h(r) . By W.l it

then follows that this pointwise convergence holds for all r € Tt .Q.E.D.
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LEMMA 1 (compactness): If W.5 and I'.1 are satisfied, the set (W X T) |is
compact with respect to the metric m . If W.5’ and I'.1 are satisfied, the

set (W X T) 1is compact with respect to the metric m’

PROOF; By Assumptions W.5 and W.5’, W 1is compact with respect to dw
and d; respectively. Hence, it remains to show that I 1is compact with

respect to dr . Let be a sequence in T ., It suffices to show

F -]
(F5a

j=l has a convergent subsequence. Let Q be a countable dense

that (F,
{ J}

subset of R. Since the functions F, are uniformly bounded we can find a

N

3 } of {Fj] and a function F : Q@ - R such that for all
k

q € Q, Fj (q) = F(q).. This can be accomplished by the standard
k
diagonallization process (see, for example, Helly’s Selection Theorem in

subsequence (F

Billingsley (1968, pp. 227).) Define F : R+ R by F(t) = 1nf{F(q)'q € Q,
t £ q) . Then, F €I and, for all points t € R at which F 1is
continuous, F, {(t) =+ F(t) . Since F 1is nonincreasing, it is a.e.

Iy

continuous, hence + F a.e. Let € > 0 be given; and let K be a

F
Ik
large enough compact set in R such that

(L1.1) f c exp(-[tl)dt < g/2 .

K
By Lebesgue’s dominated convergence theorem ( Billingsley (1986), p. 213),
for all large enough k ,

(L1.2)y S IF, (£) - F(t)|exp(-|t])dt < ¢/2 .
K3,

From (L1.1), (L1.2), and the definition of dP it follows that dP(Fj . B)
k
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+0, as k -+ =, Hence, {Fj};_l has a convergent subsequence. This

completes the proof of this Lemma.

LEMMA 2 (continuity): Suppose that W satisfies W.6 and that convergence

in W implies pointwise convergence. If T'.l is wsatisfied and
«Q

((hk, Fk)}k-l is a sequence in W x I such that (hk’ Fk) - (h, F)

€ (WxT) , then f£(x: hk' Fk) + f(x; h, F) for all =x € X , except

possibly on a subset of X of probability measure zero.

PROOF: Since convergence of (hk) to h implies that V r € Tt ,
h.k(r) -+ h(r) , it follows (see, for example, Cosslett (1983))3 that if h(r)
is a point of continuity of F , Fk(hk(r)) -+ F(h(r)) , and hence, by the
definition of £ , that f(x; hk’ Fk) + f(x; h, F) . 8Since by I''l F has at
most a countable number of discontinuities and by W.6 h possesses an
absolutely continuous distribution, the subset of '1‘t at which convergence

is guaranteed has unit probability measure.

LEMMA 3 (measurability): Suppose that W satisfies W.I, either W.5 or
W.5’, and that convergence in W implies pointwise convergence. If I'.l1 is

satisfied, then for any (h, F) € (W xT) and any ¢ > 0 , the function

3Lemma 1 in Appendix B of Cosslett (1983) states that if [Fi] is a
sequence in T such that Fi - Fe'l , [qi} a sequence of real numbers
such that L PERE A and n is a peint of continuity of F , then
F.(n5) ~ F(n).
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f'(x; h, F, ¢) is measurable in x if W.5 is satisfied and f"(x; h, F,

£) 1is measurable in x If W.5’ is satisfied.

PROOF: We will present the proof for the case in which Assumption W.4 is
satisfied. The proof when Assumption W.4' is satisfied is almost identical
and therefore omitted.

Since by W.5 the set W 1is compact, there exists a countable demse

subset Q c W . Let IF

be the countable set of all step functions in T
whose (finite number of) jumps are rational and occur at rational points.

We will show that, for all x € X ,‘

(L3.1) t = sup{f(x; h',F’)| (h’, F') € (WxT), m{¢h, F), (h’, F')] < ¢)

~ sup(£(x; hy, F)| (b, F)) € @ X T, ml(hy, F), (h,F)] <e) =u.

Clearly, t =2 u . Suppose t > u ; then, for some (h', F")

€ (WxT) , some a€ R, and V(hi' Fi) € {(Q x Fr), either

(L3.2) F'(h'(x)) > a > F(V(r)) , or

(L3.3) F'(h'(r)) < a < F(h(r))

Assume w.,l.o0.g. that (L3.2) holds. Since Q 1is dense in W , there exists
a sequence {hj} C Q such that hj - h' with resgpect to dw : hence, hJ(r)
-+ h'(r) . Then (see for example, Cosslett (1983)),4 there exists a sequence

hi k|
{Fk} crt and a subsequence (h k} such that Fk(h k(r)) =+ F'(h'(x))

alemma 2 in Cosslett (1983) states that if F eI , n € R and {nk}
is a sequence converging to n , there exists a sequence [Fi] cr’ and a
subsequence [nk(i)} such that Fi("k(i)) -+ F(n)



41

This contradicts (L3.2); hence t = u .

Since by W.1 hj "is continuous and by T.1 FJ is increasing,
Fd(hj(r)) is measurable on T ; hence, F(x; hj, FJ) is measurable on X.
Consequently, the supremum is measurable too. By (L3.1) , £’ is

measurable Iin x .

Q.E.D.

LEMMA 4: If Assumption G.3 is satisfied, fk |log f(x; h*, F*)I dP*(x) < e,
PROOF: By the functional structure of £(x; h¥, F¥)

Jxllog £(x; b¥, F*)|dP*(x)

=< 2f|log g(r)|g(r)ax
t
+ Jpllog F*(h*()) | [F*(h*(x)]g(r)dr
t

+ Jpllogll = Fr(b*(x))]|[1 = Fx(h*(x)]g(r)dr .
t

Since the ranges of F(+«) and 1-F(+) are included in the interval [0,1],
and since the function q(y) = yllog(y)| has a bounded range on that
interval, the last two integrals are bounded. The first integral is bounded

by Assumption G.3. Hence,

fx |Log £(x; h*, F*x)| dP*¥(x) < = .

LEMMA 5: Suppose that W satisfies W.1l, either W.5 or W.5’, and that
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convergence in W implies pointwise convergence. If Assumption G.3 is

satisfied, then for sufficiently small ¢ > 0 ,

fxlog f*(x; h, F, ¢)dP*(x) and jzzog fHk(x; £, F, £)dP*(x)

are finite.

PROOF: We present the proof of Lemma 5 only for £%* |, since the proof for
fx* follows the same lines. Lemma 4 and the assumptions of Lemma 5 imply
that £f* is measurable in x . Let C = {x € xlf'(x; h, F, ) =1},

D~ {x € X|f'(x; h, F, ¢) >1) , and E = {r € Ttlg(r) > 1) . From the
definition of f’' and our assumptions on I it follows that Vx = (s,z) € D,
g(r) > 1 .

Hence, since by Lemma 4 £'(x; h, F, ¢) is measurable,
[y log(£*(x; h, F, &))dP*(x)|
- |fc log(f*(x; h, F, £)) dP*(x) + fD log(f*(x; h, F,e))dP*(x)|
= |f log(f*(x; h, F, £))dP*(x)|
< 2| 1og(g(r)) | g(x)ar
+ fﬁ|log(F(h(r))|F(h(r))g(r)dr

+ Jpllog[l = F(h(r))]1|[1 - F(h(r))]g(r)dr .

Since the first integral is finite by Assumption G.3 and the second and
third integrals are finite because the function q(y) = y|log(y)| has a
bounded range on the interwval {0,1],

Jx log £*(x; h, F, e)dP*(x) is finite.
Q.E.D.



43

Theorems 3 and 4 can now be proved from these lemmas by adapting, as
in Matzkin (1987), Wald’'s (1949) result to apply to the case when the

abstract parameter spaces are compact,

PROOF OF THEOREMS 3 AND 4: First note that the assumptions of either
Theorem 3 or Theorem 4 insure that Theorem 1 and Lemma O hold. It then
follows that Lemmas 1-5 and Theorem 1 also hold. The conclusions of
Theorems 3 and 4 now follow by the same argument given in Matzkin (1987),
after substituting the parameter ] in Matzkin (1987) by F . For

completeness, we repeat those arguments.

By Lemmas 4 and 5, Theorem 1, and Lemma 1 in Wald (1949), for any <(h,
F) in (W xT) such that (h,F) = (h*, F*%),
(T1.1) E log £(X; h, F) < E log f(X; h*, F%)

By Lemmas 2 and 5, and by Lemma 2 in Wald (1949), for any (h, F) in

(WxT),

(T2.2) lim“:_.O E log £'(X; h, F, ¢) = E log £(X; h, F) ,

where the expectation is taken with respect to P¥ .
From (Tl.1) and (T1.2) it follows that, for any (h, F) in (W x T)

such that (h, F) = (h*, F*), there exists e£(h, F) > 0 such that

(T1.3) E log £°(X; h, F, ¢(h,F)) < E log £(X; h*; F*)
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Let Y be any closed subset of (W x ') which does not contain

(h*, F* )}, We will show that for any sequence xl. x2, ... from X ,

i,
SUPy,Fey Ty E5 P

Noe m_, £x's b, BY)

=0tr=1.

(T1.4) Prob { lim

It is clear that

YC Uy peySs Fo 2®,F) = u(S(h, F, e,F)|B,F) €Y},

where S(h, F, e(h, F)) denotes the sphere in (W x I') with center (h, F)
and radius e(h, F)

Since Y 1is a closed subset of (W X T) and since by Lemma 1 (W x T')
is compact, Y 1is a compact set. Hence, there exists a finite sequence

€ ., €

{(hl, Fl), (h2, Fz), vees (hH’ FH)] in Y , and numbers €1, €95 u’

such that &g = e(hk, Fk) and
(T1.5) ycl! s, F )
: k=15 Fio &g

From (Tl1.5) and the definition of £’ (see the statement of Lemma 3),

it follows that, for all N and all xl, R &

i
SUP (1, Fyey I,_£(x'; b, F)

i,
= Einlsup(h,F)eS(hk,Fk,ek) H?—lf(x » hy F)

v eol.
STy M £ by B

Hence,
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L
WP by e y i £ G By P

(TL.6)
H?ﬁlf(xi;'h*, F*)

' ot
. zi-l Hg-lf (=75 by, Fraog)

i
m_ £ e, F¥)

By Kolmogorov's Strong Law of Large Numbers and (T1.3) it follows that,

for each k=1, ..., H
N i 1
(T1.7) Prob {lim X [log £'(x"; hk' Fk) — log f(x"; h*, F¥)] = —o} = 1.
Now i=l

Hence, for k =1,

M, £ b, F)
(T1.8) Prob limN»m nN 1
i=1 f(kX ; h¥, F*)

=0 prp=1.

By (Tl1l.8) and (Tl1.6), (Tl.4) is proved.

Theorem 2 in Wald (1949) and (Tl.4) imply now that

Prob (lim r[(ﬁN, EN), (h*, F*¥)] = 0) = 1 .
Q.E.D.
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APPENDIX ©

In this appendix, we state and prove Lemmas C.1-C.3 and describe
Asher's et al, algorithm. Lemma C.l1 was employed in Section 5 to describe
estimation methods for concave functions. The statements of Lemmas C.2 and
C.3 were employed in the examples following the statements of Theorems 3-6
in Section 6. Lemma C.2 establishes the compactness, with respect to the
metrie dw' of sets W of functions h that are monotone and concave,
homogenous of degree one, and that attain a common value at one point of
their domain. Lemma C.3 establishes the compactness, with respect to dw
and d;, of sets of functions V  that are additively separable into
functions that belong to compact sets. Asher’s et al, algorithm was
referred to in Section 5 as a means of finding the solution to the

maximization of a likelihood funetion over a set of distribution functions.

LEMMA C.1: Suppose that zo, v rN+1 are N+2 points in the domain T C
RK of real valued functions h . Then, the set of all vectors
(hl, v hN), for which there exists a concave, monotone, and homogeneocus

of degree one function h : T + R with subgradients bounded by B € Rf, is
the set of all vectors (ho, ey hN+1) satisfying (5.3), (5.4), and (5.5)

in Section 5,

PROOF: The statement of this Lemma is a modification of Afriat’'s (1973)
results about revealed preference, and it has been shown in Matzkin (1987);
we therefore repeat here only the main steps.

If h is concave, then for some subgradients TO, . TN+l
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c.1.1) hr=-nT+ TGt -1, i, r=0,1, ..., N, N+l |

and if h 1is homogeneous of degree one,

(¢.1.2) h'=T¢", r=0,1, ..., N, N+¢1 .

Substituting (C.1.2) into (C.1.1) we obtain (5.3). By (C.1.2), (5.4) is
satisfied. The monotonicity of h and the boundedness of its subgradients
imply (5.5). On the other hand, if h°, ..., W% and T°, ..., TV
satisfy (5.3), (5.4) and (5.5), the function h : Z -+ R defined by
h{r) = min[Tir|i =0, ..., N+1} 1is a concave and homogeneous of degree one

function h such that h(rd) =h) (§ = 0, ..., N&1)

Q.E.D.

LEMMA C.2: Let r* € Tt and a € R be given. Assume that Tt c Rf+, and
let W be the set of all functions h : Tt - R .that are monotone, concave,
homogeneous of degree one, and satisfy h(r*) = a . Then W 1is compact
with respect to dw .
PROOF: Let {hk}:-l be a sequence in W. We need to show that {hk}z_1
has a convergent subsequence.
Define the function b: T =R by b(r) =iInf { Ta | r =T r+ ),

Since for any h &€ W and any r € Tt,

0 <h(r) < h(yr*) =y a, where 4 = inf (T | r<Trx ), it follows
that for any h € W and any r € Tt’ h(r) = b(r). Hence, the functions
in W are pointwise bounded.

Let Q denote a countable dense subset in Tt' By the diagonalization

process, there exists a subsequence (hk } of {hk} and a function
v
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h : Q=+ R such that for all q in Q, hk {q) = h(g). Extend h to Tt by
defining for all r € T, h(r) = inf { h(q¥ |l g€eQ, r=gq ). 1t is then
easy to show that h € W . Moreover, for all r € Tt’ hk (r) = h(r), since
h is continucus and the hk functions are monotone. 7

v
Since the functions in W are bounded by zero and the function b,

(c.2.1) [ Ihk (r)-h(z)| exp(-|z]) da(x) = [ lb(x)| exp(-|z]) ac(x).
v

Let £ > 0 be given, and let K be a large enough compact set in Tt

such that

(c.2.2)  fye |b(n)] exp(-lx) d6(x) < /2.

let ¢ € R+ be such that Vv r € K, r < ¢ r*¥. Then, since the functions

hk end h are monotone, they are uniformly bounded on K by ¢ 8. By
v
Lebesgue’s dominated convergence theorem ( Billingsley (1986), pp.213 ), it

then follows that for all large enough v,

(c.2.3) [, |n (©)-h(r)| exp(-fr}) dc(xr) < /2.
K v

From (C.2.1)-(C.2.3) it follows that dw(hk h) + 0 as v -+ =, by the
v’
definition of d, - Hence, {hk} has a convergent subsequence. This

completes the proof of Lemma C.2.

Q.E.D.

LEMMA C.3: Let S and Z be subsets of RJ and RK respectively; and
let W, T and U be sets of functions V : Sx2Z+R, ¢t : S—+R, and
w : Z + R respectively. Suppose that for each V € W there exist t €T

and w € U such that for all (s,z) € 8§ X Z
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V(s,z) = t(s) + w(z)

Then, if T and U are compact with respect to the metric dw [d;], W is
compact with respect to the metric dw [d;] .

o

PROOF: let (V }w be a sequence in W. We need to show that ({V )
n n=1 n n=1
has a convergent subsequence. Since Vn € W , there exists t € T and
v € U such that for all (s,z) € § x Z, Vn(s,z) - tn(s) + wn(z) for n =
1, 2, . . .. Since T 1is compact with respect to dW [dé], there exists a
subsequence [tn 1 of {tn} and a function t € T such that tn -+ t
i i
with respect to d.W [d&]. Since U 1s compact with respect to dw [d;],
there exists a subsequence fw )} of {wn } and a function w & U such

i
that w_ -+ w with respect to dw {d&]. Since t -+t , t. =+t . Let

n
i ok
V: 8§ X Z be defined by V(s,z) = t(s) + w(z) for all (s,z) € § x Z. Ve
will show that V_ -+ V , which will complete the proof of Lemma C.3.

Suppose first that t_ "+t and w_ - w with respect to dw' Since

d (V. V) = [ [t (s) +w_ (2) - t(s) - w(z) o s 2] dG(s,z)
YoM " " |

=< f ( |t (s) - t(s) I + |w {z) - w(z) | ) e -"(s,z)" dG(s,z)
Oy "k
= f |t (s) - t(s8) | e-"SndG(s,z) + f |w (z) - w(z) | e'"z" dG(s,z),
"k e
it then follows that V_ = V with respect to dw'

Suppose now that t + t and w_ -+ w with respect to d&. Note

that if for some t and some (s,z) € § X Z

t (8) +w_ (2) - t(s) - w(z) | >t  then, since
| i T
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|t (s) - t(s) | + |[w_ (2} - w(z) | z |t (s) +w_ (z) - t(s) - wiz) [,
" "k T "
either |t_(s) - t(s) | >t or |w_ (z) - w(z) | > t.
M Tk
Hence, if for some ¢ > O,
G({(s,z) € § x 2| |V_ (s,2) - V(s,2)| > ¢}) >0
"
for infinitely many n's ., it must be that either
G({ses | |t (s) - t(s)| > e}) >0 or
o :
G({z e Z [ |w (z) - w(s)| >e)) >0
"k

for infinitely many nk's. Since neither of these possibilities can hold,
V_ =+ V with respect to d;.

Q.E.D.

Finally, we describe thé main steps of the algorithm developed by
Asher’s et __al. (1950) to obtain a solution to the maximization of a
likelihood function over probability distribution functions. We have
referred to.this algorithm in Section 5.

Asher's et al. (1950) Algorithm;
Suppose that in the maximization described in (5.8) of Section 5, the
0 N+1 1

vector (h, ..., h Y 1is given. Then F, ..., FN that solve (5.8) can

be found by the following steps, which were introduced by Asher’s et al.

(1950):
1 1 n n .
First, rank order the pairs (h™, y )}, ..., (h', ¥y ) in an increasing
sequence according to the first coordinate; if for some k , hk - hk+1 ,

order (hk, yk) and (hk+1; yk+1) decreasing in the second coordinate.
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Second, group the ordered sequence iIn the minimal number of groups so that

the second coordinates of the elements in each group form a decreasing se-

quence, Third, assign to each Fi the proportion of 1's in the second

coordinates of all elements in the group to which (hi, yi) belongs. Fourth,

check whether the order of the F1 's 1s the same as the order of the
i

h''s ; 1if this is not satisfied, merge the two consecutive groups in which

the violation occurs, and return to the third step.
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