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0. ABSTRACT

This paper studies the finite sample distributions of estimators of
the cointegrating vector of linear regression models with I(1) vari-
ables. Attention is concentrated on the least squares (OLS) and imstru-
mental variables (IV) methods analyzed in other recent work (Phillips
and Hansen (1888)). The general preference of OLS to IV techniques
suggested by asymptotic theory is reinforced by our simulations. 4n
exception arises for cases of low signal to noise, where spurious IV
techrniques (so named for their use of instruments that are structurally
unrelated to the model) outperform uncorrected least squares. Ve verify
the presence of a small sample estimation bias and show that the Park-
Phillips bias correction does reduce the magnitude of this problem. Ve
alsc find thet there is substantial distributional divergence of
t-statistics from the normal, unless the Phillips-Bansen endogeneity
correction is used. Finally, we apply these methods to aggregate con-
sumption and income data. Our empirical results indicate that the
endogeneity and serial dependence corrections are important and lead to
intuitively plausible changes in the estimated coefficients.

July 1988

Ive are grateful to Glena Ames for her skill and effort in keyboarding
the manuscript of this paper and to the NSY for research support.



1. INTRODUCTION

In our recent paper (Phillips and Hansen (1988)) we studied the
asymptotic distributions of a large class of estimators of the "cointe-
grating vector" of linear regression models with I(1) variables. These
estimators included ordinary least squares (OLS), standard instrumental
variables (IV) and "spurious" instrumental variables. 411 were found to
be "super-consistent™ under quite general assumptions, including endog-
eneity in the regressors and serial correlation in the innovatioms. It
was shown that npeither bias corrections--see Phillips (1987a) and Park
and Phillips (1987a, 1987b)--nor IV techniques could overcome substan-
tial problems of nuisance parameter dependencies and non-normalities in
the asymptotic distributions of the standardized statistics, except in
special leading cases. Instead, a semi-parametric endogeneity correc-
tion which is asymptotically equivalent to maximum likelihood--see
Phillips (1988b)--was derived which solves these problems. These "fully
modified" estimators have asymptotic mixed normal distributions. This
permits quite general hypothesis tests using conventional techniques.

This paper attempts a systematic investigation of the small sample
properties of these methods through Nonte Carlo simulations. O0f course,
due to the wealth of possible data generating processes it might be
unvise to make strong general claims from these results. Nevertheless,
we feel that several conclusions can be drawn fros this study. First,
if uncorrected estimates are compared, IV estimation may beat OLS under
strong endogeneity or high noise. Second, if the true residuals are
knowr (for instance, if the true regression coefficients are known from

the null hypothesis) then the fully modified OLS estimates perform



extremely well, and are the preferred estimation method. Third, feas-
ible modified estimates (based on estimated residuals) unfortunately
work much less well, although better than the uncorrected estimates.
Fourth, conventional t-statistics are quite wigleading in the semse that
their distributions are far from the standard mormal while fully modi-
fied t-statistics are well approximated by a normal distribution,
although with a variance slightly greater thaa umity.

Ve also report the results of a simple application of these methods
to the aggregate "consumption function." Ve find that fully modified
statistics cannot reject a unit coefficient on income.

Our notation follows that of Phillips and Hamsen (1988). Ve use
the symbol " = " to signify weak convergence, and the symbol " = "
to signify equality in distribution. Stochastic processes such as the
Brownian motion B(r) on [0,1] are frequently written as B to achieve
notational economy. Similarly, we write integrals with respect to
Lebesgue measure such as ]éB(s)ds pore simply as léﬂ. Vector
Brownian motion with covariance matrix @ is wvritten " BM(R) ." Ve
use I{1) and I(0) to signify time series of order ome and zero, respec-

tively.



2. PRELININARY THEQRY

The results presented here are substantially simplified from the
theory in Phillips and Hansen (1988) in order to ease presentatiorn and

focus or the particular model used in the simulatior. Consider the

process
Yy = 3y * Bpb ¢ B5% 4 Uy
Xy = Xgg tUgp 0 Bx1
Z, 5 Z,_q T Uge s B X1
The innovation vector u, = (ult’ Ujes uét)' is assumed to be strictly

stationary and ergodic with zero mean, finite covariance matrix X > 0
and continuous spectral density matrix fuu(A) vith # = 2rfuu(0) . Ve
also assume that the partial sum process constructed from u, satisfies
the multivariate invariance principle

(1) I‘l/zx{Tfluj S B(r) BN}, Ocr¢t.

Ve decompose the "long-run” covariance matrix as follows:

=X« &« 4

"

vhere

and ve define
L =X+ 4.

See Phillips (1987b) for a reviex of the conditions umder which (1)



holds. Ve partition B, f, I, 4 and & conformably with U

For example, in the case of f we write
r r » r

1 ‘a1 Y3
(2) B=)uy By By
f fl

| “31 "32 Y33 |

Ve also make the strong assumption that z, and x, are cointegrated.

Then the Brownian motions 82 and 83 are related linearly

P
By = fgqfigaby

and the time series can be written in a reduced form as

(3) x, = Qoofiziz, + v

¢ = fgghaazy + v » v = 1(0) .

This condition may be equivalently expressed as a restriction upon (2)

R
flgg = Bogllasllyy -

kelationship (3) suggests that we can use 2z, as an instrument for

t
X, » analogous to classic 25LS. See Phillips and Hansen (1888) for a
further discussion.

Ve are interested in estimates of a = (a;, 8, aé)‘ . A linear

combiration of 'y, and x, are trend stationary, yet each are I(1),

t
¥4 and X, are cointegrated in the terminology of Engle and
Granger (1987). Following Phillips and Hansen (1988) there are four

thus

patural estimators to consider:



(1] LS
a = (D7)

I=[1t xdiy, .1

Vo= [yedeos,.. 01

[2] "Standard" IV
3= (@0

[
|

= [tz ey, ot

[37 "Spurious" IV with stochastic instruments

§ = (1P TH(XRGY)

Pg = S(5°5)7'S

S=1{1 bt s dey, ot

s. =5, .+ £, {6} iid K(0, T )
1 t-1 t? t/1 ! n,

(4> "Spurious" IV with deterministic instruments

3= (1P (XRpY)
K= {1t k) q

vhere ky, 15 a deterministic n2-dinensional function of time (t) and

possibly sample size (T) . Ve consider both polynomials in time:

and sinusoids



sin(2r)1t/T), cos(2fA1t/T), etc.

For further discussion, see our earlier paper. The relevant coandition
vhich these variables must satisfy is absence of asymptotic collinear-
ity.

Estimators [3] and [4] defined sbove are “spurious" since there is
no structural relationship between the regressors and the instruments.
A surprising result of Phillips and Hansen (1988) is that these estimat-
ors are consistent. 4 brief digression on this point seems warranted.
Consider the standard just- identified IV estimator under conditions of

stationarity, orthogonality, and identification:

: s1z.u, 0 (112

P S 35 T - -1/2
B T A

7t

Under stationarity, both orthogonality between z and uy and iden-

tification (relevance of z, to x, ) are required for the denominator
and numerator to bave the stochastic orders indicated above. If either
orthogonality or identification fails, the numerator and denominator are
of the same stochastic order and the estimate conmverges to the "wrong"
value in the first case, or a Cauchy-type distribution im the second
(see Phillips (1987c)). If both conditions fail simultaneously, then
the estimates diverge at rate T1/2 .

In our model, however, the story is quite different. As long as
and &

x . are I{1), and u, = I(0) , then

t t



T
Bysgug = 0 (T)

Lis,x, = np(TQ)
regardless of any other assumption, yielding consistent estimation. The
reason why spurious deterministic instrumenmts work is quite amalogous.
In fact, one may regard these results as bemeficial artifacts of the
problem of "spurious regressions"--see Phillips (1986). The generaliza-
tions to multivariate regression with deterministic components is
straightforvard and is presented in our earlier paper.

The consistency of spurious IV estimation may appear to conflict
vith standard approaches to identification in simultaneous equation

systems. Under the 2SLS interpretation of IV estimation, we have the

reduced form (in matrix notation):
(ysx) = S(fla t2) * (vl ’ V2) *

Ve are accustomed to think of 1 = (11, 12) as parameterizing the
conditional mean of (y,X) given S . Then the coefficient vector a

it identified by the relation
T - 153 = 0

vhen (and only when) 1, has full rank.
This does not have a meaningful interpretation in our model since
S is independent of the data. Ve can instead interpret s in terms of

linear projections:

(¥,I) = PS(YsI) + (I - PS)(Y!I)

- -

= St + ¥



where
P = §(5°5) s
= S(5°5)
r= (1, 1,)
. evmle,
;= (8 §) 'S8y
7, = (5°5)71s1 .
2
Since

—

- -1
0 1o n. 1 ,

»
N O

SR R
[IOBsBé} IOBsdBé

ve see that cointegration of y and I pguarantees that the identifi-

ability relationship holds in the limit. That is

(;1 - ;23) p 0

and a is therefore asymptotically identified using the instrument set
S if 18 is of full rank (almost surely), which is shown by Phillips
and Bansen (1988, Lemma A43)}. In this framework, the limit representa-
tion 1° is not fixed but is a random matrix--see Phillips (1986).
Identification is therefore a beneficial artifact of the spurious re-
gression phenomenon as indicated above.

Although it is known that OLS and IV are consistent under substan-

tial endogeneity, it is also known that correlation between u and

t
lagged values of Axt introduces a second-order bias effect. Specif-

ically, if x = I(1) and v, = I1(0) , then



1T 1
(4) T80 v, # JgBodBy + by -

To derive (4) rigorously, see Phillips (1088a). MNore intuitively, the

presence of A21 can be explained by noting the correlation

@
byy = kfoE(Ax‘kuo) = E(xquy) -

For example, consider the simple process

vhere u, and ¢, are mutually independent white noise. Then

1.7 ~1T S )
Elxtut =T El Uy T Elu

2
t
T 2

Conditional on 7, a(Bz(r), 0 <r 1), (5) is distributed as

: 1,2
(ru, ¢ j auh(au, jOBz) .

Although the non-centrality is eliminated asymptotically since both OLS
and IV are consistent, one would expect some evidence of bias to appear
in finite samples. This has, in fact, been shown to be the case in the
simulations of Banerjee et al. (1986).

To correct this bias, and permit inference via asymptotic distri-
bution theory, Phillips (1987a) and Park and Phillips (1987a, 1987b)
have proposed semi-parametric estimation of A21 . This eliminates the
bias effect asymptotically. Ve observe that these corrections are not

relevant for spurious IV methods, as the instruments are strictly exog-



enous for the regression errors.

-

10

Specifically, using the residuals Uy from a (consistent) first-

stage regression, we can estimate A21 and 631 by

A PR A
far =T E et
A 4t 1 .
fa17 T et

where L -« as T - o such that ¢ = o(T1/4) .
"bias- corrected" estimators

-

a* (I'X)"I[I Y-e TA21]

50 = (2072 - e Thy,]

vhere

g0
LI

Ve then define the

One can show that a* and a* are consistent and asymptotically un-

biased up to np(r“l) --see Phillips and Nansen (1988).

The asymptotic

distributions, however, are generally mnon-normal and dependent upon

nuisance parameters. Both arise from the long-run endogeneity of the

Tegressors. V¥e may write

1 - -1
(6) JgBodBy = [iBdB N0, + fBoavel/2

2722721 2

vhere
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¥ = B¥(1) and independent of B, and

¢ W, - W ﬂ-lw
i1.2 11 12722721

is the conditional long-run variance of u , given Ax . In (6), the
first stochastic integral on the right-hand-side is of the "unit root"
fors, while the second stochastic integral has a mixture mormal distri-

bution. Consider a "bias-corrected" v, ¢

+ gl
Uy = Uy~ wyollaobx,

vhich has zero long-run correlation with Axt . Then

1T . 172 ) .
T B uy ~ Bgy % 03] 0o gBydV = MO 28)dP(6) , &= [BoB
wvhere

-

o1 = 89y - 12”22522

is a consistent estimate of

A;l = E(xgu)

-

Ve nov define the "fully modified” estimator a° using

a

. ‘1
i = ¥y~ vyofoolxy

as

o
H

s -1
080 9hnd) L A, Ty I

Also define
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/2 0
) 3/2
0 0 I.T.
and
1
I(r) = T , 0<rg¢1.,
Bz(r)d
Then

- -1
bp(a" - a) 9 [jéJJ'J (iaav)ed/2, .

Conditional on 7, = a(B2(r), 0 <r<1), this has the distribution

-1
(1) N[O, wll_z[jéJJ'] }

vhich is analogous to conventional asymptotic theory. Unconditionally,
of course, the limit distribution is the mixture of normals
K0, ¢y o67H)dP(6) , 6 = (sl11)
. ' 1.2 ! T M0 )
G>0
Turning to inference, we consider the linear hypothesis

B, : R‘a=r1, rank(R) =gq

and the test statistic

.. ,r- -1
Gp(a™y vyy.0) = (72" - 1) [”11-2"("1) 12] (2" - 1)

where ¥y1.9

is a consistent estimate of ¥14.9 + Ve see from (7) that
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under HO ,
-y - 9

which is not gemerally true if a or a* wvere used in the comstruction

of 6p(-) .

Coe common application is the single coefficient test, i.e.

-~ 0
. 0 - (a5 -2y)
(9) tHag - ap eyg) Sy
[(I x)11”11-2]

and frow (7) we have under B
t(é’ a0 ) * N0,1) as Twao
1 i’ 711-2 ! )

This permits us to define "fully modified standard errors" by the quan-
tity

]1/2

’ -1 ‘.
[(x Dii¢.2]

to replace the conventional "standard errors" calculated by statistical
packages.

These fully modified estimators have several advantages over the
unadjusted and "bias-corrected" estimators. First, the standard distri-
butional results for fully modified statistics permits inference to
proceed conventionally. The bias-corrected estimators, on the other

hand, produce test statistics with highly complicated limiting distribu-
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tions, saking inference problenatic. Second, since ¥i1.2 $ ¥q it
vould seex that the fully modified estimator has smaller dispersion
asymptotically than the bias-corrected estimator. In fact, under cer-
tain conditions the fully modified estimator is asymptotically efficient
and equivalent to full maximum likelihood (see Phillips (1888b) on

optimal inference).

3. SINULATION RESULTS

The Data Generating Process (DGP) used for the simulation is based

on that used by Banerjee, et al. (1986) and Eangle and Granger (1987)

(10a) Yo~ 2%, T UL, (1-pL)u, = €4
(10b) -¥y * 3%, =2, (1-L)z, = e,
' 6
€ 0 1 (4
L ¢ iid ¥ : )
€y 0 o ¢
1
lg] <1, {6, <1.

(10} states that one linear combination of Ty and Xy is stationary,
while another is I(1). Ve may rewrite these two equations imto a con-

ventional simultaneous equation system:

1}
[ 3]
o]
+
[~

(11a) Yy ¢

(11b) x

It
]
+
[ =]

t

The fact that the error terms ir (11a) and (11b) are perfectly correlat-

ed seems unusual, but could have been generalized without substantially
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affecting the results if additional parameters were imtroduced.
Equation (11a) resembles many equations in macroecomometrics: y,

and x, are cointegrated vith a serially correlated error term. Equa-

t
tion (11b) shows that the long-run behavior of x,  is governed by the

randoa walk 2, - Thus Xy

(and only when) bz, is long- run uncorrelated with o, - This occurs

vill be long-run independent of u, when

vhen # = 0 , which was the parameterization implicitly chosen by
Banerjee et cl.

In most macroeconomic applications, analysts include a time trend.
This is the correct procedure if any variables display "drift." The
distributions tabulated by Sam Ouliaris in the appendix of Park and
Phillips (1987a) show that this yields a significantly "fatter" distri-
bution for DLS under long-run endogeneity than the simple case without a
trend. To ensure the relevance of our simulations, all our results are

based upor estimates of the regression

(12) Yo T8 ¢ 3pL ¢ agx, U
However, we report only the distributions of estimates of ag 5 @S this
is the parameter of typical economic interest. ¥e tried four estimation

techniques, wvhich we will refer to as OLS, IVZ, IVS and IVK for brevity:

DLS - standard least squares
IVZ - instrument X, with zZ,
IVS - instrument x, vith B, » an independent Gaussian
randor walk
IVK - instrument X, vith th , some deterministic function.
In some sense, =z, is an "ideal" instrument for x, @ priori Ssince

they are cointegrated, yet z_ is not "contaminated" with u, , B8 is

t
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x This is idealized as well because z, may pot be observable in an

.-
actual application.

in all our simulations, we generated 2000 series of lemgth 200,
starting with u, = 0 and 2, = 0, and then discarding the initial
100 observations, generating s sample of size 100. The GAUSS matrix
programming language and its RNDN function were used to generate the
psuedo-normal imnovations. The latter function uses the fast accep-
tance--rejection algorithw proposed by Kinderman and Ramage (1876).
Start-up seeds were randomized by the clock. In our opinion the exact
properties of the pseudo-normal numbere are unlikely to be very
important in studies of this mature, since the theory is asymptotic and
does not require normality or serial independence.

¥e need to select a svitable choice of instruments for IVS and IVE.
Unfortunately, asymptotic theory provides little guidance. Our first
simulation compares a variety of choices, under the parameterization
p=.8, #=.5, and allowing ¢ to vary among {.5, 1, 2}. The re-
sults are reported in Table I (all tables are in the appendix). For IVE
(trended instruments) a variety of time polynomials and sinusoids are
compared. Average bias {3-2) and square root of the average mean
squared error (5—2)2 are reported, the latter in parentheses. All the
choices fared reasonably well. Based on NSE wve selected the fourth
option, consisting of two sinusoids and two cosinusoids.

For IVS (spurious stochastic instruments) we tried from ome to
eight independent random walks witk psuedo-normal increments. The NSE
seems to decline with the number of instruments, although the differ-
ences are fairly small after five instruments. Nevertheless we chose to

use eight in the subsequent simulations.
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Table II reports the performance of the five (uncorrected) estima-
tion techniques. Twenty parameter settings are reported. As expected,
0LS displays considerable bias for low signal/moise ratios. In fact,
OLS is genmerally beaten by the other techniques for lov ¢ . For large
¢ OLS continues to generally display the highest bias, yet beats the IV
techniques in MSE for # = 0 , and performs similarly in MSE for
f=.5.

Notice the high MSE for IVZ under ¢ = .5, 8 =0, p = .85 .
This occurred in unreported simulations under different parameter set-
tings for lov ¢ , and seems to have been caused by lowv frequency
outliers. This "fat-tailed" property can be explained as follows. 4s

¢ approaches zero, the behavior of =z, approaches that of a constant.

1
Since a constant and time trend are the other two instruments, the sub-
space spanned by the instruments approaches two dimemsions as ¢ = 0
and identification fails. As discussed by Phillips (1987c), partially
unidentified IV estimators have non-degenerate Cauchy-type distribu-
tions, which seems a likely explanation of this aberration in the
simulation.

In addition, it is interesting to note that IV¥S and IVE are upward-
ly biased, although this is not predicted by asymptotic theory.

The estimation of bias corrections, as noted earlier, is complicat-
ed by the dependence of these corrections upon preliminary coefficient
estimates which may possess considerable bias in small samples, as shown
in Table II. 1In order to focus on the potential value of bias correc-
tions, we first side-step this issue by using the "true" residuals to

calculate the bias correction terms. Throughout, we used the estimation

equations:
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p=11 é % N, 9.
k=0 t=k+1 t-k't
8 - T-lzgﬂtﬂi s é 'Y, ,T: (e yn¢ + mengy)
k=1 “"t=k+1

n, = (“t’ Axt, Azt)’
vy =1- k/(L+1) .

The triangular veights used to estimate & constrain 8 to be positive

-

definite--see Newey and Vest (1987). The bias correctionms A21 and
322 do not need this constraint, and are therefore estimated without
the weights. The lag truncation number, ¢ , was set arbitrarily at
geven.

Table III reports "bias-corrected" OLS and IVZ. As indicated
above, the corrections were calculated using the true residuals. IVS
and IVK, of course, do not need corrections according to the asymptotic
theory. The small average bias and MSE in Table III are encouraging for
bias-corrected 0LS. Bias-corrected IVZ, however, in general did not
1mprove over its uncorrected performance.

Noving to Table IV, which displays the fully modified estimators,
ve see continuved improvement in OLS. The other estimators, however,
perform quite poorly when compared to their uncorrected counterparts.
The message from this simulation is clear: for small samples (in this
case, T = 100 ) bias corrections and fully modified statistics omly
vork vell on OLS, additionally, if the true coefficients are kmown then
the fully modified least squares estimator will be highly accurate.

The knowledge of the true coefficients is not completely impos-

sible, if, say, the entire coefficient vector is specified in the null
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hypothesis to be tested, as in, for example, the test of Purchasing
Power Parity by Corbae and Ouliaris (1988). The use of the null spec-
ification to calculation the correction term is analogous to the
Lagrange Nultiplier (LN) statistic in tests of linear restrictionsinm
the standard linear model, where the constrained parameter values are
used to calculate the variance of the error term.

In general, of course, most, if not all, of the coefficients will
be unknown. The bias corrections will be calculated from coefficients
estimated by a preliminary QLS or IV regression. Table V presents sim
vlation results for "feasible" fully modified 0LS. Three methods are
used for the first stage regression: OLS, IVS and IVK. Compare the
bias and ¥SE of the estimators in Table V with unadjusted OLS (Table
II). In general, feasible fully modified OLS performs better than
unadjusted OLS, but not by much. V¥hen compared to the fully modified
OLS estimates using the true coefficients (Table IV), we see that the
use of first stage regression coefficients significantly reduces the
effectiveness of the modifications. Regardless, the results of Table ¥
indicate that these are the best feasible estimation methods. VWhen
comparing among choices of first stage estimation, it appears that IVS
pmay be the best choice for low signal to noise ratios, while OLS may be
more appropriate for high values. This is surprising at first glance
since we knov from Table II that IVK generally perforsed better than QLS
and IVS both in bias and MSE. A close reading of those figures shows
that IVK bas a high variance. This presumably increases the variance of
the estimated bias corrections. Looking back at Table V¥, wve see that
feasible OLS using IVE first stage estimates has lower bias, but higher

variance, than the estimators using 0LS or IVS first stage estimates.
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Thus bias-corrections using IVE are more accurate, but more variable,
than those based on OLS and IVS.

Ve nov turn to the problem of inference by examining the distribu-
tion of the standard and modified t-statistics for 3 . For brevity,

only OLS techniques are examined. Ve consider three t-statistics:

t = t(ag -2, 03) , 63 = 'IEIui
t* = t(a} - 2, v,)
t" = t(ag - 2, vyy.0)

(See equation (9) for the definition of t(-,-) .)

{ is a conventional t-ratio as printed by standard statistical
packages, t* 1is the "bias-corrected" t-ratio (a signed square root of
the Wald statistic proposed by Park and Phillips (1987a)), and t* is
the fully modified t-ratio of Phillips and Hansen (1988). t-statistics
are commonly compared against the standard normal distribution for
inferential purposes. As discussed earlier, asymptotic theory demon-
strates that this will not generally yield valid inferences, except for
the fully modified statistics. Of course, the tables in Park and
Phillips (1987a) allov t* to be used, although this is a cumbersome
procedure, requiring estimation of a nuisance parameter and omly per-
mitting block tests.

Although many other parameterizations were run, we only report the

results for p = .7, ¢ = {2,10} and @ = {0, .5} because these
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summarize the main effects. 8000 replications of samples of size 100
vere generated. Table VI reports the first four cumulants of the data.
Figures 1 through 4 display non-parametric estimates of the probability
density function (pdf’s). Each figure displays all three statistics.
In each case, the estimated pdf of the fully modified statistic is the
closest to the standard normal density. Its variance ranges from 2 to
3, suggesting that there will be size distortion in moderate samples.
The variances of standard least squares (14 to 21) and bias corrected
least squares (8 to 11) are substantially higher.

Vhile the asymptotic approximation to the distribution of t*  is
N(0,1) , the asymptotic distribution of t* is a mixture of N(0,1)
and a unit root distribution, depending only upon the parameter @ (the
degree of long-run correlation). It is interesting to note that this
dependence is not indicated by the simulated small sample densities. Ve
note that when 6 = 0 , the distribution of t* is far from the asymp-
totic N(0,1) , and is decidedly inferior to the asymptotically equiv-
alent t° . Moreover, vhile the estimated demsity of t* is similar
for # =0 and 6= .5, it does change shape as the signal to noise
ratio, ¢ , is varied. This is in contrast to the prediction of
asymptotic theory and is therefore an important finite sample effect.
Similar but less dramatic effects occur for the statistic t* (see
Table VI).

These results suggest that the bias corrected statistics of Park
and Phillips are not well approximated by a standard N(0,1) even when
this is their asymptotic distribution (the case € = 0 ). On the other
hand the fully modified statistics are much better approximated by the

standard N(G,1) . Moreover, this is true even when the long run



22

endogeneity correction is mot required. It would therefore seem that
little is lost in finite samples by employing the endogeneity correc-

tion.

4. THE AGGREGATE CONSUNPTION FUXCTION

A perennially examined macroeconomic relationship is the postulated
linear dependence of aggregate corsumption wupon aggregate disposable

income:
(13) €y = 8y % Gg¥, + U, .

Even though the microfoundations of (13) have mever been well establish-
ed, it appears in one form or anmother in many theoretical and applied
pacro models. Since ¢, and y, are both believed to be I(1) pro-
cesses-- see Hall (1978) and Perror and Phillips (1987)--(13) makes semse
as a long-run relationship if and only if u, = I(0) . This is empha-
sized in a recent test of the Permanent Income Bypothesis by Campbell
(1987). Given cointegration, we can estimate ¢ using the methods
discussed in this paper. Ve use quarterly real ($1982) per capita
personal consumption expenditure and personal disposable income, 1941/1

to 1987/4, using the consumption deflator for both series. Data is in

thousands of dollars. Since both series display a mild trend, we

estimate

- - - -

¢, = 8y + a2t + a3yt + ut .

¥e only consider OLS techniques.

The "standard" OLS coefficients and standard errors are
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¢, = 9.99 - 0.24 ¢+ 897y .
(14.7) (13.9)  (.034)

(The coefficients for the constant and time trend have been scaled by

8 and 101°

10 , respectively, throughout this presentation.)

Despite the apparent precision, no modern-trained ecomometrician
would trust these estimates, as the consumption function is a classic
example of a simultaneous equation system. The theory of cointegration
tells us that we can consistently estimate & by least squares, but
that we should place no faith in the standard error estimates. Ve will
try and improve upon these estimates by first calculating bias-corrected
estimates, and second employing the fully modified techniques.

To construct bias-corrected estimates we first examine the cross-

-

correlagran between Ayt and the fitted residuals, ug

utbyt-k

Lol o R

=k-+1
k) = - k 177
Tyl o]
FaEe

! 1

k| -10 ‘ ¢ (-8 |-7 |-6 |-5 |-4 |-3 |-21]-1

;(k)}-0.941-1.32 -1.16|-1.17|-1.40|-0.60| 1.37| 1.42| 1.60] 3.44

k 0 1 2 3 4 5 6 7 8 ! 10

y(k)|-2.17|-0.89; 0.01|-0.69] 0.07| 0.25| 0.16{ 0.02]-0.27| 0.03}-0.89

Ve notice that the cross-correlagram is small for positive values of
k , and rather large for negative values. This suggests that 421 may

not need many lags to estimate 621 y but ¥y, By need more. By cal-
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-

ulating the parameter 521 for several lag truncations, we can see
explicitly how the bias-corrected estimates are sensitive to this

choice:

., ) )
¢ o] 63 S
1 19.5 8.77  .8T5
2  23.4  12.46  .866
5  925.6  14.57 .86l

10 24.8  13.76  .863

The coefficient of interest, ;; , is stable for ¢ > 2 , and is

slightly less than unadjusted QLS.

-~

To construct fully modified estimates, we use an estimate of M

using a lag truncation of ten due to the large values of the cross cor-

-

relagram for k < 0 and the large values of the correlogram for u,

defined by

X H 1 2| 3| 4] s te| 7] 8] 9| 10
}uu(k)“ 1 | .80 | .70 | .60 | .50 | .46 | .41 | .39 | .36 | .34

¥e vary the lag truncation number, ¢ , used to estimate A;l y Bep-

arately, finding the estimates

+ + +
14 8 e, aq
1 -4.81  -14.94 .933
2 -8.61 -18.54 042
5 -11.02 -20.82 947
10 -9.11 -19.01 .842
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Again, the estimates of 3, are not very sensitive for the choice of £
2 . It is evident, howvever, that these values are quite different from
the biss-corrected estimates. The final statistics needed are the fully
modified standard errors. Ve calculate ;11_2 = 1.398 x 10713 from @

and can vrite ip the conventional format

¢, = —8.61 - 1854t + M2y
(37.93)  (36.95) (.088)

(Ve used £ =2 for A& If e, is the coefficient of ecomomic

+

21 *)
interest, we could write down the 957% confidence interval [.770, 1.114)]
which is unfortunately quite large. Ve can easily accept, for example,
a unit coefficient (which is implied by some versions of the Permanent

Income Bypothesis).

5. COXCLUSION

This study set out to explore the small sample properties of QLS
and IV estimators in cointegrating regressions--unadjusted, bias cor-
rected, and fully modified--in order to evaluate the usefulness of the
asymptotic theory developed recently by Phillips and Eansen (1988). Ve
discovered that IV estimators work quite well, including the "spurious"
procedures which use instruments structurally unrelated to the DGP. The
fully modified estimators, shown in our earlier work to possess limiting
mixed normal distributions, also worked well, especially when the true
coefficient vector vas known a priori. Feasible corrections, based on
preliminary regressions fared reasonably well, but did not eliminate the

problez of small sample bias in estimation. The approximation of the
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distribution of fully modified t-statistics by the normal density is ex-
cellent, and despite a higher variance than unity, performs
substantially better than conventional inference procedures.

The DGP used in this exercise was designed to decompose pogsible
problems into three categories: signal/nmoise, serial correlation, and
endogeneity. The critical factor, it appears, is the signal/moise ratio
( ¢ ip the simulation), not the degree of long-run endogeneity. If the
variance of the increments of the random walk which drives the long-run
bebavior of the variables is high relative to the variance of the
ghort-term dynamics, the bias problem is megligible, and OLS works well,
and fully modified estimates will permit inference and testing to
proceed in a conventional fashion. If, however, the relative signal is
low, spurious IV techniques may be necessary to obtain preliminary esti-

mates for the modified least squares estimator.
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TABLE

1: TRENDED/SPURIOLS

BIAS™ (R00T NSE)

[ ]
R B SRR F BESIRIRER 1 B
178 (.375 .063 (.173
.100 (.208 .071 (.152
.163 (.537 .067 {.392
103 (.279 .075 (.148
.225 (.281 .091 (.138
319 ({.371 .143 (.195
.225 (.29 .091 (.138

25.737
.397
.432
.450
.460
470
479
486

1170
.810
.609
.550
.530
.526
528
.529

» €08(214,t/T),..., sin(27i;t/T),

cos(ZrIIt/T)}

.522 (12.53) -1.240 (83.2

.18¢ (.603 .084 (.401
.208 (.378 .081 (.212
208 (.322 .087 (.167
.218 (.300 .088 (.155
.227  (.297 093 (.148
234  (.285 .096 (.145
240 (.283 .099 (.145

27
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TABLE II; UNCORRECTED ESTINATES
BIAS (ROOT XSE)

IVZ 246
I¥S .541

Vi .488 (.553

# 4
R e v A X it X Babbutaer X B
R
0LS .545 (.566 .241 (.268 075 (.100 .012 023 003 (.013
IVZ 083 (.383) -.017 (.138) -.004 (.083) -.001 {.025) -.001 (.018
IVS .357 {.435 127 {.212 037 (.100 005 {.038 .001 (.018
IVK .262 {.410 081 (.207 020 (.105 002 (.045 000 (.023
T
LS 654 (.673 .326 (.359 108 {.145 020 (.046 005 (.022
1V?Z 1.036 {47.2) -.059 (.283) -.015 (.110) -.001 {.043) - .000 (.021
T¥S 563 (.628 .246 (.345 075 (.345 014 {.064 004 (.032
IVK 468 (.611 . 202 340 059 (.340 011 074 L003 (.037
T
LS .533 (.546 280 (.297 121 (.134 037 044 .016 020
IVZ L187 (.255 .112 {.148 062 (.084 025 034 013 {(.018
IYS 373 (.422 .164 (.217 064 (.100 017 037 007 (.018
IVE .284 (.3B1 .110 {.197 041 (.100 .011 042 005 (.022
PR
0Ls .611 ;.621} .358 E.374} 170 .187} .058 ? 069 .028 t.032§
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BIAS- CORRECTED USING TRUE COEFFICIENTS
BIAS (ROOT NSE)

015 (.114) -.005 (.063) -.002 (.026) -.001 (.015
006 (.148) -.001 (.071) -.002 (.030) -.001 (.015

C18 {.182} .006 .118; .002 .048; .001 .024;

024 (.318) -.004 (.138) .001 (.049) .001 (.025

094 (.130) -.060 (.084) -.025 (.036) -.013 (.019
126 (.176) - .066 (.089) -.026 (.038) -.013 (.019

040 (.155) -.035 (.110) -.034 (.057) -.018 (.030
111 (.279) -.052 (.134) -.037 {.061) -.018 (.031
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TABLE Iv: FULLY NODIFIED USING TRUE COEFPICIENTS
BIAS (ROOT NSE)

[ I's
I IIIOMIIIIMIIIIIEIIIIIINAII
o .7
01S -.017 (.138) -.006 (.095) -.001 {.055) -.001 (.023) -.001 (.012
IvZ -.076 (.582) -.014 (.152) -.003 (.071} .011 (.030} .003 (.014
IyS .333 (.435) .122 {.272) .042 (.207) .006 (.181) .002 (.177
IVE .247 (.449) .080 {.310) .022 (.272) .001 {.243) -.001 (.237
T E
0LS .059 (.200) .029 (.152) .010 (.089) .003 (.037) .001 (.018
I1vZ -.536 (13.2) -.044 (.303) -.008 (.126) .020 (.051) .005 (.024
IVS 537 (.615) .234 (.374) .0T1 (.235) .008 (.186) -.002 (.180
IVK 467 (.611 .9201 (.414) .065 (.203) .007 (.232) -.002 (.226
ST
A -.078 (.134) -.052 (.095) -.026 {.055) -.009 (.022) -.004 (.011
1ve -,018 (.192} .017 (.105) .011 (.055) .014 (.028) .005 (.013
IYS .333 (.404 .140 (.245) .050 (.195) .015 (.181) .007 (.178
IVK 256 (.405) .094 (.286) .030 (.253) .007 (.230) .002 {.230
:E: B
0LS -.007 152) -.027 (.118) -.021 (.077) -.012 (.036) -.007 (.019
Iy? .142 (9.95 .064 (,187 041 (,105 030 (.049 012 (.024
VS .499 (.545 .260 (.335 110 (.214 .033 (.168 013 (.164
Ik 414 (.561) .214 (.371; .086 (.272) .027 (.229 .009 (.223
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FEASIBLE FULLY MODIFIED QLS
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TABLE VI: DISTRIBUTIGN OF t- STATISTICS

t* t
c=2,80=0
Nean 2.046 304 .469
Yariance - 14.183 8.301 2.552
Skevness -.163 -.175 LO44
Kurtosis -.595 -.376 221
c=2,8=.5
Nean 3.642 .326 .818
Yariance 16.389 8.833 2.908
Skewness -.212 -.064 .218
Xurtosis -.512 -.323 473
¢ =10, § =0
Mean 270 -.273 -.172
Yariance 21.114 10.747 2.077
Skewness -.040 - .008 -.183
Kurtosis -1.074 -.727 076
e =10, § = .5
Nean .694 - .457 -.122
Yariance 21.259 10.736 2.148
Skewness -.013 - .041 -.133

Kurtosis -1.053 -.730 .150
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