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This paper develops statistics for detecting the
presence of a unit root in time series data against the
alternative of stationarity. Unlike most existing
procedures, the new tests allow for deterministic trend
pelynomials in the maintained hypothesis. They may be used
to discriminate between wunit root nonstationarity and
processes which are stationary around a deterministic
polynomial trend. The tests allow for both forms of
nonstationarity under the null hypothesis. Moreover, the
tests allow for a wide class of weakly dependent and possibly
heterogenously distributed procedures. We illustrate the use
of the new tests by applying them to a number of models of

macroeconoric behavior.
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1. Introduction

The purpose of this paper is to extend some existing statistical
procedures for detecting a unit root in time series data. In the tests of
Dickey and Fuller (1979) and Phillips and Perron (1988), the maintained
hypothesis is that the time series is integrated with drift but with no
trend, This paper extends these tests to allow explicitly for =
deterministic polynomial time trend in the maintained hypothesis, An
important feature of the new procedures is their invariance to the presence
of drift and polynomial trend in the true data generation process. They
should therefore be helpful in discriminating between the difference
stationary and trend stationary specification. Our analysis is motjvated
in part by recent work by Bhargava (1986) which emphasizes the importance
of developing tests of the unit root hypothesis which explicitly allow for
trend in the maintained hypothesis. It is also motivated by the view that
the linear time trend hypothesis is inappropriate for modelling the
deterrinistic component of an economic time series. Perron (1987} has
recently demonstrated the importance of using a flexible specification for
the deterministic component. He shows that the results of Nelson and
Plosser (1982), which provide support for the unit root hypothesis, may be
reversed by using unit root tests which allow for & structural break in the
deterministic component of a time series.

The issue of trend stationarity versus difference stationarity is

critical in the ongoing debate on the nature of the business cycle. Most



macroeconomic time series exhibit nonstationarity through the presence of a
secular growth component. If & macroeconomic variable is trend stationary,
then short term shocks ( such as those arising from wvariations in
government policy ) have only a temporary impact on the long run evolution
of the series. This behavior is consistent with traditional theories of
the business cycle. However, if a macroeconomic variable is difference
stationary, then short run shocks affect the level of the wvariable
permanently., This is more compatible with real business cycle models of
equilibrium output.

Prior to the work of Nelson and Plosser (1982) the prevailing view was
that the secular component of macroeconomic time serjies was trend
stationary and that the long term trend had little to do with the year to
year varjations in econcmic conditions. This led to the routine practice
of detrending macroeconomic series in order to identify the cyclical
component that was to be explained by business cycle theory. However,
using the Dickey-Fuller (1979, 1981) procedures for detecting a unit root
in time series models, Nelson and Plosser (1982) found strong evidence
against the trend stationary model. Nelson and Plosser tested the null
hypothesis of a unit root ( with drift ) for 14 macroeconomic time series
and could not reject the unit root hypothesis in 13 cases. Perron (198&)
has recently confirmed the findings of Nelson and Plosser using the
statistical procedures developed in Phillips (1987) and Phillips and
Perron (1988). Unlike the Dickey-Fuller statistics, these procedures allow
for quite general weakly dependent inmnovation sequences. From the point of
view of business cycle theory, the Nelson and Plosser results are more

consistent with the implications of real business cycle theories since



innovations in the stochastic trend apparently account for a significant
portion of the shert - as well as the long - run, variation in the time
series. The interested reader is referred to Campbell and Mankiw (1987)
for further discussion on the implications of the unit root hypothesis for
modelling macroeconomic behavior.

The appropriate representation of nonstationarity in wmacroeconomic
time series is mlsoc a vital issue from an econometric perspective. Durlauf
and Phillips (1987) show that misspecification of a random walk as a
stationary process evolving around a deterministic trend has major effects
on the statistical analysis of the data. For example, it is well known
that inappropriate detrending of a random walk produces spurious periodic
behaviour at long lags, and this gives a misleading impression of
persistence and high wvariance in the business cycle. ( See Nelson and
Kang (1982}, and Chan, Bung and Ord (1977) Y. In addition, the thecry of
cointegration has emphasized the need to pre-test time series for unit
roots. A cointegrated process is a linear combination of integrated
variables which are stationary. In practical applications, it is
important to determine whether each series (once purged of its
deterministic part) possesses a unit root, Pre-testing guards against
inadvertently mixing processes which are integrated of different orders {
such as I(l) and I{0)} processes, where the notation I¢(k) signifies a
process whose kth difference is stationary ) since such processes are
trivially cointegrated. Finally, a null hypothesis of no cointegration may
itself be tested by applying unit root procedures to the residuals of the

cointegrating regression ( see Phillips and Quliaris (1987) ).



The organization of this paper is as follows. Section 2 develops Wald
statistics for the null hypothesis that a time series has a unit root and
possibily trend polynomials of an arbitrary order. The statistics are
developed using the methodology in Phillips (1987). 1In section 3 we show
how to incorporate a general polynomial time trend in the maintained
hypothesis when the bounds procedure of Phillips and Ouliaris (1988) is
applied. The new procedures are then applied to empirical models in the
cointegration literature to see whether the original data stands up to the

null hypothesis of a unit root.
2. Unit Root Tests with Deterministic Trend

Following the methodology in Phillips (1987), we begin by letting

@
lyt}o be a time series generated according to:

P-1 k
(1) Ye = Z, Bt vy gt §or B R.
(2) Yo = random with a distribution that is independent of n, the

sample size.

Model (1} allows ¥, to be an integrated process with a pth order
deterministic time polynomial in the null hypothesis. It encompasses all
of the unit root models considered previously in the literature as special
cases. For example, Phillips (1987) considers (1) under the assumption
that p = 0 while Phillips and Perron (1988) 3116w p-1.

In what follows, we assume that {Et}: is a weakly stationary, zero

mean innovation sequence with spectral density f.(X). The partial sum

£
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process Xn(r) - T (nr] for r ¢ {0,1], is required to

t L
satisfy an invariance principle for partial sums of weakly dependent

innovations. Specifically, we require

(&D)] Xn(r) > B(r) as n t =,

The symbol " 2

> " here signifies weak convergence of the associated
probability measure, while B(r) 1is scalar Brownian motion with long run

variance

2 1lim 1l
W = 2z

2
o 1 (0) = 0" + 2X

2
E(Sn) - 21rf£

where 02 - E(Ei). A=z E(Elﬁj). We let B(r) = wW{(r) so that W(r) is
j=2

. ; . 2
the standard Brownian motion. We sometimes refer to w as the long run
variance because

-1/2.n 2
n Elft = Xn(l) = B(l) = N(O, u").

In what follows we represent B(r) by B and W(r) by W to simplify
the presentation of the results.

Invariance principles such as {3) have been used extensively to
analyze time series models with general integrated processes. They are
known to apply for a very wide class of random sequences which are weakly
dependent and possibily heterogeneous. In particﬁlar, following Hall and
Hyde (1980), it may been shown that the invariance principle applies to all
stationary and invertible ARMA models. Thus the maintained hypothesis

given as (1) encompasses a very broad class of time series models.



Consider the least squares regression:

A~

- sPp K+ o
(&) Ye Eoﬁkt +ay, 4+ et
The hypotheses we are interested in testing are:

(1) a=1,

(11} a=1, and ﬂp = 0.

Let hp(a) = n(a - 1) represent the test statistic for (I} based on
the estimated parameter for o derived from least squares estimation of

~ ~ -~

(4). Similarly, let tp(u) and Fp(a, B denote the t and Wald

p)
statistics for (1) and (II), respectively. We assume ﬁp - 0 in (4}
when the null hypothesis is true. If a < 1 under the alternative,
however, ﬁp may mnot be zero. We therefore maintain a pth order
polynomial trend both under the null and the alternative. The statistics
are invariant with respect to ﬁk' k=20, ... , p-1.

Note that one must include a pth order time polynomial in the fitted
regression in order to test (I) and (II) satisfactorily. A rTegression
model without this term would not discriminate between the trend/difference
stationary specification since the regressor Vel in (4) would contain an
unexplained time trend tP which clearly dominates all the other
components. In fact, the asymptotic power of t-type statistics for the
rnull hypothesis e = 1 wusing (4) without t?  would be zero.

The asymptotic distributions of the above statistics may be

represented succinctly in terms of standardized Brownian motion. To



facilitate the representation of the distributions, we define Wk(r) to be

the stochastic process on 10,1] such that Wk(r) is the projection
residual of a Brownian motion W(r) on the subspace generated by the
polynomial functions 1, r, ... , rk in L2[O,1]. Here, L2{0,1] denotes

the Hilbert space of square integrable functions on [0,1] with the inner
product (f,g) = fifg for £, g ¢ L2[0,1]. For explicit representations of
Wk, k = 0, 1, see Park and Phillips (1986) and the review paper of
Phillips (1987). We also define rp to be the projection of rP  on the
space spamned by the polynomials 1, r, ..., rp-l.

Theorem 2.1 represents the asymptotic distributions of these

statistics in terms of the above notation.

Theorem 2.1: Assume the time series lyt} is generated by (l). Then

- g 2¢l 1 2 -1
a h_( > W odaw + A
() h_(e) W ¥y ) (v J‘
by t (o) i, (1/0)(w2fiwpdw + ) (w _f y 172
. - g 2.1 2 1 2 -1 1 2,01 2. -1
(er F (a. B (w joupdu + A)(w j + (wforde) Jor)
The limiting distributions of the statistics are nonstandard. They
depend on nuisance parameters through the presence of A and wz. This

hinders hypothesis testing, making the selection of appropriate critical
values for statistical inference extremely difficult. However, we may
define transformatioms of the statistics that eliminate the nuisance

parameters asymptotically. In particular, we define:



R ~ n (v - 02)
(5) K (a) = n{(a - 1) -
P 2s
N ; - n(wz- 02)
(6) §_(a) - —xt(a) - ——
P w 2us
“2 "2
A ~ A2 A2 nz(w -0 )2 A A A 2
(7 G {a, B.) = (6" )F, + ——a—— - nfa - 1){1 - [o/w]")
P P 1 4 22
v s
0
where
sz = residual sum of squares from the regression of Ye.qp OO
i, ¢, ..., tp, and

A

2 ; . 2
w = any consistent estimator of w',

The asymptotic distributions of these statistics are:

Theorem 2.2: Assume the time series ty 1 s generated by (l). Then

. g 1 1,2, -1
K, (a) > (jowde)(jowp)

- i 1 1,2,-1/2
Sp(a) > (fowpdw)(fowp)

- 9 1 2,712 -1 1 2,01 2.-1
G (e B) > (joupdw) (fowp) + (forde) (forp) .



These distributions are free of the nuisance parameters X and w2
Monte-Carlo techniques c¢an be wused to simulate the distributions and
thereby provide critical values for the purpose of hypothesis testing. The
asymptotic distributions of the statistics are tabulated in Appendix 2 for
P=2, 3, 4, 5. Monte-Carlo evidence on the perfomance of the statistics
for p = 2 is presented in Appendix 3.

In order to make the new procedures fully operational, we require a
consistent estimator for the long run variance wz. It may be consistently
estimated in a number of ways. Newey and West {1987) and

Phillips {1987) recommend a class of estimators which can be written as

2 1n2 2.2 n
e T I8t nR=1a T febex

for a suitable weight function wj(k) which depends explicitly on the lag
truncation parameter [£.
Since uz = 2#£(0), the asymptotic variance may also be estimated by

obtaining & consistent estimate of the spectrum at frequency zero. Let

represent the periodogram of §t evaluated at the frequencies, Vj - 2ﬁl

e [-n, x]. Estimates of w2 may be formed by smoothing the periodogram

ordinates around frequency zero, namely:

YL 21
w -;kwnml(n). MERY
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where
+k
z Un(J) =1, Wn(J) =2 0 for all j.
-k
+k 2
and k grows with n such that k/n —> 0 and I Wﬁ(j) —> 0. The
-k

latter condition is required in order to ensure that the estimator is
consistent for wz.

Note that there is always a trede off between bilas and variance in
choosing a weight function. A weight function which assigns equal weights
to a very broad band of frequencies will produce an estimate of fE(O)
which may have large bias because the estimate depends on values of the
periodogram at frequencies which are distant from zero. On the other hand,
a weight function which assigns most of its weight to a narrow frequency
band centered at zero will yield an estimator of the spectrum with a
relatively small bias, but & large variance.

The bias can be controlled by pre-whitening the series prior to
estimating the spectrum. Pre-whitening serves to equalize the periodogram
ordinates over a broad band of frequencies, thereby minimizing the role of
the weight function. For example, suppose we fit the following ARMA(p,q)

model to {t:

$Lrg, = ¥(Liv,

where

2 3 .
(L - ] - L - L - L - ... -
(L) 4L - ¢, é5 ¢ L

(L) = 1-ylL- ¢2L2 ; ¢3L3 - - ¢qu
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and Ve is a weakly stationary process with spectrum fv(xj). {All the
roots of ¢(L) are assumed to be outside the unit circle.) Then the

spectrum of Et at frequency ‘j is given by

-ijx

) il
SR T T

1 - :§¢je

ff(xj) - fv(n

Thus, for Kj -0

. ~ -zl
£,(0) = £ (0)
3 v P
1 - zlel

~

where ¢j and wj are consistent estimates of ¢ and wj respectively.

N

The results presented in this paper are based on the Daniell estimator
for fE(O)' The Daniell estimator uses equal weights to smooth the
pericdogram. Thus W(k) = (21().1 and

~

2 _1 273
(&) vy kZTRe[I( - )}.

Since the Daniell estimator is best suited to models with "flat"
periodogram values around frequency zero, the pre-whitening technique will
be used in order to minimize the distortion arising from large periodogram
ordinates distant from zero. |

Finally, a word of caution must be given with regard to the estimation

: 2 . .
of the long run variance w used to construct the statistics. It is
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impertant to use the residuals from the regression (4) and not to
incorporate the hypothesis g = 1 when estimating wz. Failing to do so
has substantial effects on the power of tests and may result in the
procedure being inconsistent. This problem has recently been pointed out
by Phillips and Ouliaris (1987) in a related context of the residual based
tests for cointegration. To look at the problem more closely, consider the
simplest case of p = 0. The tests are therefore based on the regression,

~ ~

(9) Ve = @Y. * &

Under the assumption of integration, we may estimate w2 using {Ayt} or
- . " -1
{Et} from (9). This would not affect the result since o = 1 + Op(n )
under the null hypothesis. The two estimators, however, behave rather

differently under the altermative hypothesis of no unit root. This occurs

because tay has a moving average representation with a unit root when

[yt} is stationary. If the estimation is based on lAyt}, then
wz > 0. Furthermore, if some estimators such as a smoothed spectrum
"2 1

are used, we have 1 = Op(n- )} and the test becomes inconsistent {( see
Phillips and Quliaris (1987)). Loosely put, the inconsistency is due to
the fact that the behavior of the correction term mimics that of the
leading term too closely when ;2 is negligible. The proof is essentially
the same as the one in Phillips and Ouliaris (1987) and will not be

repeated here. The problem of inconsistency does not arise if the

estimation of w2 is based on the regression residual in (9).
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3. Testing for Unit Roots with General Deterministic Trends

The statistical procedures developed in the previous section enable us
to detect a unit root in models with a deterministic time polynomial of an
arbitary order. However, they cannot immediately deal with more general

trend cycle models of the form:

(10) Y = bt e{t,8) + u,

where w(t,f) is a deterministic function of time with parameter §.

Although it is in general possible to modify Wald statistics to account for

general deterministic trends such as (10), the critical values of these
statistics depend on the form of ¢(t,§). This is, of course, already
clear from Theorem 2.1 (a) - (¢) where these limit distributions depend

on the projection of W(r) on the orthogonal complement of the polynomial
trend of order p, namely WP(r).

Equation (10) embodies a broad spectrum of stationary data generation
processes and yields a very general slternative to the difference
stationary specification. It is therefore desirable to have a methed for
directly testing (10) against a unit root specification. We now develop
a nonparametric method for doing this. Our approach is based on the
univariate bounds procedure for no cointegration developed in Phillips and
Quliaris (1988). This procedure exploits the fact that differencing a
stationary series induces a negative unit root in its MA representation,
resulting in a zero spectrum at the zero frequency. The bounds procedure

provides a diagnostic for assessing whether or not the estimated spectrum
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at the zero frequency is sufficiently small to be negligible. It can
easily be modified to deal with models such as (10).
The general approach is best introduced by way of example. Let p = O

and -

e =& =Yy " Ve

Under the null hypothesis of & unit root, (ft} 1s a stationary process
having positive asymptotic wvariance. If, however, (yt] is stationary
under the alternative, then {ft} has an MA(l) representation with a
unit root and its spectrum will be zero at the zero frequency. Moreover,
if the smoothed spectrum estimator is used to estimate w2 = 0, the results
in Phillips and Ouliaris (1987) imply that ;2 is Op(n-l). This means
that we may obtain diagnostic evidence in favor of the trend stationary
specification by showing that the estimated spectrum at the zero frequency
is negligible and thus consistent with the alternative hypothesis of
w2 = 0, This in turn may be done using the unit free (scalar) bounds
procedure of Phillips and Quliaris (1988).

To explain this procedure, let p2 - (w/o)2 , and ;2 - (;/;)2 , be

. . 2 . .
any consistent estimator of 92. Also, we assume w is estimated by (8).

we are therefore interested in the alternative hypothesis:

2
2 w
Ha - =T, 0
a
According to the univariate bounds test, Ha is accepted if the upper
limit for the true p2 is ‘"sufficiently" small. Phillips and

Culiaris (1988) point out that under the null hypothesis that p2 >0 , r2
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has an asymptotic normal distribution with mean p2 and wvariance

+k
p2[2 WT(j)z]. Thus for the Daniell estimater given by (B) have
-k

2022 0 500 —> NGO,

d

(1) k

with a corresponding confidence interval for p2 of:

(12) s @ty s s fra- (z,/x*%y)

where z is the (1 - a) percentage point of the standard normal
distribution. Similarily, Ha is rejected if the lower limit is above a
preassigned level.

A maintained polynomial trend may be allowed for in a straight forward

fashion. That is, when p 2 1 we simply compute the regression residuals

~

Et from:
) p-1% ~
b)t Eo ﬂjt + gt
and mount the bounds test using ft. 0f course, this approach can be

generalized to allow for any form of deterministic trend in the maintained
hypothesis, such as w(t,8) for example. For a given ¢, the null

hypothesis is specified as:

Y = st ot 8) +y 4+
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~

and the test is mounted using the least squares residuals Et from the

regression:

s

Ayt - u + p(t,f) + ft'

Again, we need to test whether Et has an MA(l) representation with a

unit root. Since the least squares estimators of u and ¢ will be

Op(nl/z) consistent under the null, we do not need to make any adjustments

to the procedure.

In order to make the diagnostic procedure operational, guidelines
must be set as to what constitutes a "sufficiently small" estimate for the
upper bound. It is also necessary to set criteria for deciding when the
lower bound is too large to accept the alternative hypothesis of p2 = 0.
These issues are complicated by the fact that the limit distribution (11}

A

for r does not hold when p2 = 0. Moreover, since our estimate of the

lower bound is always greater than zero, the confidence interval for p2

will mever encompass p2 = 0. This happens because we do not use the
. . . — o2 . 2

asymptotic distribution of r under the hypothesis g = 0. The

procedure 1s constructed sc that this is the alternative.

Following Phillips and Ouliaris (1988), we recommend using 0.10 as
the rejection point for the upper and lower bounds. If the upper bound for
p2 is less than 0.05, one could be fairly confident that the true value
of the spectrum was sufficiently close to zero so as to be compatible with
the alternative hypothesis of p2 = 0. If the lower bound for p2 is

greater than 0.10, then one could be very confident that the true spectrum

at the zero frequency is not zero.
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In order to get some indication of how adequate such a decision rule
may be, we simulated critical values for ;2 using randomly selected
processes under the alternative hypothesis of p2 - 0 and the null
hypothesis  of p2 # (0. The form of the data generation process was
assumed to be ARMA(1,1). The series was differenced in order to induce &
unit root in its moving average representation for the alternative p2 = 0.
The parameters of the ARMA(1l,1) process were selected randomly from a
uniform distribution over the interval |[-0.6, 0.6}, thereby restriecting
draws to¢ ensure that the process possessed a unit root in its Ma
representation. Table 3 presents the values obtained for ;2 by averaging
the upper and lower percentile values of the empirical distributions of 50
processes. Tnhe simulations suggest that an upper bound of 0.10 would
provide an extremely conservative decision rule for the upper bound since
the 95 percentile point for the average distribution is 0.45.

The above analysis bears directly on recent papers by Cochrane (1986)
and Campbell and Mankiw (1986,1987). These papers analyze the real per
capita GNP trend/difference stationarity issue by considering the magnitude

of the spectrur of real per capita GNP at the zerc frequency. Campbell and

Mankiw (1987) find that the long run variance of real per capita GNP is

large, and thus argue that this is strong evidence in favor of the
, "2
difference stationary model. In contrast, Cochrane (1986) estimated r

~

for real per capita GNP and argued that since r2 was small (0.40) the
random walk component of real per capita GNP was negligible. However,

neither Cochrane (1986) nor Campbell and Mankiw (1987) compute upper bounds
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for p2. If the focus of attention is whether or not p2 is small ( and
not necessarily zere ), then the appropriate procedure is obviously to

compute the upper bound of the confidence limit for p2 using (12).
4. Empirical Applications

The new unit root procedures are particulary useful in applied work
which utilizes the theory of cointegration to test steady state models of
economic behavior. The steps involved in testing for cointegration may be
outlined as follows. First, all the variables in the model should be
pre-tested for a unit root, since a regression model involving a mixture of
I{(0) and I(1l) wvariables is trivally cointegrated. Second, it is
necessary to test whether the residuals of the model ( or the deviations
from the equilibrium condition ) possess a unit root. If the residual
vector has & unit root, the model is not a cointegrated system. When the
cointegrating wvector does not need to be estimated, standard unit root
tests {such as those developed above) may be applied to the residual vector
If the cointegrating vector needs to be estimated, unit root tests may also
be wused; however, different critical wvalues apply (see Phillips and
Ouliaris (1987)).

We now demonstrate the use of the new tests by applying them te the
following standard economic models (all of which have recently been
reformulated as cointegrated systems and all of which have known
cointegrating vectors under the hypothesis of cointegration): (1) Spot and
Forward Exchange Rates (Corbae and Quliaris (1%986), Corbae, Ouliaris and

Zender (1987)):; (2) Purchasing Power Parity (Corbae and Ouliaris (1987))
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and (3) The Real Monetary Equation (Engle and Granger (1987)). In what
follows, we are primarily interested in determining whether the existing
results for these models are changed by using unit root tests which allow
for polynomial trends in the maintained hypothesis. For completeness, we
briefly review the theory underlying the above models in the context of the

cointegration framework:

(1) Spot and Forward Exchange Rates

A necessary condition for market efficiency in the forward exchange
market is that the difference between the spot and forward exchange rate is
equal to the current risk premium plus a white noise error. When the spot
and forward exchange rates are integrated processes, and the risk premium
is stationary, this condition corresponds to the hypothesis that the spot
and forward exchange rate are cointegrated with a known cointegrating
vector of (1,-1). Moreover, since the unit root tests allow for innovation
sequences which are in the ARMA class, we do not need to identify the risk
premium in order to carry out the test. Thus the theory of cointegration
provides a robust test for a necessary condition for market efficiency
which does not require indentification of the risk premium.

We shall consider this hypothesis for six US dollar exchange
rates: Canada, Germany, Switzerland, France, Japan, and the United Kingdom.
In particular, we are particularily interested in determining whether the
spot and forward rates can be modelled individually as integrated processes

and whether the difference between the spot and forward exchange rates are
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stationary. The data are monthly, spanning the flexible exchange rate

period (January 2, 1976 to January 2, 1985).
(2) Purchasing Power Parity

According to the absolute version of purchasing power parity, the
dollar value of goods produced abroad and the dollar value of goods
produced domestically should be equal in equilibrium, In stochastic
versions of the standard model, this requirement would correspond to the
statement that there should only be stationary fluctuations around the
equation Pt - StP: , which relates the level of domestic prices (Pt) to
foreign prices (P:) and the spot exchange rate. Moreover, when Pt' St
and P: are integrated variables, purchasing power parity is equivalent
to the statement that log St’ log P: and log Pt form a cointegrated
system with a known cointegrating vector of (1,-1,-1). 1In other words, if
purchasing power parity holds, the logarithm of the real exchange rate
should be a stationary variable.

The FPPP hypothesis will be tested for five countries: Canada, France,

Italy, the United Kingdom, and West Germany. The data are gquarterly,

sparning the 1973(2) - 1986(4) period.
(3) The Real Monetary Equation
If prices, the money supply and real income are integrated processes,

then the real monetary equation implies that these variables should form a

cointegrated system. In particular, we require that the velocity of
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circulation displays only stationary fluctuations. Note that the real
monetary equation is simply an example of a broader class of models which
derive from equilibrium conditions implicit in steady state growth models.
We shall test the hypothesis that velocity is a stationary variable
for four alternative definitions of the money supply: M1, M2, M3, and
ML (Liquid Assests). The data are quarterly, and span the 1959(1) -

1987(3) period.

Table & presents the results of applying the new statistics to Models

~

(1) - (3). The table contains the computed values of Sp(a), Gp(u, ﬁp)

and r2 for a representative value of p (the order of the time
polynomial) .

The following conclusions may be drawn from the computed values of
Sp(a), and Gp(a, ﬂp):

(a) The spot and forward exchange rates of Germany, Switzerland,
France, Japan ané the UK are integrated processes. The null hypothesis of
a unit root in the level of these series cannot be rejected at the 5% level
of significance using p = 4. This finding is not affected by including
higher order polynomials in the fitted regression.

In contrast, the spot and forward exchange rates of Canada appear to
be stationary. The null hypothesis of a unit root in these series may be
rejected at the 5% level of significance using Gk(;' Ba) and at the 10%
level of significance using Sa(;). We may therefore model the spot and
forward exchange rates of Canada as a stationary process around a

fourth-order polynomial trend. It is interesting to note that this finding

depends on the order of the time polynomial which is included In the fitted
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regression. For example, when p = 3, 53(a) = -2.9240 and G3(a, ;3) -
£.5581, both of which are smaller than the 5% critical value. This result
emphasizes the importance of including the fourth order polynomial term in
the fitted regression. It also highlights the importance of adequately
modelling the deterministic part of the time series when testing for a unit
root. Interestingly, Corbae and Ouliaris (1987) find, using the
Phillips-Perron (1988) wunit root tests where p = 1, that the Canadian
exchange rate is an integrated process. The results presented in Table 4
suggest that this may be due to the omission of higher order polynomial
terms.

{b) The difference between the spot and forward exchange rates, or
the implied risk premium, is stationary in the case of Canada, Germany,
Switzerland, and France. We may reject the unit root hypothesis at the 5%
level of significance using Sp(;) and Gp(;’ ;p) for p = 2. It also
holds for p = 0, and p = 1. The Canadian result is to be expected, since
the spot and forward exchange rates are themselves stationary processes.

The results for Japan and the United Kingdom are not very favorable to
the hypothesis that the implied risk premium is stationary. For these
countries, one can reject the null hypothesis of no cointegration between
the spot and forward exchange rate only at the 15% level of significance
using p = 2.

(c) The results for the real exchange rate data do not yield any
evidence in favor of purchasing power parity. We cannot reject the null
hypothesis of a unit root in the real exchange rate data for any of the
countries represented in the data. Moreover, the results are not affected

by including higher order polynomials in the fitted regression. These
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findings are consistent with those reported in Corbae and Ouliaris (1987,
which are based on the same tests with p set to zero.

(d) The money supply data does not provide any support for the real
monetary equation. There 1s no evidence to suggest that velocity is a
stationary variable. Moreover, this finding does not depend on the
definition of the money supply, the value of p, and is consistent with the

results reported in Phillips and Culiaris (1988) using principal components

methods .

~

Turning to the computed values of rz , the upper bounds for the true
value of p2 ere all larger than 0.10, irrespective of the value of p
used. Thus if we employ the 0.10 decision rule for the upper bound we
would conclude that all the series in the data set possess a unit root - a
result which is obviously in conflict with that suggested by the Sp(;)
and GP(;, Bp) statistics. Given that these tests are formal statistical

procedures, the results for the bounds test raises doubts about the

usefulness of the general approach.

~

The 1 procedure is best interpreted as a diagnostic tool rather
than a formal statistical test. It should be evaluated with this
qualification in mind. The empirical results suggest that the bounds

C2

procedure is quite good at detecting the presence of a unit root. The «r

A A~
procedure is clearly in agreement with the Sp(a) and Gp(a, ﬂp)
statistics when these tests imply that a series possesses a unit root,

since the corressponding point estimates for the upper bound are all very

large. In contrast, the upper bound estimates for the series which Sp(a)

IS

and Gp(a, ﬂp) imply are stationary around a deterministic trend are

uniformily less than 1.0. Thus there is some indication that a stationary
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series yields consistently smaller wvalues for the upper bounds than a
nonstationary series.

The above results suggest that the 0.10 cut eff point in the ;2
bounds procedure is too conservative for practical applications. A léw cut
off point ensures that the probability of a type 1 error will be small for
al] series except those which are nearly stationary. However, in the
absence of a formal statistical procedure which allows for the null
hypothesis to be p2 = 0, it is obviously difficult to set an upper bound
for p2 which is not too conservative, Nevertheless, it is encouraging to
find that the point estimates for the upper bound are quite large for those

series where there is 1little evidence in favor of the stationarity

hypothesis.
5. Conclusion

This paper has developed & number of procedures for detecting a unit
root in 2 time series model. Unlike existing procedures for testing the
unit roet hypothesis, which take the null hypothesis to be the difference
stationary model with/without drift but with ho trend, the tests allow
explicitly for polynomial trends and drift in the data generation process,
Our aim was to develop tests which are invariant to the true values of the
drift and trend parameters. Two classes of procedures were developed. The
first class extended the Wald type tests of Phillips (1987) and Phillips
and Perron (1988) to account explicitly for line;r trend and drift in the
maintained hypothesis. The second class extended the univariate bounds

procedure for detecting no cointegration ( or a unit root in univariate
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time series models ) to very general (possibily) nonlinear trend/cycle
models. These models incorporate the linear trend model as a special case.

The new procedures were illustrated using a number of interesting
models in the applied cointegration literature. The results confirmed the
jimportance of carefully modelling the deterministic component of a time
series when testing for a unit root. We were able to show that some of the
series can be modelled as stationary processes around a polynomial trend,

in contrast to previous findings.



Appendix 1: Proofs

26

Proof of Theorem 2.1 The following results are needed in order to prove

*
Theorem 2.1. Define Ye = ZIEJ and

A -1 *
LGRS [

A

where w2 is a consistent estimate of the long run variance of lyt].

we have Wn -EL—> W and

*
2Znyt2 )] S wZIiUZ

(A1) n 1

using the results in Phillips (1987).

Now let fi(r) - r'  and fni(r) - [Lﬂzl]i for r € [0,1)].

n
f . —>1f, wuniformly. Hence,
ni i
l1.n ~(2i+1)/2 i) * _ 1.n t i -1/2 %
(AZ) = El [n vy, nZl(n) n Y.

1 T
N wnfofnikn * op(l)

9

> wfifiw

Then

Then
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Also,

1onf -(2i+1)/2 4)[ -(23+1)/2 3] _ lgn i L 1
(A3 nzl[n t ][n t ] SI) £y3 > fofifj

Define g . (r) = n |[AZEL*ML _ [InEllE] gor r e [0,1). It follows
ni n

n
that Bay —— %;fi uniformly. We therefore have
n _-(2i+1)/2 i e o /20 tld
(a4} I, n t§, n (D7,
-1/2 1/2 nl t.i _ t-1.i] t-1
- =g, B[& - EHY s

e - e

g

> w[W(l) jl( ot )w] - w Iifidw.

Finally, we shall make use of the following result which is proved in

Phillips (198E):

1 57 * q UZII

(A5) T v, 6. > o WaW + 2, A -

ST

(v - )

To prove part (a) of the theorem, we write

where
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and

T:' - | n-1/2‘ n'3/2t, . n-(2k+1)/2 tk }
Part (a) is immediate from (Al) - (A3}, (A5) and the continuous mapping
theorem.

It is easy to prove part (b) since

o l[nop P 1-1/2[n p
tp(A) - [21 yt-lyt-l] [21 yt-lft]

e M »

To prove part (c), we use Lemma Al in Park and Phillips (1986) and write

A2 ~ ~
o _ 1l |enp P -llan p 2 l |0 2f-1|on 2
Tﬁyp(ﬁ' 6p) Tf[zlyt-lyt-l} [Elyt_lft x| E, Lyn.€e
A 9] W W
where
- P n _pp-1, n _p-1p-1,]-1 p-1
. t [Zl t Ty ] [El e T Te

and rE-l is defined as above. The result follows from (A2) - (&%), and
part (a) of the theorem.
Theorem 2.2 may be proved in a similar manner. The proof is therefore

onitted.
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Appendix 2: Critical Values

This appendix contains the critical values for the Kp(a), Sp(a).

and Gp(a, ﬁp) statistics for p = 2, 3, 4, 5. The critical values are
given in Table 1. They were estimated using Monte-Carlc techniques. The
limiting distributions were tabulated using 500 observations and 25000
replications. The fundamental innovations were drawn from a standard
normal random number generator.

The critical values reported in Table 1 may be used for models with a
smaller number of observations. In preliminary runs, simulations were

conducted with 50, 100 and 200 observations without much impact on the

critical values.

Table 1

~ -~ ~

Critical Val for K , S and G .
ues fo p(a) p(u) p(a ﬂp)

Size K2(°) Sz(a) Gz(a, ﬁ2)
20.0 -19.854870 3.239486 11.339620
7.5 -20.657720 3.305651 11.775810
15.0 -21.549160 3.378969 12.284770
12.5 -22.671780 3.466916 12.842630
10.0 -23.890100 3.560110 13.493570
7.5 «25.443810 3.670237 14.362610
5.0 -27.477620 3.82788B6 15.606460
2.5 -31.167340 4.089778 17.592230
1.0 -36,045680 4.376567 19.954010




Size K3(n) 83(a) G3(c. B.)
20.0 -24.728810 3.590699 13.829130
17.5 -25.621250 3.661849 14.307780
15.0 -26.689450 3.735801 14.884850
12.5 -27.834770 3.821583 15.521640
10.0 -29.281110 3.922786 16.234650
7.5 -30.976720 4,045293 17.224380
5.0 -33.452020 4.206791 18.595130
2.5 -37.316560 4,646673 20.529310
1.0 -41.646470 4.739825 23.409930
Size K&(n) 'Sk(c) Gk(a, ﬂa)
20.0 -29,498510 3.918707 16.283230
17.5 -30.491740 3.987659 16.825820
15.0 -31.665810 4.062522 17.439930
12.5 -33.055400 4.152921 18.128020
10.0 -34.532940 4.252258 18.928760
7.5 -36.504790 4.367366 19.940770
5.0 -38.715880 4.512972 21.305270
2.5 -42.764600 4. 758404 23.591940
1.0 -48 285360 5.063203 26.649970
Size Ks(u) Ss(a) GS{Q, ﬁs)
20.0 -34,223020 4.215988 18.727650
17.5 -35.334720 4.286277 19.330270
15.0 -36.562040 4,367253 19.9753%0
12.5 -38.002490 4.,453981 20.742790
10.0 -39.596630 4.552657 21.594930
7.5 -41,.582%40 4,662922 22.642760
5.0 <44 064410 4.824760 24.132100
2.5 -48 524830 5.059557 26.533940
1.0 -54.623880 5.389089 29.997240

30
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Appendix 3: Monte-Carlo Evidence.

This appendix presents the results of a simple Monte-Carlo experiment
designed to assess the power of the new statistics. In what follows we

assume that the data generation process for {Et}: is:
€, =%, + $¥._,, ¥=NODL

That is, the data peneration process for (Et] is Ma(l) with a moving
average parameter ¢. The fundamental innovations, ¥, are normally
distributed with mean zero and unit variance.

In what follows, we shall restrict our attention to the case p = 2.
The size and power of the statistics may be assessed by varying the true
parameters of the data generation process. Since the statistics are
invariant to the true parameter values, size distortion ( if any ) may be
evaluated by letting a = 1 in the data generation function and varying
the values of ¢, 50 and 51. To assess power, we need to consider a <
1, for arbitrary values of ¢, ﬁo_ and ﬁl.

Table 2 containe the results of the Monte-Carlo experiment. It
tabulates the number of rejections of the mnull hypothesis for
0.0 = ﬂl < (.05, a < 1.0 expressed as a percentage of the number of
iterations. The simulations were generated using 250 observations and 2500
iterations. The simulations indicate that tests are very powerful in
detecting linear trend stationarity. The power of the three tests for a <

1 is 100%, irrespective of the choice of wvalues for Bl. ﬂo or ¢.
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Moreover, since the rejection rates for ¢ > 0.0 and a = 1 are close to
5¢ , the nominal size of the test, we can deduce that the tests do not
possess any material size distortion for positive wvalues of the moving
average parameter, This 1is not the case for negative values of the
MA(1l) parameter, The empirical size of the test grows substantially as ¢
—_ -1.00. From a practical standpoint, some size distortion for
negative ¢ 1is not surprising in finite samples since the data generation
process approaches stationarity as ¢ —> -1.00,. (The interested
reader 1is referred to Phillips and Perron (1988) for an analytical
assessment of this issue using asymptotic expansions).

Overall, we conclude that the simulations suggest that the new
procedures are useful tools for discriminating between the difference

stationary and trend stationary specification.
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Table 2
Rejections at the 95% Level

Innovations follow an MA(l) process: ft - it + ‘*t-l

True ﬂl { maintained trend coefficient )

Sz(;)

Postive MA parameter

0.01 0.02 0.03
7.40 7.00 7.40
5.95 5.05 5.60
5.05 4.20 4.85
4.15 3.70 4.10
3.70 3.45 3.80
3.45 3.35 3.60

Negative MA parameter

16,80 10.15 10.30
18.30 16.10 16.95
36.15 27.05 28.75
48.35 47.80 46 .60
73.30 72.90 74.30

0.04

W w B P

10.
16.
28,
49,
73.

.75
.60
.80
.15
.90
.60

45
90
75
30
50
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.05
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a= 1.00, and
¢ = 0.00 6.02 6.35
= 0.10 4,85 5.75
é=- 0.20 4.40 4.75
¢~ 0.30 4.05 4.45
¢ - 0.40 3.65 4,35
¢~ 0.50 3.60 4.10
a= 1.00, and
¢ = -0.10 9.70 10.50
¢ = -0.20 15.15% 16.95
é = -0,30 26.10 28.45
é =~ -0.40 45,35 47.30
¢ - -0.50 68.25 68.15
Power: Sz(n), Gz(a, ﬁz)
0.0 < ¢ < 0.5
0.00 -+0.01
100.0C

100.00

L]

-~

Gz(a. ﬂz)

Postive MA parameter

W w PP

Negative

15.
26.
45,
67.

a < 1.00, and

.13
.35
.60
.20
.90
.55

.40
.75
.00
.50
.25
.15

&P~y

MA parameter

.80
50
00
95
60

-+0.02

100,00

10.05
15.95
27.60
45.50
68.30

-+0.03

W PPy

.90
.60
.60
.15
.90
.70

.75
15.
27.
48,
68.

90
20
00
50

-+0.04

100.00
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-+0.05
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Table 3

Percentiles for p2 under the Null and the Altermative

99.00% 97.50% 95.00% 92.50% 90.00% 87.50% 85.00%
Alternative hypothesis of Statiomarity
0.2250 0.2026 0.1863 0.1751 0.1670 0.1608 0.155¢
Rull hypothesis of a Unit Root
0.8989 0.8416 0.7920 0.7618 0.7378 0.7185 0.7014
Average
0.5618 0.5221 0.4891 0.4684 0.4524 0.4396 0.4285

Notes: (a)

These values were obtained by averaging the lower and upper

percentiles of the empirical distribution of r2 under the null
hypothesis of a unit root and the alternative hypothesis of
staticnarity respectively. The data generation processes were
drawn from an ARMA(1,1) process with randomly selected coefficients.
The empirical distributions were simulated using 2500 iterations and
250 observations, Fifty data generation processes were drawn at
random.
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Resgults for Models (1) - (3)
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. " " f2 ~2 "2
Series P Sp(a) Gp(a,ﬁp) rL rU
1. Spot Exchange
Rate
- Canadian § 4 -4 . 6406 22.3890 0.5262 0.1364 0.9160
- Deutsche Mark 4 -2.8141 8.2826 0.6119 0.1586 1.0652
- Swiss Franc 4 -3.0333 9.4625 0.8765 0.2272 1.5259
- French Franc 4 -2.7834 12,2638 0.5859 0.1518 1.0199
- Japanese Yen 4 -3.1699 10.1147 1.3141 0.3406 2.287¢6
- UK pound 4 -2.7493 11.9862 0.8018 0.2078 1.3958
2, Forward Rate
- Canadian § 4 -4.7252 22.6782 0.4150 0.1075 0.7224
- Deutsche Mark 4 -3.1526 10.2546 0.6857 0.1777 1.1436
- Swiss Franc 4 -3.3083 11.1881 0.8918 0.2311 1,5525
- French Franc 4 -2.9697 11.6177 0.5772 0.1496 1.0049
- Japanese Yen 4 -3.2066 10.2988 1.3532 0.3507 2.3556
- UK pound 4 -3.1738 13,8568 0.7499 0.1943 1.3055
3. Risk premium
- Canadian § 2 -4.3334 19,0590 0.1842 0.0477 0.3207
- Deutsche Mark 2 -3.9186 15.6565 0.3291 0.0853 0.5730
- Swiss Franc 2 -4.1356 17.1039 0.4021 0.1042 0.7000
- French Franc 2 -4.3782 19.2336 0.4016 0.1041 0.6991
- Japanese Yen 2 -3.6850 13,5803 0.4611 0.1219 0.8125
- UK pound 2 -3.5058 12.5471 0.3980 0.1031 0.6829
4. Real Exc. Rate
- Canadian/USA 2 -2.3318 6.2390 1.1964 0.3101 2.0828
- France/USA 2 -1.0546 2.64047 2.2337 0.5789 3.8885
- Italy/USAa 2 -0.9441 2.2236 2.2262 0.5770 3.8755%
- UK/UsA 2 -1.1451 3.2189 2.4569 0.6368 4.2770
- West Ger/USA 2 -1.3366 3.6827 2.6262 0.6806 4.5717
5. Velocity
- Mi 4 -0.4670 12.7186 0.8014 0.2077 1.3951
- M2 4 -3.0827 10.1963 1.4662 0.3800 2.5524
- M3 4 -2.9562 9.0206 | 1.2585 0.3262 2.1908
- Liquid Assets 4 -2.9410 8.7984 0.6688 0.1733 1.1643
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Notes to Table 4

1. Data:

(a) Spot and Forward exchange Rates, measured in logarithms,
January 2, 1976 to January 2, 1985. Number of observations = 458

(b) Real exchange rate, measured in logarithms, July 1973 to
December 1986. Source, CITIBANK databank, December 1987.
(c) Velocity, measured in logarithms, March 1959 to December 1986

2  See Table 1 for the critical values of the statistics.

1. Some of the series were passed through an AR(3) filter in order to equalize
the periodogram ordinates around frequency zero. These series are tagged
by "f" in the table. The periodogram itself was estimated using the

Daniell estimator with k = 7.
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