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0. ABSTRACT

This paper studies the asymptotic properties of instrumental variable
(IV) estimates of multivariate cointegrating regressions. The framework
of study is based on earlier work by Phillips and Durlauf (1986) and Park
and Phillips (1988, 1989). In particular, the results in these papers are
extended to allow for IV regressions that accommodate deterministic and
stochastic regressors as well as quite general deterministic processes in
the data generating mechanism. It is found that IV regressions are con-
sistent even when the instruments are stochastically independent of the
regressors. This phenomenon, which contrasts with traditional theory for
stationary time series, is a beneficial artifact of spurious regression
theory whereby stochastic trends in the instruments ensure their relevance
asymptotically. Problems of inference are also addressed and some promis-
ing new theoretical results are reported. These involve a class of Wald
tests which are modified by semiparametric corrections for serial correla-
tion and for endogeneity. The resultinpg test statistics which we term
fully modified Wald tests have limiting x2 distributions, thereby remov-
ing the obstacles to inference in cointegrated systems that were presented
by the nuisance parameter dependencies in earlier work, Interestingly, IV
methods themselves are insufficient to achieve this end and an endogeneity
correction is still generally required, again in contrast to traditional
theory. Our results therefore provide strong support for the conclusion
reached by Hendry (1986) that there is no free lunch in estimating cointe-
grated systems.

Some simulation results are reported which seek to explore the sampl-
ing behavior of our suggested procedures. These simulations compare our
fully modified (semiparametric) methods with the parametric error correc-
tion methodology that has been extensively used in recent empirical
research and with conventional least squares regression. Both the fully
modified and error correction methods work well in finite samples and the
sampling performance of each procedure confirms the relevance of asymptot-
ic distribution theory, as distinct from superconsistency results, in

discriminating between different statistical methods.



1. INTRODUCTION

Economic time series are widely believed to possess certain non-
classical properties which invalidate the routine application of many
standard statistical procedures. The first of these is the joint depen-
dence of most aggregate time series. In dealing with this complication
econometricians produced the body of statistical theory that is now known
as simultaneous equations and invelves methods such as instrumental vari-
ables (IV) and full information maximum likelihood (FIML).

The second non-classical property is nonstationarity. Until recently
non#tationarity has been dealt with in practice largely by trend elimina-
tion through prefiltering and more often than not it has simply been
ignored in theoretical developments. The last few years have seen major
research efforts to alleviate these shortcomings. Problems of estimation
and inference in regression models with autoregressive unit roots have
been examined in some detail. In such models a complete theory of regres-
sion is well within reach. The approach developed in earlier work
(Phillips (1986a, 1987) and Phillips and Durlauf (1986)) has proved
especially fruitful. It is used in two recent papers by Park and Phillips
(1988, 1989) to construct a general asymptotic framework for multivariate
regressions with integrated processes of different orders allowing for
drifts, trends and cointegration. Related work has been done on the sub-
ject by other researchers, notably Stock (1987) and Sims, Stock and Watson
(1987).

The present paper follows the framework of Park and Phillips (1988,

1989). Our primary objective is to extend the results in these papers to



allow for IV regressions. In doing so, we allow for deterministic as well
as stochastic instruments. We also permit quite general deterministic
processes in the data generating mechanism. It is found that the Park-
Phillips results extend quite readily to the new models and estimators.
However, some results stand out as being of particular interest.

First, we discover that an IV cointegrating regression leads to con-
sistent estimates even when the instruments are stochastically independent
of the regressors. This phenomenon may strike some as surprising since
with stationary time series stochastically independent instrumental vari-
ables clearly fail to satisfy the asymptotic relevance condition for
consistency. However, for integrated regressors the individual stochastic
trends of a set of instruments are sufficient to ensure that the relevance
condition holds even when the instruments are independent. This outcome
is, of course, an artifact of spurious regression theory—see Phillips
(1986a) for details. Indeed, the very correlation that gives rise to
spurious regression also ensures the validity of the relevance condition
for independent instruments in IV regressions.

Second, problems of inference in IV regressions are studied with some
promising theoretical results. Earlier work has shown up the importance
of second order asymptotic bias effects in least squares cointegrating re-
gressions (see the asymptotic theory in Phillips and Durlauf (1986), Stock
(1987) and the simulation findings in Banerjee et al. (1986)). Given the
original objective of IV regression in the context of simultaneous equa-
tions it is of special interest to determine the extent to which suitable
instruments can help to solve this problem in the present context. Our

analysis shows that instruments are not themselves sufficient to eliminate



the bias effects asymptotically when there is endogeneity in the regres-
sors. Instead, we suggest an alternative semiparametric correction which
does lead to asymptotically median unbiased estimators. The correction
may be employed in OLS or IV regressions. The modified estimators form
the basis of what we call fully modified Wald tests. These are Wald sta-
tistics for testing general linear hypotheses about the coefficients in a
cointegrating regression. Their asymptotic distributions are x2 and
traditional methods of inference are therefore applicable provided the
correct modifications to conventional Wald tests are used. These results
provide a major extension of the Park-Phillips analysis and help to solve
the inference problem in cointegrating regressions.

The new results mentioned above provide an alternative to the optimal
inference procedures considered recently in Phillips (1988b). The later
are based on full maximum likelihood estimation (MLE) of the cointegrated
system and require complete specification and estimation of the system,
typically but not exclusively in error correction mechanism format. Such
full MLE procedures are parametric in nature. The procedures in the pres-
ent paper rely on semiparametric corrections. They are of the type that
were developed originally in Phillips (1987) for unit root tests. In the
present IV multivariate setting they are more invelved and require two
levels of correction: one serial correlation correction as in Phillips
(1987); and a second long run endogeneity correction.

The paper is organized as follows. Section 2 outlines the models and
discusses some background theory. Section 3 describes the estimators that
are studied and develops an asymptotic theory for the estimated coeffi-

cients in the case of both deterministic and stochastic instruments. Sec-



tion &4 considers Wald tests of linear hypotheses about the coefficients
and gives a general asymptotic theory. Block tests are also studied and
particular attention is given to characterizing the parameter dependencies
in the limit distributions. Section 5 develops some new statistics called
fully modified Wald tests which are asymptotically distributed x2 cri-
teria. Section 6 reviews some experimental evidence with these new
procedures and reports the results of a simulation study that compares our
fully modified semiparametric methods with the error correction model
(ECM) methodology that is now popular in empirical research. This section
is inspired by the recent analytical investigation in Phillips (1988c) of
the methodology prescriptions outlined in Hendry and Richard (1982, 1983)
for empirical time series research. Some conclusions and suggestions for
further work are given in Section 7.

Our notation follows that of earlier papers in this sequence. We use
the symbol " = " to signify weak convergence, the symbol " = " to signify
equality in distribution and the inequality " > 0 " to signify positive
definite when applied to matrices. Stochastic processes such as the
Brownian motion W(r) on [0,1] are frequently written as W to achieve
notational economy. Similarly, we write integrals with respect to Lebesgue
measure such as IéW(s)ds more simply as féw . Vector Brownian motion
with covariance matrix @ is written " BM(0) ." We use [A| to repre-
sent the Euclidean norm t:r(A'.A)l/2 of the matrix A , O(n) to denote
the orthogonal group of order n and I(l) and I1(0) to signify time series
that are integrated of order one and zero, respectively. Finally, all
limits given in the paper are as the sample size T -+ = unless otherwise

stated.



2. MODELS AND BACKGROUND THEORY

We shall be working with an n-dimensional time series {yt}; parti-

tioned as

1 Yo = Qg Yopr Yag) + Bmnp ¥ My +ng, My ED,

n n n

1 2 3

and generated by the system

(2) Yip = A¥pp + Ty * YU,
(3) 8Yy¢ = Yot
(4) BY3e = Y3¢ -

The initialization of this system is at t = 0 and Yo may be any random

variable. The innovation vector u is taken to be

- L ' '
e = (9er Yppr U3¢
strictly stationary and ergodic with zero mean, finite covariance matrix
Z > 0 and continuous spectral density matrix fuu(A) with O = wauu(O).
Unless otherwise stated we shall suppose that 0 > 0 . We further assume

that the partial sum process constructed from u, satisfies the multivar-

iate invariance principle
(5) T-1/22£Tr]uj = B(r) =BM@) , 0<r=<1,

where [ ] denotes "integer part." We decompose the "long run" covari-

ance matrix O as follows:

=X + A+ A



where
{++]
- ! - ’ .
z E(uouo) . A Z]_lE(gouk) ;
and we define

A=+ A .

Explicit conditions under which (5) holds are discussed in detall in earl-

ier work—see Phillips (1988a) for references and a review. We partition

B, ., T, A and A conformably with u, - Thus, in the case of i
we write
G B 93
G =8y By O3
| B33 O3y g3

The vector k in (2) is a subvector of

1t
(6) ké = (kit’ két) ;omo=my + m, , m, = n,
s

which is a deterministic function of time. In the most common applica-
tions klt will consist of a constant, a time trend or a simple polynom-
ial trend. In such cases estimates of the matrix A in (2) that are

discussed in this paper are invariant to the replacement of (3) and (4) by

the alternative generating mechanisms

{(3") Ay2t =.Ak, +u



(4") byy, = Madk, +u

1t 3t

In some cases it is convenient to work with a triangular array

T a0
{{ytT}t-l}T-l in place of Ve This allows us the additional flexibil
ity of using deterministic functions, th , which are also indexed by
the sample size T . It is then possible to accommodate such determinis-

tic functions as the sinusoidal trends

P |34

(t isin(Ajt/T) ot icos(Ajt/T) s i=1, ..., I3 =1, ..., J)

Given some such vector th we assume the existence of a diagonal matrix

of weights 8T > 0 satisfying "éT" + 0 and a vector of functions k( )

for which

(7) lim sup sup s5up "6 - k(r)“ = 0
Toe  (t-1)/Tsr<t/T T

and
1

(8) Jokkr >0 .

We partition §, conformably with k as &, = diag(é When we

T T 11 627

need only work with single indexed deterministic functions like kt ,  we
shall drop the additional subscript but continue to assume that (7) and
(8) hold. We shall not overburden the notation when we do use th by
insisting also on triangular array notation for Ye and u_ . The exten-
sions to the underlying theory that are needed to accommodate this gener-
alization are rather obvious. For example, we may conveniently replace

(5) by a functional CLT for triangular arrays.
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3. ESTIMATION THEORY

Oour framework and approach is related closely to that of earlier work
on OLS procedures. Two IV estimators in a regression on (2) will be con-

sidered. The first uses the vector
[ ' ’
(9 2l = (Y300 K1)

as instruments; and the second uses kt (or th as the case may be) as
in (6). We shall call these, in brief, the IVZ and IVK estimators,

respectively. If we rewrite (2) as

where

T''= (A,H) s xt - [th. klt] 1
standard regression theory supplies the following formulae

A —1
T [T, o)
T = (E17),%) [zlxtxt

o

-1
. NN
T = (Zyy¢2) [zlxtxt]

" T

where here and elsewhere in the paper we use " " ", ~ "and " ="
affixes on the parameter matrices (including the submatrices of B ) to

signify OLS, IVZ and IVK estimators, respectively. In the formulae above
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bk

£ [yét, kit]

y = lu* u"
¥t [y2t’ kit)

: -1
~ T, (T,
Yo~ (B1Y2¢%¢) F'lztzt] “t

= T T -1
Yor = (Bp¥acke) [zlktkt] ke -

As in Park and Phillips (1988), the limit distributions of these

estimators may be expressed rather conveniently in terms of the functional

1., T N
(10) f(B,M,E) = (jodnm + E) IOMM

where B is a vector Brownian motion and M 1is a stochastic process ob-
tained from B by a suitable Hilbert projection. Since the coefficient

estimates will converge at different rates, we define the weight matrix

1 T1/2
n
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THEOREM 3.1:
1/2 7

1/2 = - ,

1/2 = -
(e) T (F-F)WT = f(Bl. Jz, 0

where

B; (0, ki(f)]

[

[N
~
=
L —
1

5,00, 1)’

L
)
~
H
St
1

f_ [
LBé(r), kl(r)]

[
(%]
—~
a3
~
]

-1
- 1, 1
B,(r) = [jB,2Z Lf zz' ] Z(r)

— 1 -1
B,(r) = fo [jokk'] k(r)

1 1 -1
F%y = foBﬁBﬁ'[foB§B§']

2(r) = (B0, Ky (o))

-1
B*(r) = B(r) - fOBkl[fok k'] k, (1)

REMARKS (a): All three estimators of [I' are consistent. The result is
of special interest in the case of the IVZ estimator A of the submatrix
A . This is because consistency holds irrespective of the properties of

the instruments For example, may comprise a set of spurious

Tap - V3¢

instruments which are statistically independent of the regressors Yo in
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(2). At first this appears surprising because in the case of stationary
time series such instruments would fail the usual relevance condition

asymptotically. But here, since both processes are I(1), we find

-2.T ,
b T 213"21:3’31: = IOB B

and, moreover, since n, z n, we have

(c1) rank([B,B) = m, a.s.

as shown in Lemma A3 and the remark following Lemma A3 in the Appendix.
Result (11) arises in spurious regression theory—see Phillips (1986a)—
and is a manifestation of the fact that two independent I(l) processes
appear correlated even in the limit because they both carry stochastic
trends. In effect, the consistency of the IVZ estimator A is a bene-
ficial artifact of spurious regression theory. It tells us that we can
generate a stochastic trend from purely random numbers and still obtain
consistent estimates by using the resulting I(1) series as instruments for
Yor in (2).

Note that the orthogonality condition for consistency also holds

because

-2.T
(C2) T Elulty3t ; 0,

again irrespective of the properties of I(l) process V3¢

A is consistent for similar reasons. Since the regressor Yor has
a stochastic trend we find that

=3/25T. L

(12) T 75y, Kebor IOB k,
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and by Lemma A3 in the Appendix

(C3) rank(jcl)azké) -n s.

y) a.

so that the relevance condition for the instruments k2 is again satis-
fied. Thus, any deterministic regressor retains an asymptotic correlation

with a stochastic trend upon appropriate standardization.

REMARK (b): The processes that appear in the limit distributions given in
Theorem 3.1 bear a close relationship in form to the time series that are
used in the construction of the estimates. In particular, the Euclidean
projections that appear in the formulae for F and T are replaced by
Hilbert projections in the limit distributions. This relationship between
finite sample regression formulae and limit theory has been noted and
discussed in earlier work—see Phillips (1988a) for details. Here the
projections are superposed because of the multiple regressor nature of (2)

n
and the use of instruments. Thus EZ is the projection in L2[0,1) 2 of

B2 onto the subspace spanned by the elements of In ®2 . B
2
turn, is the projection in L2[0,1)n of B onto the subspace spanned by

, in

the elements of In ® k' . These limit processes are the function space
analogues of the time series §2t and §t , Tespectively. Our under-
standing of the limit distributions in Theorem 3.1 is enhanced by noting

these similarities.
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REMARK (c}: The expressions & and F% A that appear in the limit

21 23731
functionals in (a) and (b) of Theorem 3.1 are second order bias effects,
We use the terminology "second order" because the consistency of the esti-
mates Is, of course, unaffected. However, the bias does influence the
centering of the limit distribution and is normally indicative of the
presence of bias in finite samples which can be substantial. The bias
effect arises because of the contemporaneous and serial dependence of the
regressor and its instruments ( Yor and Yae } in the case of the
estimators A and A . Note that since deterministic instruments k2t
are used for Yor in A and these are asymptotically uncorrelated with
the regressor error Ui, in (2) no second order bias effect is present in
this case.

As in Park and Phillips (1988) these bias effects may be consistently
estimated and eliminated. In what follows we use ; and A to denote
consistent estimates of A constructed from OLS and IVZ regression resid-

uals respectively, (The construction of such estimators is discussed in

Park and Phillips.) Next we define the "bias-corrected" estimators

A " "1
T
b = [zlylt t T(AZI’ 0)_[21xcxc]

= 1T
m = [ Y1c?e T(ﬁsl' 0)_[letzt] Z)z.x t)[ 1%* t]

The resulting limit distributions no longer involve the non-centralities.

THEOREM 3.2:
(@) T %(rx - D)Wy = £(B,, J,, 0)
1/2 = -
) TVA(Ex - ryug = £(B), T, 0)
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REMARK (d): Results for OLS that are equivalent to part (a) of Theorem
3.1 are given by Park and Phillips (1988, Theorem 3.3). The present re-
sult applies for rather general deterministic regressors and this is re-
flected in the definition of the Gaussian process B* . The Park-Phillips
results were obtained explicitly for the case of a drift and time trend in

(2).

REMARK (e): Theorems 3.1 and 3.2 hold as stated when Yor and Y, are
generated by (3) and (4). If the alternative generating mechanisms (3')
and (4') apply then ﬁ , I and T are still consistent estimators but
they have different limit distributions. The differences are caused by
the fact that under (3'} and (4') Yor and Y3 have elements which are
in general dominated by the deterministic rather than the stochastic

A

trends. In the case of the coefficient estimates A, A and A the

deterministic trends are eliminated by projection because klt is also
present in (2). However, the effect of the deterministic trends on Yoe

and y3t must be allowed for in the estimation of N . From (3‘) we have

Yo = Sp¢ + Mplkyy = kyg) + ¥y

where

Define the weight matrix W% by

I /2 g 712

2
vE - :
0 §1p
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so that

-1/2
y S,, + o (1)
W*bl 2t | _ 2t P

ke Sitf1e
Standard manipulations reveal that Theorems 3.1 and 3.2 now hold as stated

if Wx replaces W

T T

4. HYPOTHESIS TESTING

4.1. General Theory

The limit theory presented in Theorems 3.1 and 3.2 is nonstandard.
The distributions belong to the limiting Gaussian functional (LGF) family
explored in Phillips (1989). In general, these limit distributions cause
problems for statistical inference through their dependence on many nui-
sance parameters and their nonstandard natufe. In particular, traditional
methods of inference which rely on t- and F-ratios and Wald tests are not
useful without modification in this context. Earlier work, commencing
with Phillips’ (1987) unit root tests, showed how to perform such modifi-
cations. A fairly general theory in the linear model was formulated in
Park and Phillips (1988). This section shows how to extend the theory in
Park-Phillips to the present IV set up. As far as possible we shall use
the Park-Phillips notation to facilitate reference to that work.

We start by considering the following linear hypotheses about the

coefficient matrix T = [A,I] in (2):

H. : Rvec ' =71



18

where R (g X ny x (n2 + ml)) has rank g . To the extent that the
diagonal elements of WT differ in orders of magnitude (associated with
differing asymptotic behavior in the elements of klt and Yor ), We are
effectively restricted in asymptotic tests to tests of separable restric-
tions, i.e. about A alone, or individual columns of @I . Thus Iif we

rewrite HO as

H. : R vec(I'') = r

0

where R = R+K and K is the communtation matrix of order nl(n2 + ml) .
then R’ must be block diagonal across columns of I’ which are of dif-

ferent orders. For example, if the model is

-Ay2t+1rt+u

Y1t 1t

then the hypothesis

may be mounted, but the hypothesis

HB A4+ =1 (n2 -my - 1)

cannot be tested using our asymptotic theory.

Hy is frequently tested in traditional regression models by the fol-

lowing Wald statistics
(13) GR(E,V) - (Rvee I - r)'[R(V® g)R']—l(R vec I' - r)

In these formulae we employ the generic notation
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=
1
=
=1
<d|

or

where
A -1 -1 -1
T . = T -, v T~ =,
M= [Slxtxt] , M [Elxtxt] , M [Elxtxt]
and
{15) V= le or 911 where 911 = 011, 011 or 011 .

A

Here X and 9

11 are consistent estimators of Ell and 011 , respec-

11

A~
tively. When V = 211 the G statistics are formulated in the conven-

tional manner for linear regression. As shown in Park and Phillips (1988)
the formulation with V = 911 is more useful in regressions with I(1)
processes since it is the long run covariance matrix 011 upon which the
asymptotic distributions depend. Consistent estimation of 011 is dis-
cussed elsewhere—see Phillips and Durlauf (1986), Newey and West (1987)

A

and Andrews (1988). We use the notation 011 . 911 and 011 in (15) to

signify estimates of G that are based on OLS, IVZ and IVK residuals

11
from (2), respectively.
To simplify the presentation of the asymptotic theory for the

G-statistics we use the following functional from Park and Phillips

(1988):

-1
gp (B,M,E) = vec(f(B,M,E))’R'{R[ﬂll ® [J‘ém{']'l]k'} R vec(f(B,M,E))

The non-centrality parameters which appear in the limit representations
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for T and T (see Theorem 3.1) also arise in G-statistics constructed
from these estimates, just as in the theorems of Park and Phillips. These
distributions are less useful for inference than those based on estimators
which have less nuisance parameter dependencies. We examine, therefore,
the "bias-corrected” estimators TI'* and TI* rather than I and T .

The limit theory is as follows:
THECREM 4 . 1: Under HO

M~ A

(a) GR(F*. 911) = gp(B,, J2. 0’

(b) Gp(F*, ) = go(By, J,, 0)

REMARK (a): Theorem 4.1 extends the Park-Phillips theory in several ways.
First, it allows for the presence of general deterministic regressors
rather than a constant and a time trend. Second, it provides for general
restrictions on the II coefficients rather than simple block tests.
Finally, it accommodates general instrumental variable regressions as well

as least squares.

REMARK (b): Theorem 4.1 examines tests of linear hypotheses, but the
results easily extend to general non-linear hypotheses of the form
h(PO) = 0 provided h(+) 1is continuously differentiable and
ah(ro)/avec I' satisfies the block diagonality and rank conditions dis-

cussed above for R .

REMARK (c): The limit distributions given in Theorem 4.1 depend in gen-
eral on the matrices R and I . This parameter dependency is analogous

to that which one typically finds in the finite sample distributions of
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multivariate tests—see Phillips (1986b) for an analysis of this problem
with respect to Wald tests in the conventional multivariate linear model.
However, here the problem persists asymptotically with the result that the
statistics cannot be used to mount tests that are asymptotically similar,
i.e. have the same size asymptotically for all values of the nulsance par-
ameters. Some reductions in the parameter dependencies can be achieved in

certain special cases as we shall now illustrate.

4,2. Block Tests

We will constrain the analysis to the special case R = diag(In 0,
2

so that the hypotheses tested are of the form HO P A= Ao . In this case

the limit distributions given in Theorem 4.1 have a manageable and intui-

tively interesting parameterization. Working from part (a) of Theorem 4.1

we find

(16) gp(By,J,,0) = g (By,B%,0) [fodn an*']{ [fo ] }(fodn ®B%

Observe that

fé var{dB

1@ 55|55(s), s <r} =

® ByBY' = 0., © féBgB*'

1
Jof1a 11 3

so that this random matrix is a natural metric for the quadratic form

(16).

To simplify (16) we transform coordinates as follows. Define the

Processes

= BM(V)



and

1. (el
B =B - J.0521‘1['&)“1

where

I

~1/2. -1/2
22 9191

Vo=
Q

Using Lemma 3.1 of Phillips (1989) we may write

By =008

where

_1/2
Pry = Byofy = B

and W, = BM(In ) is independent of Ez .

1 1
that 012 has full rank nl

transform

- H'B, =W

B, 2 = ¥y

By - H'By - Vg

where

H = [Hl' HZ] € O(nz)
and
/2

, )
Hy = 0y, (8],85))

Then

1/2
+ (I ~ P12) W

-1
kl] k)

-1/2

Q -1/2

11 %12%29

I

1

1. 172

0. .0..0,.0

12722721711

_1/2
= 85:P19

=12
I

Next we assume that

say.

22

n, = ny, .

(both assumptions will be relaxed later) and
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1/2

(17) a8, = 9, HH'B, = [P}

128 = 8By L

g -

The quadratic form (16) now reduces. as follows:
1 1 e P!
ey Bp O - (ot o myoit e (foemy]  pigane 3p

- oy @ W5'>{1 ° [13%']_1}0 22, © WP

and

B, = (I- P12)1/2W1 + [Piéz 01w, .
Thus
(18) g, (B), Bf, 0) = h(B;, W§)
where

h(B M) = (fédB' ® N(M)')(fédB ® N(M))
and

1 Y12
N(M) = [IOMM'] M.

A final rotation of W by diag(Q,Q,I) , where Q is the orthogonal
matrix of latent vectors of Pl2 , diagonalizes Pl2 , leaving only the
latent roots.
In the above we have assumed that 921 {or equivalently 021 ) has
full column rank. If rank (221) -=p<n we simply rotate coordinates
n

in R 1 so that the leading submatrixz of 921 has full column rank. The

result stated above in (18) still applies but now P12 is of course a
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1t

singular matrix. The rotation in R 1 transforms P12 to the block dia-

gonal form

P,. = diag(P,,, 0) ,

12 =12’

where is p x p . The distributional result (18) is the same whether

P12
we use this reduction or simply (18) as stated. Analogous problems arise
when n; > n, since P12 is then always singular.

These considerations now lead us to the following formal statement.
The proofs for IVZ and IVK are similar to those for OLS. The interested
reader is referred to our working paper (Phillips and Hansen (1988)) for

details of the proofs and the necessary constructions.

THECREM 4.2: Under H

0 L]
{(a) OLS; gI(Bl' BE, 0) = h(Wl, WE) where if n, 2z n; ,
~ _ 1/2 1/2
Wl (I Al2) Wl + [A12 , 0}W2
Al2 = diag{latent roots of P12 - 912921}
and if n2 < N
. a1 -a % o aL/?
21 21
Wl - Wl + W2
0 1 0

A,, = diag{latent roots of P

21 21 = 92182



(b) 1IVZ:

(c) IVK:

In (a),

23831 ~
. 1 1 -1
W - (jowg'wg')[fowgwg'] vy

g (B, By, 0) = h(W,, W§)

-1
u 1 ' 1 '
s - Jouges (foepy) g

1 1 -1
ki = ky - fokzkl[foklki] ky -
(b) and (c¢),

W(r) - [wi, W, Wé]' = BM(I)
n

n n

1 2 3

-1
Wh(x) = W(r) - [oWk [fok k'] k, (r)

2 -1/2
9ab aa abnb ’

L}

25
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COROLLARY 4.3
(a) If 931 =0 and 932 = 0 then g = h(Bl, Bi) = h(Wl, W%) where

Wl and ﬁ% are defined in parts (a) and (b) of Theorem 4.2.

(by If 931 = 0 and if Yor and Y3, 4re cointegrated then

B =X
I n1n2

REMARK (a): Result (a) of Theorem 4.2 generalizes Lemma 5.6 in Park and

Phillips (1988). Observe that when P12 = 0 we have

gp(By. B%; 0) = (fodw' ® N! )(jodw ® N,)

= Xn.n

172

where N2 - N(Ug) since

Le N
fodw ® N, = N(O, T ® foNzNz) = N(O, 1n1n2)

On the other hand when Pl2 = I we have
g (B,, Bx; 0) = (jldw' e N’)(fldw ® N,)
11 T2 0721 2’0 21 2

where W21 = [Inl O]W2 . Since N2 - N(WZ) the limit distribution in
this case is a form of unit root distribution. In general, the limit
distribution may be regarded as depending on a matrix linear combination
of a "unit root" type of stochastic integral and an independent multivari-

ate normal variate. The weights in this linear cembination are delivered

by the matrix coefficient of determination P12 .
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REMARK (b): Theorem 4.2 shows that the asymptotic dependence on nuisance
parameters is more complicated for IVZ based statistics than for those
based on OLS. In general, we find that the limit distribution depends on
the long run covariance structure of the innovation processes that drive
the structural equation, the regressors and the instruments. Simplifica-
tions in the dependence occur as this covariance structure itself simpli-

fies. Some leading cases are given in the corollary.

REMARK (c): The condition 0,. = 0 may be interpreted as a second order

31
orthogonality condition for the instruments. Note that the first order
orthogonality condition (C2) discussed earlier ensures the consistency of
the IVZ estimator A . The second order condition 931 = 0 sets the long
run correlation between the equation errors and the instrument errors to

zero. The effect of this second order orthogonality is to reduce param-

eter dependencies in the limit distribution EI . When Q,, =0

32 ’ as 1n

part (a) of Corollary &.3, the instruments are, in effect, long run uncor-
related with the equation errors and the regressor errors. In this case
it is only the stochastic trend in the instrument vector Y3¢e that does
the work of an instrument and the only parameter dependency in the limit
distribution EI that is left is P12 , the long run coefficient of de-
termination between the equation errors and the regressor errors. When
P, = 0 the regressors behave in the long run as if they were exogenous

and we find EI = x2

n.n

172
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REMARK (d}: When Yor and Y4, are cointegrated, the limit Brownian

motions 82 and B3 are related by the equation

~1
32 - 02303383 - GB3 , say.

This may occur when Yae has been chosen to fulfill the classic role of
an instrument in simultaneous equations theory in which a "reduced form"

equation for Yoe would have the form
(37 Yor ™ S¥ap * MpyBkie + Vo » Yy = 1O

in place of (3) or (3'). We observe that in this case the covariance
matrix Q 1is singular.

Corollary 4.3 part (b) gives the special case when 6. 1In

231 7

this case, since 921 = 0 also, we find that Yor and Y5, are in

effect long run exogenous and hence EI = y as given.

oy

REMARK (e}: When ny o= 1 the limit distribution given in Theorem 4.2 has
been tabulated in the preprint of Park and Phillips (1988) for the cases

n, =1, 2, 3 and with the deterministic regressors k,_ =~ 1 ,

2 1t
kit = (1,t) . The tabulations are given for a grid of values of the
scalar coefficient P12 = Py, oOver the interval 0 < Pyp < 1 . Such

tabulations do not seem to be very useful in the general case given here.
They would involve the matrix of coefficients P12 (or rather its latent
roots) in the OLS case and even more involved dependencies in the IV2Z

case. As a result, another approach will be explored in the next section,
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REMARK (f): Hall (1989) has advocated using lagged values of the depen-
dent variable as instruments to construct a univariate unit root test in
models with finite order MA errors.. This is covered by our own framework
and is equivalent to setting n, =n, - 1, Yoe = Yie-1 * Y3e = Yie—k

for some k > £ (when the errors are MA(£)). This implies Bl - 32 - §2

= B, and Theorem 4.2(b) then yields

3

g; = h(B;, BY) = h(W, W¥)

where W = BM(l) . The funtional h(W, W¥) gives the asymptotic distri-
bution of the squared value of the Dickey-Fuller t-statistic allowing for
general deterministic trends in the regression (see Ouliaris, Park and
Phillips (1989)).

5. ASYMPTOTIC x° CRITERIA

The source of the nuisance parameter dependencies in the limit dis-
tributions studied in the previous two sections is the dependence between
the limit Brownian motions B1 and B2 . This dependence may, in turn,

be interpreted as a form of conventional simultaneous equations bias aris-

ing from the endogeneity of the regressors in (2). However, as we

Yot
have seen from the analysis of the IVZ statistics, traditional methods of
dealing with this bias, like instrumental variables, do not eliminate it,
The only case so far studied in which the dependency disappears occurs
when the regressor Yor is exogenous--a case where simultanecus methods

are hardly necessary.

This problem has recently been studied in Phillips (1988b). It is
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shown there that the dependencies in the limit distributions are removed

when full maximum likelihood methods of estimation are employed.

In the

present context this requires joint estimation of (2) and (3) and this

includes full estimation of the generating mechanism of the innovations.

In the present section we develop a nonparametric procedure that is asymp-

totically equivalent to full maximum likelihood.

A

Let I be any consistent estimator of I and define:

+

Yit

+
1t

ot
Tt

Note that

which has long run covariance matrix

+ ]
b = Jopep ob T

where

Y]

and where we use the subscript " b"

= u

11-2

1

1c ~ $ofoYs,

1

Y1e = 819804

- {1

A

11 ~ 812t

-1

019890879 -

-1
I 0,0,
0 1

1

81142
0

2921

Y1t

= bbbt
u2 t

22

to signify that subscripts "1"

and L] 2 "
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are taken together.

Now define the following estimators of I' based on ?It :

A b’ -1
+ T+ _,
T = Gy |B

—+ Tat =, [<T= =,
T' = Gy %) B1Xe*e

and the modified (bias corrected) estimator

A A A~ -1
+3% T+ , T
L= B¢ — TU b2 0)][21“cxé]

where

A A

~_1
Jip = 11 58,0l

In the case of the IVZ estimator we need also to consider the effects

of the instrument innovations u

3t Accordingly we define

++ -1
Yie " We T ﬂlanaauat
++ -1
Y1e = Y1t ~ %1aMaatat
At A |
ylt = y1t - n1anaa6yat :
We have
++ —1
Y1t _ I -nla aa ult - Ju
0 1 t

u
at Yat
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which has long run covariance matrix

0
ot = Ja3' - 1i~a

aa
with

-1
81102 = 81~ 0.8 -

In these formulae we use the subscript ™ a" to signify elements corres-

ponding to "2" and "3" jointly. We further define

-1
+ att=, - !
(Zyexe) [zxtxt]

ok -1 T -1

r [Ely1t c T(Jl 3c 0)][Elztzt] (2 z X )[letxt]
where

~ ~ Al

ch = 1, - la aa1

and " ¢ " signifies "1" and " a " taken together.
From these new estimators of T we construct the following

G-statistics using the formulae as given in (13) and (14):

A

S -+ = %~
Gp = Gp(T" » 81,5 » G, Gy 50+ Gy By )

We call these new G-statistics fully modified Wald tests. We have:

THEOREM 5.1: Under H0 . ER = X
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REMARK (a): Theorem 5.1 shows that the fully modified Wald tests behave
as asymptotic x2 ‘eriteria. This greatly facilitates statistical testing
and eliminates the difficulties of nuisance parameter dependencies that

were discussed in earlier sections.

REMARE (b): The results in Theorem 5.1 are equivalent to those of Wald
tests based on full maximum likelihood estimation of (2) and (3). The
latter, which is discussed in detail in Phillips (1988b), requires formu-
lation and full estimation of the error generating mechanism for u,

The present tests avoid this by the use of a nonparametric consistent
estimate of the long run covariance matrix I . This estimate is used to

purge the error u in the regression equation (2) of its dependence on

1t

the error processes that drive the regressors and the instruments

Yot

Yag -

REMARK {c): Note that when u, is iid N{(0,0) we have

-1
(19) ECuyfuye) = Bypf,5u,

and

+

Yig T ¢

= N(O, QO

-1
1c ~ 9128922Y%¢ 11.2

Fa)

The estimator A' is "bias corrected” {asymptotically) and takes into
account (19). 1In fact (19) is eliminated asymptotically by using the

nonparametric estimate

.Y A—l
B 90908Y 5, -
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Maximum likelihood methods, on the other hand, explicitly take (19) into

account since the likelihood conditional on u involves (19) directly.

2t
As discussed in Phillips (1988b) this is equivalent in the present simple

case to including Ay,. as a regressor in (2).

6. EXPERIMENTAL EVIDENCE

6.1. IV, Bias-Corrected and Fully Modified Estimators: A Review of

Existing Evidence

We have published separately (see Hansen and Phillips (1989)) a study
of the small sample properties of instrumental variable, Park-Phillips
bias corrected,and our fully modified estimators via Monte Carlo
simulation methods. The Data Generating Process (DGP) used in that study
was adopted from the study of Banerjee et al. (1986). We tried six
different estimation methods:

[1] oOLs,

[2] Cointegrated instruments,

[3] Spurious I(l) instruments,

(4] Spuriocus deterministic instruments,

[5] Park-Phillips bias corrected, and

[6] Fully modified.

Sample size was fixed at 100 and we varied three parameters, control-
ling long-run endogeneity, serial correlation, and the signal to noise
ratio.

Comparing the uncorrectgd estimates [1]-[4], OLS performed best (in
terms of minimum mean squared errors) for high signal to noise ratio,

while the IV techniques performed better for low signal to noise ratios.
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The bias-corrected least squares technique dominates these estimators, but
was in turn itself dominated by the fully modified procedure.

The paper cited above also compared the distributions of estimated
t-statistics for OLS, Park-Phillips, and fully modified procedures. The
difference is dramatic: while the variance of the Park-Phillips
t-statistics ranged from 8 to 11, the variance of the fully modified
t-statistic ranged from 2 to 3.

These results support the asymptotic theory developed in Sections 3
and 4 that IV techniques, even with "spurious" instruments, can be used in
I(1l) cointegrating regressions, yet the problems caused by endogeneity
persist in IV estimation. On the other hand, the fully modified statis-
tics developed in Section 5 were found to perform rather well in these

simulations and seem promising as candidates for empirical research,

6.2. Fully Modified Semi-parametric Estimation and Hendry Error-
Correction Parametric Estimation
(i) Asymptotics
In a recent paper, Phillips (1988c) has compared our fully modified
estimation procedure to the single equation error correction methodology
advocated by David Hendry in empirical time series research. For an expo-
sition of the latter we refer the reader to two articles by Hendry and
Richard (1982, 1983). 1In this methodology, the starting point is a gener-

al unrestricted single equation regression of the form

- A' A, A
(20) ylt a y2t+ ¥'x, + LARE

Te relate this format to our own model we set n1 =1,

possible trend components (klt) in the fitted regression for ease of

m = 0 and ignore
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exposition. Elements of x, are chosen parsimoniously to render the
residual ﬁt effectively orthogonal to lagged variables. We take a
stylized version of this method in which (20) has the explicit form

- At P 2 P 2
(21) Yie = 8 * 210 1en ¥ Zpe0" 20226 * ¥e -

If p-+o and p/T~+ 0 as T -+« then (21) is an empirical attempt
to asymptotically fit the following regression with distributed lags of
infinite order

L] @

(22) y1t = a'y2t vz TimAylt—m + X 72mﬁy2t-m + e o
m=1 =)

where e is orthogonal to the past history of {Aylt_l) and {Ay2t}

1f

Y1t Yie ~ 2 Yo
uts -
Ye 8¢
is generated by
[-+]
u = oe, + = akzt—k - + B(L)ct_l
el
with
g ol
. 11 21 A
E(et) =0, E(atct) - 5 . E(ctss) 0, t»s
921 22

then "o is given by



37

-1
- — ’
Te T f1e T 921%22%2¢

and the process Et - (nt, uét)' has long-run covariance matrix

1142 91149997 (1)’

Q

2xf €(0) -
711.2521 (1) 22

§

where

6., (L) 8,,(L)
sy - | 1 12

f1(L) 8,10

The partial sum process constructed from Et then has the following

asymptotic behavior:

B (r)
T‘l/zziTrlgt S| - BM(2rf

(0
Bz(r) Ee

We now see that least squares on (21) gives rise to the limit theory

1 13
T(4-a) = [fonzBi] foBden

(23)
-1
1 . 1 1 s |
- [foBsz] [foszdw * J.032‘"32“22"21(1)]"11-2
where
W(r) = BM{o Tt .~ 4 (1)'0“19 (1)

11+2 21 22°21

and is independent of B2 . In the special case for which 921(1) = 0

(23) is a mixture normal and & is asymptotically median unbiased. In
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general, however, (23) has a "unit root” distributional component that
imports both bias and inefficiency into the limit distribution.

Ag shown in Phillips (1988c), of the two single-equation strategies
for the estimation of the colntegrating vector only the semi-parametric
fully modified estimator given in Section 5 achieves the asymptotic effi-
ciency of systems maximum likelihood. The parametric Hendry approach comes
very close to attaining the same asymptotic behavior but will, in general,
be both biased and inefficient (i.e. not equivalent to full maximum like-
lihood on the system). Asymptotic theory may be misleading in small
samples, One may expect, for instance, that a parametric procedure may be
superior in spite of its asymptotic bias because of poor finite sample
performance of the semi-parametric procedure. We now turn to Monte Carlo
methods to make an assessment of these issues.

(ii) Finite sample simulations

The data generating process we used was

Yig = @ ¥ T T Uy

Yor = Yoe—1 YU v BT L, T
Y1t
=u = +fe . e = iid N(O,E)
Yor

We set

a=2, ==0, T=2>50
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and allowed 621 and 991 to vary. This example is analyzed in Phillips
(1988c) and is a special case of the general model discussed above. The
asymptotic theory depends critically upon the parameter 921 .

We calculated the distributions of estimates and t-statistics for the
cointegrating parameter obtained by OLS, Hendry and fully modified
methods. The nuisance parameters for the fully modified procedure were
estimated with a Bartlett triangular window of lag length 5, using the OLS

A

1t to calculate 021 and A21 . For the OLS t-statistic we

used the long-run covariance estimate nll to facilitate comparisons.

For the Hendry procedure we included in the regression the covariates

residuals 4

A

(Ath' Ay2t-l' Ayzt_z, Aylt—l’ Aylt—Z) The fact that five covariates
were chosen was designed to coincide with the choice of 5 lags for the
fully modified semi-parametric corrections. (In the latter, the two-sided
nature of the covariance matrix estimates generates eleven parameters.
The triangular window, however, reduces the effective window size to one-
half of eleven, or 5.5.) No attempt was made to alter these choices once
the experiment had been started. This may be somewhat unfair to the Hendry
procedure where judgment on p in (21) is part of empirical practice.

The results are summarized in Tables I and II, and Figures 1 through
4. Table I records the Monte Carlo means and standard deviations of
(d-a) for the ordinary least squares (OLS), Hendry error correction (ECM)
and fully modified (FM) estimators. (All simulations used 30,000 replica-
tions.} In general, OLS is the most biased estimator. Both the ECM and
FM procedures perform well. As predicted, the ECM displays moderate bias
for 46,, - .8, yet is virtually unbiased at §,. = 0 . The fully modi-

21 21

fied procedure shows a small but persistent bias in finite samples and
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seems generally preferable to the ECM methed.

Figures 1 and 2 display estimated probability density functions
(pdf’s) for the estimators for Oy = -.8 ( 021 = .8 in Figure 1 and
321 = 0 in Figure 2.) These densities were estimated using a normal
kernel with a bandwidth of 0.2. Readers can see how the distributions
display thick left tails and are fairly peaked at the mode. In Figure 1

(8 .8) , the FM distribution is better centered than the ECM; the

21 T
reverse applies in Figure 2 (821 = 0) . This reinforces the theoretical
results above. Thus, 321 = 0 1is an important pre-condition for the
Hendry ECM method to work well in large samples. But when this condition
does hold, the parametric nature of the ECM method gives it a natural
advantage over our semi-parametric approach.

In Table II are recorded the means and standard deviations of the
distributions of the t-statistics. FM performs better than ECM in both
bias and standard deviation for 821 = 0 . When 821 = 0 , however, the

ECM t-statistic 1s less biased (for o,, < 0 ) but its variance is still

21
substantially higher. This is due to the fact that the inclusion of a
limited number of lag terms has not fully eliminated serial correlation in
the residuals. The FM procedure, in contrast, achieves a distribution
which roughly approximates a biased standard normal. Figures 3 and 4 dis-
play estimated pdf’s for the t-statistics under 99 = -.8 and 021 - .8
and 0. These estimates used a normal kernel with a bandwidth of 0.4. The
figures show clearly the bias effect in the ECM distribution for

821 > 0, its excessive variance for all parameter values, and the rela-

tively successful performance of the FM t-statistic,

Overall, both the Hendry error correction and the fully modified



41

estimators seem to work quite well, considering that the sample size used
is only 50. This is encouraging support for the use of asymptotic theory
in integrated regressions. Some skepticism about the usefulness of asymp-
totic theory has emerged over the past few years after early simulation
studies (such as Banerjee et al. (1986)) found that the super-consistency
of OLS in cointegrating regressions was misleading in small samples. The
implication of such studies was that asymptotic theory seemed to provide
poor approximations in sample sizes that are typical in economic data.

Our simulations reveal that the reverse is true. Asymptotics are not only
relevant but also seem to provide good discriminatory power among differ-
ing statistical procedures even for samples as small as 30. The key
ingredient in our analysis is a fully developed asymptotic distribution
theory. Super-consistency in itself provides little useful information
about sampling behavior. Now that a limit distribution theory has been
worked out, however, it seems fair to conclude from our simulations that
it provides a reliable general guide to sampling performance, points to
the most influential parameters and helps in selecting estimators and

tests.
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21

21

21

21

= -0.8 :

OLS
ECHM

= —0.4 ;

OLS
ECM

- 0.4 :

OLS
ECM

= 0.8 :

OLS
ECM

0oLSs
ECM

= 0.4 :

21

OLS
ECM

= 0.4 :

OLS
ECM

= 0.8 :

OLS
ECM

TABLE I. M STANDARD DEVIATION) OF 3 -~ a
6,9 = 0.8 By = 0.4
-.137 (.125) ~.090 (.089)
~.062 (.106) ~.021 (.066)
-.025 (.127) -.028 (.079)
-.067 (.081) -.057 (.079)
-.051 (.086) -.030 (.077)
-.042 (.094) -.027 (.081)
~.024 (.040) -.020 (.046)
~.023 (.046) ~.019 (.053)
~.023 (.048) -.012 (.052)
-.015 (.025) -.010 (.028)
-.009 (.024) ~.008 (.030)
~.016 (.028) ~.005 (.030)
TABLE 11, M STANDARD DEVIATION) OF t.s _ o
By = 0.8 By = 0.4
-1.616 (1.268) -1.240 (1.105)
-1.259 (2.040) ~.563 (1.701)
-.388 (1.432) —.449 (1.092)
-1.156 (1.32) -.986 (1.25)
-1.058 (1.69) -.636 (1.57)
-.729 (1.49) ~.516 (1.35)
-.711 (1.19) ~.520 (1.21)
-.664 (1.29) ~.478 (1.34)
-.606 (1.26) -.267 (1.30)
-.575 (.955) -.302 (.979)
-.445 (1.15) ~.339 (1.25)
~.519 (.922) ~.102 (.962)

21
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= 0.0

.055
.003
.025

-.040

.007
.015

.011
.009
.004

.004
.005
015

21

.061)
.041)
.052)

P Rt

.061)
.060)
.063)

P W )

(.050)
.060)
(.060)

~

(.036)
.039)
(.043)

~

.930
.078
.456

.754
.163
.335

.267
.213
.096

.098
.184
418

(1.00)
(1.40)
{.896)

(1.149)
(1.388)
(1.193)

(1.24)
(1.37)
(1.36)

(1.04)
(1.36)
(1.12)
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7. GCONCLUSIONS AND FURTHER WORK

The present paper helps to complete the program of study initiated in
Phillips and Durlauf (1986) and Park and Phillips (1988, 1989). Our
attention has concentrated on problems of statistical inference in multi-
variate linear regressions with integrated processes. By developing a
theory which accommodates quite general IV estimators we have been able to
isolate the sources of nuisance parameter dependencies in the limit dis-
tributions that have persisted in earlier work and have been an obstacle
to the development of operational inferential procedures. These obstacles
are resolved in the present treatment through semiparametric corrections
that lead to a class of fully modified Wald tests. The new statistics
have limiting x2 distributions under the null and therefore greatly
facilitate inference in I(1l) regression models. In effect, the new tests
provide a semiparametric version of the optimal inference procedures
(based on maximum likelihood methods) that have been developed in other
ongoing work-—see Phillips (1988b).

Our methods also provide a partial alternative to the ECM methodology
that is of growing popularity in empirical research and that has been
developed over a number of years in the research of Hendry (1986, 1987).
The ECM methodology is parametric in nature and has proved successful in a
variety of empirical applications. As shown in Phillips (1988c), there is
a close relationship between our semiparametric fully modified methods and
the parametric ECM approach. So close, in fact, that the methods are
asymptotically equivalent in some cases. In other cases (characterized by
feedback among the innovation) our fully modified methods are preferable

in terms of asymptotic behavior. The simulations that we report here in
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Section 6 show that these conclusions from asymptotic theory carry over
remarkably well in finite samples.

Our focus of interest in this paper has been multivariate cointegrat-
ing regressions. IV techniques may be usefully employed in other inte-
grated regressor contexts such as unit root vector autoregressions, tests
for unit roots and tests for cointegration. Some of the ideas and methods
suggested here are also applicable in nonlinear models and in tests of
nonlinear hypotheses. These are topics that the authors currently have

under investigation.
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APPENDIX

As noted in the text, the estimators of A in (2) are invariant to
the replacement of (3) and (4) with the alternative generating mechanisms
{(3') and (4'). Since estimates of O 1in (2) are not invariant to this
replacement we shall take (3) and (4) to be the generating mechanisms
throughout this appendix. The extra generality that applies in the case
of estimates of A may simply be taken for granted.

The following preliminary result will be useful. 1Its proof relies on

simple manipulations of the type given in earlier work—see Phillips and
-1

Durlauf (1986) and Park and Phillips (1987a). Define th = WT X
R =V R, K. =W R and y* =y, - (Zy k! )k, k! ) 'k
e T Y e 0 Fpe T Wp X t = Ve 1Yef 1t/ 151 1 1t -
LEMMA Al
-1/2
T y
-1.T t |12, o, 1oy
(a) T 'z . (T " 7yy, k16.] = joJJ
Tt
-1/2

(by T yTTr] = B*(r)

(©) Xprqey = Jp(0)

(da) xT{Tr] = Jz(r)
(e) ET[Tr} = J,(x)

-1/2. T, , .
() T/ Bk u = jOJ dB] + (A5,, 0)
(@) T Y%5%% - I3 ,dBS + (a3 Fh1, 0)
& 1*Tev1e = Jod2 317330 O

-1/2.T- ,

By T 7 8yxpeuie @ foJ dB;
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where
oy = [B(r)', k(n)'] , Jp(x) = [Bz(r)'. kl(r)'}
LEMMA A2

féJJ' >0 a.s.

PROQF: Assume the result does not hold and let a » 0 be a vector for
which fé(a'.])2 = 0 . Partition a as a' = (ai, aé) conformably with

J . Then
1, ,..2 1, L2
fo(a DI fo(alB +ak)” .

If a

1" 0 we may write

fé(a’J)2 = aiﬂalfé(w+c)2

where W = BM(1) and c = aék/(aiﬂal)l/2 . The result stated follows

because 1 >0 and PW+c = 0) = 0 . 1If ay = 0 we have

[t n? = [i@g’

and the result follows in view of assumption (8) about k . O
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PROOF OF THEOREM 3.1: This is a simple application of the results in
Lemmas Al, A2 and the continuous mapping theorem (CMT). Thus, in the case
of (b) we have

1/2

_1/2 _ -1
(F-T) - 19X (T 2lx'rtx'rt]

[IodB Iy + (83 F83, 0)] [fo ]_1

(Al)

by (d) and (g) of Lemma Al, joint convergence and an application of the

CMT . 0

REMARK: Results such as (Al) above rely om the fact that certain random

matrices are positive definite almost surely (a.s.). Here we have

-1
1~ i 1 ' 1 ' 1 '
(A2) Jod 35 = J 53,2 [fozz ] PSAN
In view of Lemma A2 all submatrices of féJJ' are positive definite
(a.s.) and in particular

(A3) fézz' >0 .

The rank of the matrix (A2) therefore depends solely on the rank of
f J Z' since the order condition for IVZ, viz. n, =n, , is assumed to

hold--see (1). Now since

1 fOB B, J'OB ks

JokBs  Sokyl

and Iéklki > 0 , the rank of (A2) depends on the rank of féB§B§' . The
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required result follows from the next lemma,

LEMMA A3
1

(a4) rank(fosgng') -n, a.s.
1

(A5) rank(f Bikx') = n, a.s.

PROOF: Note that B* is itself a full rank Gaussian process. Indeed

B*(r) = N(0O, fiv(r))

where
-1
v(r) =t - 2(fo(r A 8)k (s)ds)[fok k'] ky ()
it K ﬂkk'qﬁ k 'ﬂkk'_k ds.d
+lgdolsy A sk (sd kK] k(MK (DT gk kg Ky (s5)ds,ds,
We may write (cf. Phillips (1989) Lemma 3.1)

) 1/2,1/2
Bi(r) = 03,0 3335(r) () Ty, 4W)

vhere W2 = BM(In ) and is independent of B3 and
2
1

- 1
- - 0! { [~BxBx'
022.3 022 032033032 . Now if a particular realization of 032B3

has deficient row rank then there exists a nonzero vector h such that

2 /2
(46) ég 3f WpBy vl = b0 33IOB§B§

;Q?Bh and a = E/(E'E)l/z . Then a'W, = BM(1l) and

Let h = ] 2
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172 . N(0,G)P(G} ,

(a7) a fow BY'v o0

6 = [ifh(sy A 5,)BECs DBECs,) w5 Pu(s) M Pas s,

where
-1

b - (Toeeey) By

so that (A6) can hold only for a set of zero probability since (A7) has a
continuous density.

To prove (A5) we note that
1 1
*kxk! = '
JoBakg" = JoByks
For any non-zero vector h ,

1, , 1
Joh'B,ks = hra, b uky

where W = BM(1) . The set of realizations for which féﬂkﬁ = 0 has zero

probability unless kf = 0 which is prevented by (8). |

REMARK: In an entirely analogous fashion we have

rank(féBzBé) - n2 a.s.

rank(fészé) =n a.s.

2
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PROOF OF THEOREM 3.2: Again, this is a simple application of the results

in Lemma Al, joint convergence and the CMT. For example, in the case of

{b) we have
1/2 = 1/2.T -1
T (D - D)Wy = [T Z1Y1e%Te (°31' 0)][T B zp,2 Tt]
-1
[T z thth][ letht]
1_ 31
- ooz ) s (n7)
-1
(fodB ){IOJ J']
where
—1/2 ' ' )
Pre T [T Y3pr *1c8 lT]
and the result follows immediately. G

PROOF_OF THEOREM 4.1: Since R' is block diagonal as discussed in the

text and WT is diagonal we have

(W In J(R vece T — 1) = (WT ® In JR vec(I' - T)

1 1

- (W, ® 1_)R' vec(L - I)’
1

- &Y vec[(T - D)W’

- R vec[(E - P)WT]

Therefore under HO
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Gp(T, 0,,) = (Rvec T - 1) [R(B;; @ g)R']'l(R vec T - r)

- vec[(E—F)WT]'R'(W;1 I )R, e g)R']'l(

1
-1/2 . rpt ' -1
= vec|[T (r F)WT] R [R(Q11 ® TWTEWT)R ] 'R
Next,
-1 -1
-1 -1_T =1 1 .
(A8) THtvy = [T W ZyEe Xy ] N [foiziz]
where
-xX_, X_, X

The stated results follow directly from Theorem 3.2

PROCF OF THEOREM 5.1: We demonstrate the argument
G (§+* 5 y = x2 The other results follow in
R T 112 g’

Observe that

1/2,04% =1/2. + _, Lo,
T (r - I‘)WT [T Zultht - (Jle2b

-1
-1/2 ; -1 ;
= Ao (T 7 Buy Xy [T sztht]

where

Alyg = Oppflyy = fyoflyy = 0 (1) .

Therefore

-1
WT ® Inl)vec[(g-r)WT]

vec{T‘l/z(g-r)wT]

, (A.8) and the CMT.

by proving

a similar way.

-1 -1
. 0)][T Zthxit]

O
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- DWW, = J 7125 - (Al b d - 1
T™ “1b UpeXre ~ (Agpr O BpeFre)  * op(D

= JlbIOdeJ'[IOJZJé] N

Now note that

Thus

Jle

Next under

Also

J168p

B,

+
~ Jpplyp = BM@,)

b and B2 are independent Brownian motions and

= N(O, 01

]'”2 ° 1)

SN [foJ I 112

H we have

0

Tl/z(wT ®1 )R veec I = 1) = R vec[T2(r** - Tyw_]
n1 T

1 U
= Rf [Jldeb ® [fonJé] J2]

A A -1
! 1 (] r
TR(O,,,, ® W MWOR' = R[nu_2 ® [joJ2J2] ]R

We deduce that

(A9)

A+*
GR(F

~

o g P e 11 4k
) 911.2) - [R vece T - r] {#(911.2 ® M)R } (Rveecl' =-1r)

-1 -1y 17t
= {deBinb [fonJé] }R'{R[nll.z [foJ J'] ]R'}
{foJlb b [foJ J']—1"2} '
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Observe that conditional on F2 - a(BZ(r),. 0<r=<1) we have

R{J‘(l)Jldeb e [féJzJé]_lJz}le - N[O, {3[011.2 e [féJZJé ]‘I]R'}]

so that conditional on F2 (A9) is xz . Since this distribution is in-

dependent of F, the result holds unconditionally and we deduce that

2
G (;+* 6 )y = 2 s required m]
R ] 11.2 xg 1 a qu -
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