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ABSTRACT

This paper develops a semiparametric method for estimating the
nonrandom part V{ ) of a random utility function U(v,w) = V(v) + e(w) from
data on discrete choice behavior, Here v and w are, respectively, vectors
of observable and unobservable attributes of an alternative, and e(w) is the
random part of the wutility for that alternative. The method is
semiparametric because it assumes that the distribution of the random parts
is known up to a finite-dimensional parameter &, while not requiring
specification of a parametric form for V( ).

The nonstochastic part v{ ) of the utility function U( ) is
assumed to be Lipschitzian and to possess a set of properties, typically
assumed for utility functions. The estimator of the pair (V,4) is shown to

be strongly consistent.



1. TINTRODUCTION

In theoretical microeconomics, we represent preferences using prefer-
ence orderings that, if they have a utility representation at all, satisfy
only general properties such as monotonicity, concavity and continuity. By
contrast, empirical estimation of preferences normally proceeds by
specifying a parametric functional form with finitely many parameters. In
this paper, we propose a maximum likelihood technique for the semiparametric
estimation of ﬁtility functions that uses only the assumptions derived from
the microeconomic theory of consumer behavior, thereby bridging the gap
between the theoretical and empirical literatures.

The resulting estimator is strongly consistent, as I demonstrate by
adapting Wald's proof of the consistency of the maximum likelihood estimator
in abstract spaces (Wald (1949)). The adaptation substitutes the assumption
that the space of utility functions be compact in the supremum norm for one
of Wald's assumptions and specializes the result to our context. The
required compactness is shown to be an implication of the theoretical
assumptions and an additional Lipschitz condition.

Our analysis focuses on probgbilistic cheice models, of which the logit
nodel is the most familiar example [McFadden (1974, 1976, 1981, 1984)]. 1In

these models, the consumer faces a finite number of alternatives from which

to choose, The utility of each alternative is given by an underlying
nonstochastic subutility function plus wunobservable randomness. The

subutility function depends on a vector of observable attributes of the
alternative. We are assumed to know the distribution of the wvector of
unobservable noise, up to a finite-dimensional parameter vector. Given

1
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sample data on attributes of alternatives and actual choices of individuals,
we want to estimate both the subutility function and the parameter of the
distribution of the random vector.

Instead of assuming that the subutility function belongs to &
particular parametric class, we assume that it 1lies in the class of
functions satisfying one of several sets of restrictionms. The basic
restrictions are that the function is monotonic, concave, and satisfies a
Lipschitz condition. 1 also consider the classes of functions having these
three properties and satisfying one of the following conditions: (a)
homogeneity of degree one, (b) weak separability, or (c¢) additive
separability. The class of functions satisfying each restriction is compact
under the supremum norm, which is what our proof of consistency requires.
OQur estimate of the subutility function converges almost surely uniformly to
the true function.

Although it may seem difficult to maximize the likelihood function over
a general function space, we use methods in the spirit of Afriat (1967a,
1967b, 1972, 1973, 1981), Diewert (1973) and Varian (1982,1983) to reduce
the maximization to a finite dimensional problem for each number of observa-
tiens. (Of course, the dimensionality of the problem Increases with the
number of observations, or else we would not have convergence for all func-
tions in an infinite dimensional space.) For any given value for the
parameter of the distribution of the random terms, the likelihood function
depends at most on the value and subgradient of the subutility function ezt
finitely many points. Following Afriat, the various restrictions on ths
subutility function .at these points can be represented wusing simple

inequality constraints. Therefore, the maximization over a function spzce
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can be reduced to a finite dimensional maximization with linear inequality
constraints.

The estimation methods proposed in Gallant (1981,1982) and Gallant and
Golub (1984) could also be employed to estimate utility functions without
assuming a particular parametric structure for them. These methods consist
of employing Fourier fleiible forms to obtain a characterization of the
function in terms of an infinite wvector of parameters [Gallant (1981)].
Homogeneity and concavity conditions are then imposed on the function to be
estimated by restricting the wvalues of the parameters of the Fourier ap-
proximations [Gallant (1982), Gallant and Golub (1984)]. These methods
apply only to continuously differentiable functions, and have not yet been
developed to impose monotonicity, mnot-linearly homogeneous separable
functions, or cother restrictions our method can encompass.

In probabilistic choice models, estimation of the utility function
proceeds on the assumption that the nonrandom subutility function possesses
a particular parametric structure. Manski (1975,1985), Han (1985a,1985b)
and, in a maximum likelihood context, Cosslett (1983), have developed
estimation methods that relax the distributional assumption on the random
part of the utility function while still maintaining a parametric structure
for the nonrandom part. |

Manski (1975,1985) and Han (1985h) assume the nonrandom part of the
utility function for each alternative to be linear in a finite number of
parameters, The random part of the utility function is assumed to be
distributed with an unknown distribution. Manski and Han develop strongly
consistent estimators for the parameters of the nonrandom subutility. While

Manski’s method is applicable to polychotomous choices, Han's method applies
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only to dichotomous choices. On the other hand, and in contrast to Manski's
estimator, Han's estimator has been shown to be asymptotically normally
distributed.

Cosslett (1983) assumes the nonrandom part of the utility function to
possess some known parametric functional form while the distribution of the
random term of the utility is assumed to be unknown. Cosslett develops &
distribution-free maximum likelihood method that provides a strongly
consistent estimator of both the cumulative distribution function of the
difference of the random parts of any observed pair of alternatives, and the
parameter vector of the nonrandom subutility. Cosslett’'s method applies
only to observations from dichotomous choices.

For classical consumer demand data (prices and quantities of commodi-
ties), Varian (1985) and Epstein and Yatchew (1985) have employed Afriat'c
inequalities to develop a statistical test for the maximization hypothesis
or equivalently, for the existence of a utllity function generating the
demand observations. Their method, however, does not apply to rando:
utility functions; in their models, random terms are implicitly assumed tc
be generated either by measurement or by optimization errors.

Section 2 contains three subsections. éubsection 2.1 specifies ths
model. Subsection 2.2 presents the random variables involved and their dis-
tributions, and subsection 2.3 presents the likelihood function and defines
the maximum likelihood estimator. Section 3 presents the assumptions and
the main result on the consistency of the estimator. Section 4 presents ths

method to compute the estimates. Finally, the Appendix contains Lemmas znd

(=3

proofs.



2. THE MODEL AND THE LIKELIHCOD FUNCTION

2.1. The Model

As usual in random utility models for discrete choices, assume that

there exists a population M of consumers and a set A = {1, ., J} of
alternatives. Each individual i in M must choose a single alternative
from the alternatives set A . The alternatives may be simple, such as tak-

ing the car or the bus to work, or complex, such as a pair including both
house location and a means of commuting. Consumer i's utilicy for

alternative j iIin A 1is assumed to be additively separable into a function

VO : Z -+ R of observable attributes in a subset Z of RE, and a measurable

function e : O ~+ R of unobservable attributes in 1 . Denote by z% the
i
J
the value of e at the unobservable attributes wvector w; of alternative

observable attributes vector of alternative j for individual i and by e
j for individual i . For example, zi may be the time and cost incurred

by individual i if he takes alternative j = 1 (car) to go to work, and

i s

. . i
w; may be the comfort derived from alternative 1. The wvector zj may
include socioeconomic characteristies of individual i, such as his

income.

Each individual 1 in M is assumed to choose one alternative j(i) in

A by maximizing VO( ) + e( ) over the alternatives set ({1, ..., J}.2

. . i i i i . < s
For each i , define s = (sl, RN SJ) as follows: S T 1 if k = j(1)
and si = 0 otherwise <(k =1, ..., J) . Since j(i) depends on the

i . i
observable attributes’ zi, e z; and on the uncbservable attributes @] s
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.y @y, We can write (Sl’ ey sJ) as
i i i i i i, 0
(1) (sl, ey SJ) - ¢(zl, ey By @] e W35 V), el ))
for some function ¥ .
We want to estimate VO , the common nonstochastic utility function,
£ b ti £ st sl and 2 2t for 1-1
rom observations o $)» -+ 55 & zy, ..., 23 fo i A <

2.2. Random Variables and Probabilities

The vector z:L = (z;, ey 23) will be assumed to be a random variable

distributed across the population of consumers with some probability measure

G determined by a density function g : ZJ - R, where 2Z C RE . For

example, if z> is time spent traveling by car, zi will be partially

1
determined by how close 1 1lives to a highway. Similarly, the unobservable
o' - (wi, ey w;) will be assumed to be a random variable distributed with

some probability measure Q characterized by a density function q : QJ -

R, which may depend on some parameter BO € B C RL.

Hence, by (1), (si, c e 53) is a random variable whose probability
measure depends on G and Q(BO) . In particular, the conditional
probability of st given z;, o 23 is given by

Si
2) (s - 5|24 v0, 6% - n‘JLl[PJ?(vO,aO)] ]

where P;(VO,HO) denotes the probability (under Q(HO) } that individusl
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< . : . ' i i i .
i will choose alternative j when 2z = (zl, vy zJ) is the wvector of
individual 1i's observable attributes for alternatives 1, ., J , and
VO is the common non-randoem part of the utility function U( ) of each
individual 1i.

By our maximization assumption, it follows that, if the distribution of

i i, . .
(el,..,eJ) is continuous,
@3 0,07 = prov(v'a]) + ewh > V0D 4 oD, k=1, ..., ¥ o)
0 i 1,140, 1 i 0,1 i : 3
= QDo - 0D [VIED F o)) >V (z) + e(w), k=L, ..., Jikei)).

Since both s* and z° are random variables ( si depends on G and

Q(ﬁo) , and z* depends on G ), the vector (s;, . 53, zi, ce s zj)
is a random vector whose value depends on G and Q(80) . Then
i i i i i i i i, 0
(Sll LS | SJ! zll LA zJ) = x(zll A ] ZJ’ wll A ] le V ( )J e( ))
for some function x. For each i, we will denote this vector by x*. Let

PO denote its probability measure, The joint probability-density f( ) of
P0 with which x~ is distributed can be easily obtained from g(.) and

P( ) since

et v0,0%) = £¢st, 2t v0,69
(4) - g(zt) P(s = s~ | z5; v0,0%)
Si
i3 . i0 .0 %
- II. P(V ,#8
Bz W[5V ,0)]



2.3, Likelihood Function

. 1 n . aa s .
For any n observations x,..., X on n individuals, we will de-

(n) n 0

., X)) . 1If we let V

0
note by x the ordered n-tuple (xl, and §

vary across different functions V in a set W and parameter values ¢ in

7# we will obtain different density functions £(x;V,8) . Ve will
o {(n) : s <q s . 1 n
denote by L(x , V, 8) the joint probability-density of (x", ..., x)
under f(x;V,8) so that L(x(n),v,e) is a "likelihood function."
We will assume that any n observations (xl,..,xn) are independent.4
Hence, for each V and 6

(5) L™, v, 0 =1l £V, 0

In Section 4 we will show how to find a maximum likelihood estimate of

. 6 ,0 . L
the pair (V ,6 ), a function Vn : Z- R and a parameter value Bn e R” that
will maximize the 1likelihood function (5) over a predetermined set of
functions W, and a predetermined parameter space ® . In the next Section
we show that, under quite general conditions, these estimators are strongly
consistent: as n tends to infinity, Vn converges almost surely uniformly

to VO , and 6n converges almost surely to 80.

3. CONSISTENCY

Denote the set {s=(sl, C e S:)lsj e (0,1}, =1, ..., J, EJ = 1]

by & and the set § X ZJ by X. Hence, s €S and x = (s, z) ¢ X . Z
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will be assumed to be a convex and compact subset of RE and, for

normalization purposes, it will be assumed that 0 ¢ Z .,

Measure therdistance d(Vv, V') Tbetween any twe functions V : Z - R
and V' : Z-+R by d(V, V') = sup{|V(z) — V'(z)||z ¢ Z).

Let W be a compact set (with respect to d ) of real-valued,

. . : 0
continuous functions on Z , which contains V. And let 8 be a compact

set (with respect to the Euclidean metric § = H-H,) which contains 80.

Define the metric r : (W x 8) X (W x 8) =+ R+ by
r [ (V,8) , (V',8') ] = d(V,V') + §(8,0').

It is easy to verify that | (WX ®) , r ] 1is a compact metric space.

For each z = (zl""ZJ) € ZJ , we will denote (V(zl), R V(ZJ))
by (Vl, ey VJ) ; and for each x = (s5,2) ¢ § X ZJ , we will denote
the probability of observing s when z is the vector of the attributes of the

alternatives by P(s,z,V,8). Hence,

P(x,V,0) = P(s, z, V(zy), ..., ¥(z;), 6)
= P(S, z, vl’ teey VJ:B)
I %3
Ty [B(sy = z; v,y V5, 0]

We will show the consistency of the maximum likelihood estimator of

(VO,HO) under the above assumptions on Z, (W X ©), and the following

conditions on g(z) and P(x,V,d)
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ASSUMPTION G.1: g( ) is measurable, and its support is Z.
ASSUMPTION G.2: g( ) is uniformly bounded.
ASSUMPTION G.3: For all =z in 2 , g(z) >0 .

ASSUMPTION P.1: For all (s,z) ¢ X, and all (V,8) ¢ (W x &),

P(s,z,V,8) > 0.

ASSUMPTION P.2: For all (s,z) € X P(X,V,B)=P(S,Z,V1,..,VJ,B) is

. J
continuous at all (Vl,..,VJ,B) € (R+ X €).

ASSUMPTION P.3: For all s ¢ § there exist k,k’e¢{l,..,J} such thar

J

for all z e 2, P(s,z,V,BO) - P(s,z,Vl, ...,VJ,HO) is strictly

increasing in Vk and strictly decreasing in Vk"

, 0 = EO, and V ¢ W, either there exists s’

ASSUMPTION P.4: If 6 ¢ ©
7’ ' 0
¢ S such that for all z € , P(s’,z,V,8) > P(s’,z,V,0 ) , or there

* * *
exists s ¢ 8§ such that for all z ¢ ZJ, P(s ,z,V,6) < P(s ,z,V,BO).

The following theorem states that, under the above assumptions, any

sequence {(Vn,ﬂn)} of maximum likelihood estimates of (VO,BO) , wiil

almost surely converge to (VO,BO)
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THEOREM 1: Suppose that

(1.i) Vo : Z~+ R belongs to a compact (with respect to the supremum metric

d) set W of continuous functions V : Z - R , and BO belongs to a
compact (with respect to the Euclidean metric §) set & C RL,

(1.ii) Z is a convex and compact subset of Rf, OeZ,

(1.iii) g( ) satisfies G.1-G.3, and

(1.iv) P(, , ) satisfies P.1 to P.4.

If for each n , (Vn, Bn) e (W x 8) maximize the likelihood of n
independent observations x(n) on the set (W x 8) for n =1, 2, ,
then

. 0 0
PO {llmn_’mr[(vnt 8n)t (Vre )] - 0} = 1

The proof of this theorem is based upon Wald's (1949) theorem on the
strong consistency of maximum likelihood estimators on abstract spaces, We
show in Appendix A that the assumptions (1.i)-(l.iv) imply that our model
satisfies certain properties. These properties are all but one of Wald’'s
assumptions. We then show in Appendix B that those properties and the
compactness (with respect to r) of (W x 6) imply the conclusion of the

theorem. (See Kiefer and Wolfowitz (1959) for a similar theorem.)

We now give two popular examples that satisfy our assumptions P.1 to

P.4.

EXAMPLE 1: The set of alternatives A possesses three elements; and the

random vector (ei,e;,e;) is distributed with a Generalized Extreme Value
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distribution of the férm

1/(1-8) 1/(1-6),(1-6)
+y ) |

i i i :
Pr ((el,ez.e3) = ("1'”2'"3)) = exp [ -{ ¥y t (y2 3

where yl=exp(-q1), yzaexp(-nz), y3-exp(-q3), and 4 ¢ [0,¢] for some { > 0.

McFadden (1978) shows that the choice probabilities

P(sj=llz;Vl,V2,V #) derived from this distribution are

3!

exp(Vl)

P(sl=1|z; v, §) = 1/(1-8)

VISEINEEDR

[exp(vl) + [exp(Vz) + exp(V3)

expv )Y 1D epv /D s expuyt/ 0y

P(s,~l|z; V, §) = . |
’ [exp(Vy) + [exp(Vz)l/(l'E) 17(1-0),(1-6),

+ exp(VS)

1/(1-8) 1/(1-8),-¢,

(1-9)]

[ (exp(v,yt/ 1%
T7(1-9)

exp(V3) + GXP(V3)

L/(1-8),

P(53=1|z; v, 8) =

[exp(Vy) + Texp(V,) + exp(Vy)

Clearly, P(s,z,V,ﬁ) satisfies Assumptions P.1 and P.2. Assumption P.3 is

satisfied because for all z ¢ ZJ and all ¢ ¢ [0,7]

3 P(s;=1]z:V,6) 8 P(s =1|z;V,9)
> 0, <0,
a vy av,
3 P(sy=1{z;V,8) 3 B(s,=1|z;V,6)
‘ <0 <0
3 v ‘ 3V ’

1 2
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8 P(sy=1]z;V,8) 9 P(s5=1]|z;V,9)

< 0, and >0
] V1 a V3

And Assumption P.4 is satisfied because for all z ¢ ZJ and V ¢ W

8 P(slul|z;V,6)
a8

> 0,

EXAMPLE 2: The set of alternatives A possesses J elements; and each e%
( 1 e M j=1,..,J) is distributed, independently of e  (k=j), with the
Gumbel distribution.5

McFadden (19274) shows that then the choice probabilities are

eXP(V(Zj ))

5y exp(V(z))

P(sj—l|z;V,6) = (j=1,..,3)

In this example, P.1 to P.3 are satisfied for any #. And, since only the

s 0 . ..
function V' is estimated, P.4 is irrelevant,

4, ESTIMATION

In this section, we describe various compact sets, W, of continuous
functions for which computation of the corresponding maximum 1likelihood

estimates is feasible. The computation proceeds by solving a linear-inequal-
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ity constrained maximization problem, and by interpolating between the
obtained values.6

We present, in Lemma 1, the constraint set for the case in which ¥
consists of all monotonic, concave functions V : Z + R that possess
uniformly bounded subgradients and for which V(0) = 0. In Lemmas 7, 8 and
9, in Appendix €, we present the corresponding constraints for sets of
functions having these properties and satisfying, in addition, one of the
following conditions: (a) homogeneity of degree one, (b) weak separability,

and (¢) additive separability.

First note that given any set of observations x(n) - (xl, .. ,xn) =
((sl,zl) yee s (sn,zn)) and any parameter f#, the wvalue of L(x(n) , VvV, 8)
depends only on V(zb, v e V(z}), N V(Z!{), e V(z?) . If Vv and V'

are two functions in W such that for all i =1, ., N and &ll

5=1,...,3, V(zJ?) - V'(zj.‘), then Lx'™, v, 8) = Lex™, vr, 8) . Hence,

finding a function Vn in W and a parameter value €n in &, given x(n)

is equivalent to the following procedure. First find an nxJ-dimensionel
* * * * *
vector V¥ = (V:]L_ ,...,V} ,...,VI.; ,...,V? } and a parameter value § In © that
maximize
i
(n) n i, .J i i i..%3
(6) L, ¥, 0) = T _gg(z) T (P(s) = z"; vy, .., VIL6))
over the set of all wvectoers V= (V.‘i, . V?) for which there exists a

funetion V in W such that VE:'L = V(z-:_.]L) (g =1, G i=1, ..., n)
and the set of all parameter wvalues § in 8 . Second, interpolate between
the v-alues of V* to obtain a function Vn in W,

Since, as the next lemma  shows, the set of all wvectors

v = (V%, v V?), for which there exist a function V in W such thac
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v
]

. - > ') ] * - )
finite set of linear inequalities, the search for V is computationally

- V(z%) (J =1, ..., J; i =1, ..., n) , can be characterized by a

feasible,

LEMMA 1: Let B ¢ RE be some known vector. Let W be the set of all
monotonic and concave7 funetions V: Z—~+ R satisfying (i) V{(0) = 0 , and
(ii) for each v ¢ Z, there exists a subgradient8 T(v) € Rf such that
T(v) < B

Let D = {zl, vees zM) be any given finite subset of the interior of Z.

Then the set of all vectors Z = (VI’ ., V.} for which there exists a

M

funetion V in W with Vi - V(zi) (i =1, ..., M) 1is the set of all
vectors VvV = (VI’ ey VM) for which there exists a vector
G S IR S e RN S RS

m=40, 1, ..., M) such that

(7) 0 = 1 <38,

and

(8) Vi- V- TJ(zi -z) =0,

for all i, j=0,1, ..., M, and for zo = 0 and VO = ()

The proof of this Lemma is given in Appendix C. 1In the proof it is

shown that the function V : Z -+ R defined by

(9) vw)-mM%+T%v—%ﬂj-m1,””ML

for all v ¢ Z, where Vj and TJ , 3 =0,1, ..., M satisfy (7) and (8),
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is a function that belongs to W . Moreover, for all zj in D, V(zj) = Vj
and T° is in the subdifferential of V.9
Hence, given any set of observations x(n) , Wwe can obtain a maximur
*
likelihood estimate (Vn,ﬂn) of (VO,BO) , by finding first vectors ¢
* % * 1% *
V& = (Vl*, . Vo y, and T = (T0 ,T1 s e ey ™ Y that maximize
~ 1 J ~ 1 J
Si
{n) _ i J i_ i i i b}
LG, ¥, 0) = T _g8(z) T, [B(s; 1z vy, . Yy, 6]
over 8, and the set of all vectors V = (Vi, ey V?) € RFJ and
T = (TO, Tl, ey TnJ) € RK(nJ+l) satisfying (7) and (8); and then,

through interpolation, obtaining a function Vn that belongs to W by

defining for all v e 2

%* * i i
Vn(v) - min { To v, min {V; + T3* (v — 23) | j=1,..,n; j=1,..,3 )} 1}

In fact, we can obtain a monotonic and concave function Vn defined c=

all of Rf, by defining for all v ¢ RE

* i i '
V_(v) = min ( TV, min {v;* + T;* -z | =1, m; 4=l 3 )

As noted before, we can obtain maximum 1likelihood estimators for
. 0 , . o .
functions V belonging to various compact sets, for which the constraint

sets are presented in Lemmas 7-9, in Appendix C. The proofs of these Lemmzs
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follow arguments that are very similar to those given in the proof of Lemma

1l; therefore, their proof is omitted.

We finally note that, since g( ) does not depend on either VO or 90

the maximum 1likelihood estimate of (VO,BO) for any given observations

xl,..,xn is independent of the specific functional form of g( ); hence, g( )

need not be known.

5. CONCLUSICN

We have presented a maximum 1likelihood method of estimating the
nonrandom part VO( ) of the random utility function

U(v,w) = Vo(v) + el(w)
from observations on choices between a finite number J of alternatives. The
method consists in first estimating the wvalues of VO( ) at the observed
realizations of v, and second to interpolating between those walues to
obtain an estimate of Vo( Y. The assumptions made on VO( )} restrict the
values that any estimator of Vo( } may attain at each v. These restrictions
are imposed in the estimation by requiring that the wvalues and subgradient
of the estimator satisfy a system of linear inequalities.

The method assumes that the distribution of the random vector
(e(wl),..,e(wJ)) igs known up to a finite-dimensional parameter vectoxr 9?.

The value of 30 is also estimated.
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We have shown that the estimators of VO and 90 are strongly consistent:

The estimator of VO converges almost surely uniformly to VO and the
estimator of 90 converges almost surely to BO, as the number of observations

tends to Infinity.
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APPENDIX A

In this Appendix, we show that the probabilistic choice model described
in Sections 2 and 3 satisfies certain properties (Lemmas 2-6,) which will be
used in Appendix B to prove Theorem 1. We remind the reader that

i (Wx®8)y, r] ig a compact metric space; W 1is a set of continuous

. K <
functions on a convex and compact set Z C R+ . 0 e¢Z ; © is a compact set
X L . ; . e
in R7; the density function g(z) on attribute vectors satisfies

Assumptions G.1-G.3, and the choice probability P(x,V,8) satisfies

Assumptions P.1-P.4 in Section 3.

LEMMA 2: If {(Vi’gi)}?nl is a sequence in (W X 8) and for some
(Vv ,8 ) e (Wx®&) , 1lim, r[(Vi,Bi),(V ,8 Y] =0 , then, for all x in

1 —-x

S§xZ , lim, o f(x, Vi' ﬁi) - f(x, V, 8)

1+

PROOF: Since convergence of the sequence {Vi} to V with respect to

the metric d( ) implies pointwise convergence of {Vi(z)] to V(z) for

all z € Z , and since by assumption P.1, f£( ) 1is continuous on (Ri X @)
L .

at each (Vl, e, VJ, §) = (V(zl), . V(ZJ), 8y ¢ (R+ Xx 8) ; it follows

that for all x in § x 2 , ({f(x, Vi, 81)} converges to f(x,V,#)

Q.E.D.

LEMMA 3: If (V,0) ¢ (W x ©8) and (V,8) = (VO,GO) then for scme set

' 0 ,0
ACX P, (A)>0, and J‘A g(z) P(x,V,0) dx » [, g(z) P(x,V",0") dx .

PROOF: We will first show that if VeW and V#VO then for any given seS,



20

(10) 3 B1 - ZJ such that for all z ¢ B P(s,z,V,GO) > P(s,z,VO,ﬂo): and

1
J 0 0.0
c Z such that for all z ¢ B P{s,z,V,8") > P(s,z,V ,¥f

(11) 3 B 9

2 -

Since V » VO there exists v ¢ Z for which V(v) VO(V).

Suppose first that V(v) > Vo(v). Since V and VO are continuous,

there exists a neighborhood N in the interior of Z , containing v and
such that for all w in N , V(w) > Vo(w) . Since V(0)=V0(0)=0 and by
J

assumption P.3 there exist k,k' ¢ (1,..,J) such that, for all z e 2

P(s,z,V,ﬁo) is strictly inecreasing in Vk and strictly decreasing in V it

K
follows that for all z-(zl,..,zJ) for which zkeN and zj=0 for j=1,..,J, j=k,

(12)  P(x,V(z)),V(zy),. .., V(2,60 > Bx,V0(z) V002, .., 90(z)),60),

and for all z = (zl,..,zJ) for which z ,eN and zj-O for j=1,..,J, j=k',

k

(13)  PV(2), V(2,200 < P, V020, 0z, 00,00

Since V and VO are continucus at w=0 and by Assumption P.2 P( )} is

J

continuous at (Vl,..,VJ) € R+, it follows that there exists a neighborhood

N0 in the interior of Z such that for all z-(zl,..,zJ) for which zj € NO
(j=1,..,J; j=k) and z), € N, (12) holds; and, for all z=(zl,..,zJ) for which

Z, € NO (j=1,..,J; j=k’) and z ¢ N, (13) holds.

] k!
J o . g _
Let Bl Hj-l Nj , where Nj = N~ (j=1,..,J;i=k), and Nk = N; and let 52
J
= W) N, , vhere N, - 80 (3=1,..,3:5=k’'), and N, = N. Then, (10) and (11)

are satisfied.

Suppose mnow that Vi(v) < 'Vo(v) , then, by following the same
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arguments as in the previous case, it follows from Assumption P.3 that for
ali z—(zl,...zJ) for which zk,eN and zj-O for j=1,..,J3, j=k', (12) holds;

and, for all z=(zl,..,zJ) for which zkeN and zij for j=1,..,J3, j=k, (13)

holds. Hence, (10) holds for the set Bl - H;-l Nj , where Nj = NO
(j=1,..,3;3’), and N, = N; and (11) holds for the set B, - n§=1 N
where Nj - N0 (j=},..,F;j»k), and Nk = N.

We will now employ this result and Assumption P.4 to prove the Lemma,

Suppose that (V,0) ¢ (Wx ©), and (V,8) » (VO,GO). By Assumption P.4

it follows that either

(14) 2 s'e8 such that for all zeZJ P(s',z,V,8) = P(s',z,V,BO), or

* : J % * ‘0
(13) 3 s €5 such that for all ze¢Z P(s ,z,V,8) = P(s ,2z,V,07);

the corresponding inequality being strict whenever 8§ = 60.

If (14) is true it follows from (10) that for all z e Bl

(16) P(s’',z,V,6) = P(s',z,V,ﬂO) = P(s',z,VO,BO);

and if (15) is true it follows from (11) that for all z € 32

0

a7y P(s*,2,9,0) < P(s*,2,v,8%) = p(sT,z,v0, 60,

the second inequalities being strict whenever V # Vo.
let A= { (s,2) € X l s=5', z ¢ B1 1 if (14) is true; and let

*
A= (s,2) ¢ X | 8=5 , Z € B2 } if (15) is true. Assumptions G.3 and P.1
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imply that in either case PO(A) > 0, and from (16), (17), and the fact that

(V, 8) = (VO, 90 Y it follows that

IA g(z) P(x,V,0) dx » IA g(2) P(x,VO,GO) dx.

0

toa 4: [, |log £0x; V0, 6%)| dPy(x) <= .

PROOF: By Assumption G.2 it follows that for some K ¢ R and all x ¢ X,

| gz) P(x,v°,6%) | < K. Hence,

.0 40
Jxllog £Cx; V7, 67 )[dp, (x)

< [y |log g(z) gz P(x,v°,0%) ax + I |log P(x,VO,BO)|g(z)P(x,V,60)dx

< fx|10g g(z)|g(z)dx + K fx|log P(x,V0,80)|P(x,V0,90)dx .
Since the ranges of g( ) and P( ) are included in an interval [0,K'],

for some K' > 0, and the function h(y) = y|leg y| has a bounded range on

that interval, both integrals are bounded. Hence

0

fX|log f(x; V ,80)| dPU(x) < o,

Following Wald (1949) we define the functions
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%
f' P (X xWxex R++) -+ R , and f (A XWxX86X R++) -+ R by

(18) fr(x,V,6,e) = sup(v, 87) € (Wx0) [f(x,vr,gv)|r[(v,6),(vr,ev)] < g},

and

£r(x,V,0,e) if £'(x,V,8,e) =1
(19) £ (x,V,0,e) =

1 otherwise.

LEMMA 5: For any (V,6) in (W %X 8) and for all ¢ >0 , f'(x,V,0,¢)

is a measurable function of x .

PROOF: Since [ (W x @), r ] 1is a compact metric space, there exists

a countable dense subset C = [(Vl,ﬁl), (Vz,ﬁz), ...} of (W x®8) . Hence,

for any x ¢ X and (V,8) ¢ (W X &)
(20) sup(£(x, V', ') | r[(V',8'),(V,8)] <&, (V',6') € (W x©))

= sup{f(x, V;,0,) | r[(V;,6.),(V.80)]) <e, i =1,2, ...)

To see that (20) is true note that, since C C (W X 8),
sup(f(x, V,,0,) | r{(V;,6),(V.0)]) <e, 1 =1,2, ...}

< suplE(x, V', 8) | £[(V',6'),(V,0)] < e, (V',6') ¢ (Wx©) ).

If the inequality were strict, that would imply that

for some (V',8'") € (W x 8©)

(21) £(x,Vv',0") > sup{f(x,Vi,ei)Ir[(Vi,ﬁi),(V,ﬁ)]<s, i=1,2,...} af(x,Vi,ﬁi)
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for i=1,2,... . Since (V',8') € (W x ), and C is dense in (W x 8), there
1 w© 3 ’ !

must exist a sequence [(\J’k,ek)}km1 in C such that r[(Vk,Bk),(V B8] + €

as k -+ o, But then, by assumption P.2, f(x,Vk,ﬁk) - f£(x,V',8")

contradicting (21). So, (20) holds,

From (20) it follows that for any a ¢ R,

(22) (x € X]sup(£(x,v',8") | c{(V',8"),(V,0)] <&, (V',0') ¢ (Wx8) )} >a)
= {x ¢ Xlsup(f(x,Vi,Bi) i t[(V,6),(V,8)] < &; i=1,2, ...} > a)

-y, (x e X | £(x, Vi’ Gi) > a) ,

where the union is over all i's for which r[(Vi,ﬂi),(V,E)] < ¢ and

(Vi,ﬁi) e C.
Since the Vi functions are measurable on v ¢ Z , it follows from
P.?2 and the fact that 5 1is a finite set that (x ¢ X | f(x, Vi’ Gi) > a}

is a measurable set, then Ui {x ¢ X | f(x, V’:.L , Ei ) > a} 1is a measurable

set. Then, by (22), £(x,V,f,¢) is measurable on X .

Q.E.D.

LEMMA 6: For any (V,6) ¢ (W x 8) and for sufficiently small € >0

fx log f#(x,V,0,e) dPy(x) is finite.

PROOF: By Assumption G.2 it follows that for some K > 0, all x ¢ X,
and all (V,f) in (W x @) , g(z) P(x,V,8) = K. Hence, £'(x,V,0,g) =K,
and then fr(x,V,e) =1 ifK<1, and 1 =< £*(x,V,e) < K if K> 1.

The Lemma obviously helds if K <1 .
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If K> 1 then, since by Lemma 5 f'(x,V,0,e) is measurable in x, the
disjoint sets C=(x ¢ X | £(x,V,8,e) = 1) and D=(x ¢ X |£'(x,V,6,¢) > 1},

are measurable, Hence

fy log(fx(x,V,6,£)) dPy(x)

- fc log(f*(x,V,6,¢)) dPy (x) + jD log(£%(x,V,0,2)) dP,(x)

fD log(£%(x,V.,6,£)) dP (x)

A

Jp Log(R) dPy(x)

Q.E.D.

APPERDIX B

In this Appendix, we make use of Lemmas 2-6 in Appendix A and prove

Theorem 1,

PROOF OF THEOREM 1: First we note that by Lemmas 6, 4, 3 and Lemma 1

in Wald (1949) it follows that for any (V,8) in (W x @) for which

v,0) » v°,8%,

(23) E log £(X,V,8) < E log £(X,v°,6%)

And, by Lemmas 2, 6 and Lemma 2 in Wald (1949), for any (V,8) in (W x 8},

(24) lim_, E log £'(X,V,0,) = E log £(X,V,8) ,
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where the expectation is taken with respect to PO( h)
From (23) and (24) it follows that for any (V,6) in (W X 8) for

which (V,§) = (VO,GO), there exists €{V,#) > 0 such that

(25) E log £/(X, V, 8, ¢(V,0)) < E log £(X, V°, &°)

let Y be any closed subset of (W X 8) which does not contain

(VO,BO). We will show that for any sequence xl, xz, . . . from X,
n i
sup o, ., £(x~, v, 8)
26) By quim —ALDX A= -0 b o= 1.
Hi-l f(x>, v, 87)

It is clear that

Y €U gy ey S(V, 8, €(V,6)) = U (S(V, 8, e(V,8))| (V,8) € Y}

where S(V, 8, &(V,8)) denotes the sphere in (W X 8) with center (V,5)

and radius £(V,8)

Since Y 1is a closed subset of (W x 6) and byvhypothesis (W x &)

is compact, Y 1is a compact set. Hence, there exists a finite sequence
{(Vl,ﬁl),(V2,92), ch e (Vh,ﬁh)] in Y, and numbers €15 Epy res £ such
that € = e(V ,0k) (k=1,..,h) and
(27} Y ¢ P S(V., 6., €
k=1"""k" "k' "k
From (27) and (18) it follows that for all n and all xl, e e

n i
sup(vig)eY Hi-l f(x", V, &)

< 2 _sup ™ £(xt, v, 6)
 Te1®P(v,0) € SV, 0y ,e) el



k=1 “i=l Vi e &)
Hence, -
n i
(28) sup(v,e) e Y Hi=l f(x™, v, 6)
n i 0 0
Hi-l f(x7, v, &)
h n ceo 1
e R e S i S £
- n i Q 0
M, £, V0, 60)

Since by Kolmogorov's Strong Law of Large Numbers, and (25) for each

k=1, ..., h

. n i i 0
(29) PO{llmnWm Zi=1[1og £ (x™, Vk, Bk’ :k) — log £(x~, V7,

it follows that

i
I, £frx", v,, ¢
(30) P. 1lim i-1 k

K S

M, £, Vo, 60)

for k=1, ..., h.

By (30) and (28), (26) is proved.

Theorem 2 in Wald (1949) and (26) imply that

0

|3 [limnﬁ¢ r[(Vn,ﬂn),(VO,ﬁo)] =0} =1.

27

73] = -=} = 1,
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APPENDIX C

In this Appendix we present the proof of Lemma 1, stated in Section &,
We also state Lemmas 7-9, whose proofs are omitted because they follow

closely the arguments of the proof of Lemma 1.

PROOF OF LEMMA 1: Let D = (O, Zys ceey zM} C int(Z) be given,

We first show that if V ¢ W then vV = (Vl,...,VM) = (V(zl),“.,V(zMﬁ
satisfies (7) and (8) for some T = (TO, Tl' eee TM) € RKX(M+1)

Let T - T(z;) for j =0, 1,2 ..., M. It is clear from the
definition of W that Tj <= B (j=0,1,..,M) and that T = (TO, Tl, c s TM)
and v = (V(zl), v V(zM)) satisfy (8). To see that Tj =0 (j=0,1,..,M)
note that if w is such that w = zj , the monotonicity and concavity of V
imply that 0 = V(w) -~ V(z) =T (zj) (w ~ zj) . But, since w can bs

chosen to be strictly greater than zj in only one coordinate and equal to
Zj in the other coordinates, it follows that Tj =T (zj) 20 . So V anc

T satisfy (7) and (8).

We now show the converse, i.e., we show that if there exist V0=0,V1,

0.1

.,VM and T ,T7, ...,TM satisfying (7) and (8), there exists a function

V:Z->R in W with -V(zj) = Vj

Define the function V : Z + R by:

(3j=0,1,...M)

(31) ww=mmwj+ﬂw-zﬁh=o,L.“,m

for all v e Z .
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Then for all j -~ 0, 1, ..., M, V(zj) - Vj .  Since, suppose that

V(Zj) = Vj for some j ¢ (0, 1, ..., M} , then by (31) there exists k = j
k s s

such that V(zj) - Vk + T (zj - zk) < V , contradicting one of the

inequalities in (8).

It remains to show that V e W . Since V(zj) = Vj' V{(0)=0.
Moreover, by (31) and (7), V is monotonic and concave.

To show that V satisfies (ii), take any v and w in Z . By (31)
there exists j in (0, 1, ..., M} such that V(v) = Vj + Tj(v - zj) and
Viw) = Vj + Tj(v - Zj) . Hence V(w) - V(v) = Tj {(w=v) , and then V
satisfies (ii) with T(v) = Tj

So, v as defined in (31) is a monotonic and concave function
satisfying (i), (ii), and V(zj) = Vj (j =0, 1, ..., M)

Q.E.D.

The following Lemmas present the relevant constraint sets for sets of
functions V : 2 -+ R that are monotonic, concave, with uniformly bounded
subgradients, and that satisfy, in addition, one of the following sets of

conditions: (a) homogeneity of degree one, (b) weak separability, and (c)

additive separability.

LEMMA 7 (Homogeneity of degree one :) Let W be the set of all
concave and monotonic functions V : Z + R sgatisfying (i)-(ii) of Lemma 1,

and (iii) for all v in Z and all B ¢ R+ for which Bv e Z

V(Bv) = BV(v)
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et D = {zl, e, zM) be a finite subset of the interior of 2
Then the set of all vectors V = (Vl' cees VM) for which there exists a
function V in W with V.i - V(zl.) (i =1, ..., M) 1is the set of all
_vectors E - (Vl’ ey VM) for which there exists &a vector
re @, T M) et e R w01, )
such that
(32) 0 = TJ <= B,
and
(33) wWo< 7t z, .

for i, j=0,1, ..., M and for zo=0 and VO-O.

Given any Vj . 1 (3 =0, 1, ..., M) satisfying (32) and (33} with

VO = 0 , define the function V : Z + R by

(34) V(v) =min { T v]j =0, 1, ..., M}.

for all v € 2, The function V so defined is a function in W that

interpolates between the values V, and ']3-.1

LEMMA 8 (Weak separability :) Let T be an integer (1 K); anc

let Bl € Rz and 32 € RE-T be given. Define the sets Zl =Zn RZ , 22 =

1A
H
1A

20 BT and B = (t R |tsmax (87 VP | VP e 2P0 0.

Let W be the set of all functions V : Zl b 22 + R for which ther:

. . 1 -
exist two concave and monotonic functions u : 22 -+ R and y : (& X E) ~+ "~
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such that for all v-(vl, V2) € Zl x 22

() vy = vt VE) =yt ue),
(v) u(0)=0, y(0)=0, and
(vi) for each v = (Vl, v‘?) in Zl X 22 and t € E

subgradients Tu(vz) € RK—T and Ty(vl, ) e RT+1 such that

2 1

, there exist

(vi.i) Tu(vz) <= B” , and (vi.ii) Ty(Vl, t) < B

Let D = {zl, ..., 2.} be a finite subset of the interior of Z .

M
Then the set of all vectors V = (Vl’ e, VM) for which there exists a
function V in W with Vi - V(zi) (i =1, ..., M) 1is the set of all
vectors K - (Vl’ ey VM) o (yl, c ey yM) for which there exist vectors
(g, - ) @, 7 My ana @0, ™, .., ™) such thar
u j 2
(34) 0 = T < B° ,
yJ 1
{35) 0 = T = B,
uj 2 2
(36) u; =u,+T (Zi zj) , and
(37) y.o=y. + @t w) - &t ouy)
i J J L J J
for i, j =0, 1 M and for z, = (z%, Z°) = (0,0) ~0 , and
] J ] I o 0: 0 ’ 3 YO y

uo =

Given yj . 1.1.j . Tyj and TU'j , J=0,1, ..., M satisfying (34)-
(37), we can defipe the functions wu : 22 +R and TV : Z? - RK—T by
(38) u(vz) - min[uj + TuJ(v2 - z?)lj =0, 1, ..., M) ,
and

uk

(39) ™2y = T
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for all v2 in Zz, where Lk in (39) is the first h for which u(vz) =

W+ Tuh (v2 - zi); and we can define the functions 1y : Z1 x E =+ R and
Yzt x E -+ R by

1 VAl 2 2
(40) y(v:, t) -mi-n{y:1 + - (v, t) - (Zj. uj))|j =0, 1, ..., M,
and
(41) Vi, v = T,
for all t in E and vl in Zl, where k in (41) is the first h for which

y(v2 t) = yh + Tyh ((v2

LB = (2, w).

Defining V : Z1 x 22 -+ R by

(42) vivl, v3) = yvt, udy)

for all v = (vl, vz) in Z1 pd 22, we obtain a function that belongs to ¥,

and interpolates between the obtained values for V and subdifferentials of

V at =z z

or %10 e Zy -

LEMMA 9 (Additive separability :) Let T be an integer (1 < T = K);

and let Bl € Ri and 32 € RffT be given. Define, as in Lemma 8, the sets
Zl = Z N Ri and 22 = Zn RE—T . Let VW be the set of all functions
V. Zl X 22 -+ R for which there exist two monctonic and concave functions

yl : Zl =+ R and y2 : 22 + R , such that for all v = (vl, V2) € Zl x z°
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wii) vy =veld, v -yt oy + ¥R eh)
(viii)  y (0)=0, ¥2(0)=0, and

(ix) for each v = (vl, V2) in Zl x 22 » there exist subgradients

1 K-T

Tylfvl) € RT of y, and Ty2(v2) ¢ R of y2 such that Tyl(vl) =< BI , and

Ty2(v2) =< Bz.

Let D = (zl, N zH} be a finite subset of the interior of 2 .

Then the set of all vectors vV = (Vl, e VM) for which there exist =

function V in W with Vi - V(zi) (i =1, ..., M) is the set of all

vectors Z = (Vl’ ey VM) for which there exist vectors (yi, . yi) ,
ey @O by g (720, 2D Rl
such that
(43) 0 = i < gl
(44) 0o = 1%Jd <« g,

1 1 yi,j, 1 _ 1
(45) Yi$Yj+T (z; zj) .

2 2 y2,j., 2 2
(46) yi =< yj + T (zi zj) .
and

1 2

47 vV, - . T c
(47) J J’J YJ

.. 1 2 1
for all i, j=0,1, ..., M, and for z, = (zo, zo) (0,0) , Yo o,

2
and Yo = 0 .
Given V, , y; , y? ;o3 23 5.0, 1, ..., M satisfying
1 1 T
(43)-(47) we can define the functions yl : Z1 + R , Ty ¢ 20 - RT O,
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2 .22 ok 2 . 2 KT

and 2 =R , by

1,1 .1 vl,j, 1 1,,.
(48) yo(v) = mln{yj + T (v - zj)|3 -0, 1, ..., M),
(49) ly - Lk
where k 1is the first h for which yl(vl) - yi + Tyl’h (vl - zi) .
(50) y2(v3) = min{y§ + 2t - zg)[j -0, 1, ..., M,
and
(51) V2 (v?)y - 2k

where k 1is the first h for which y2(v2) = yi + Ty2,h (v2 - zi).

Then, by defining V : Z1 X 22 + R by

vevl, v3) = yrehy + yReh)

for all (vl, vz) in Zl x 22, we obtain a function that belongs to W ,

interpolates between the obtained values for V., , and its subgradient

interpolates between the obtained values for (Tyl’j, Tyz'J)
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NOTES

1 An earlier version of this paper was part of my Ph.D Thesis, and was
presented at the 1986 summer meetings of the Econometric Society under the
title "Nonparametric Estimation of Utility Functions for Discrete Choice
Models." I am indebted to Professors Lung-Fei Lee, Marcel K. Richter and
Christopher Sims for their wvaluable advice. I wish to thank Philip Dybvig,

Vassilis Hajivassiliou, and Alvin Klevorick for their comments.

2 If the set of alternatives that maximize Vo( ) + e( ) possesses h
elements, j(i) is assumed to be drawn from this set of maximal elements with
probability 1/h. Of course, if the e; terms are distributed with a

continuous distribution there will be, with probability 1, a unique

maximizer j(i) in {(1,..,J).
3 If the distribution of (ei,..,e;) is not continuous, we let {At|
t=1,..,231 be the set of all subsets of A, then

2J

t=1

s Vo(zi)+ei, kea))

i, 0 ,0
Po(V,6 )=3Z
J( ) J

B(I.A,) (L/#(A) Prob(At-(jeAIVO(z§)+e

where ﬁ(j,At)ul if jeAt, and ﬁ(j,At)-O otherwise; and where #(At) denotes

the number of elements in At.

4 This is commonly the case when each individual consumer is observed

only once.
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5 The Gumbel distribution is defined by P(esy)=exp(-exp(-1)).

6 Matzkin(1986) employed these computation methods to estimate monotonic,
and monotonic and concave utility functions from simulated data on discrete

choice behavior,

7 A function V ; Z - R is said to be monotonic if for all v,w ¢ Z, v = w

implies V(v) = V(w); V : Z » R is sald to be concave if for all v,w ¢ Z and

all X e [0,1], V{Ov+(1-2)w) = AV@)+H(1-2)V(w).

8 A vector T(v) € RK is a subgradient of a function V : Z + R at v ¢ Z

if for all w ¢ Z, V(w) = V(v) =< T(v) (w—v)

9 The subdifferential of a concave function V : Z—+ R at v € Z, is the

set of all subgradients of V at v.
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