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ABSTRACT

A general model for noncooperative extraction of common~-property re-
source is considered. The main result is that this sequential game has a
Nash equilibrium in stationary strategies. The proof is based on an
infinite dimensional fixed-point theorem, and relies crucially on the
topology of epi-convergence. A byproduct of the analysis is that Nash
equilibrium strategies may be selected such that marginal propensities
of consumption are hbounded above by one.
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1. Introduction

Sequential games are increasingly recognized to constitute an appro-
priate approach for the modelling and analysis of a wide variety of prob-
lems in economics, and related fields. Indeed, situaticns with several
decision makers pursuing non identical goals, whose actions jointly de-
termine the future states of the economy are abundant in economic theory.
Such games, also referred to as dynamic games in the engineering literature
(Basar-Olsder [1982]), are the discrete-time counterparts.of differential
games. They may also be regarded as deterministic analogs of stochastic
games (Shapley [1953]1) with uncountable state and action spaces.

Among the most common applications of sequential games in economics
is the study of strategic intertemporal resource extraction. The case of
common property resources was the object of several studies: Levhari-
Mirman [1980] and Mirman [1979] consider the sum of discounted utilities
as the objective for each player while Reinganum [1981] and Reinganum-
Stokey [1981] consider profits. It should be pointed out that the mcdel
with utility maximization could also be used to study equilibrium growth
in an aggregated economy with two or more classes, each cencerned with
the maximization of the sum of discounted utilities from its cwn con-
sumption. In this sense, sequential games of resource extraction con-
stitute a merging of two separate lines of research: optimal growth
theory and optimal exploitation of natural resources c¢n the one hand,
and dynamic game theory on the other.

In all the above referenced studies and in Shubik-Whitt [1973], the

adoption of the Markovian information structure is coupled with a lack



of generality in the game formulation. Namely, particular functional
forms are selected for the utility and growth functions. In fact,
Reinganum [1681] argues that writers have faced the dilemma of choosing
between the generality of the results which required the use of open-loop
strategies, and the appropriateness of the information structure (i.e.
Markovian) which imposed a degree of specificity in the growth and objec-
tive functions.

The present paper consists of a generalization of the model in Levhari-
Mirman [1980] in that it considers the same sequential game with stationary
strategies and general unspecified concave utility and growth functions.
The difficulty with this general analysis arises from the fact that non-
convexities are inherent to such games. Clearly, the properties of the
optimizapion problem faced by a player, given the other player's strategy
{as a function of the state variable) depend on the properties of this
strategy. Indeed such a problem amounts generally to maximizing a concave
functional subject to a nonconvex feasible set, when formulated in the ap-
propriate sequence spaces. The nonclassical optimal growth model provides
such an example (Skiba [19783, Dechert-Nishimura [1983], Amir [1985]).

A related dynamic game, referred to as an altruistic growth model,
has been studied in full generality (including a Nash equilibrium exist-
ence proof) in Bernheim-Ray [1983] and Leininger [1983].

The paper is organized as follows: Section 2 contains the statement
of the problem under consideration. Section 3 studies the properties of
the best response cptimization problem, and Secticn 4 prcvides the Nash

equilibrium existence theorem and its proof.



2. ~The Model

At any period t, the resource stock X, may either be consumed (cl by

agent 1 and ci by agent 2) or jointly invested (xt- cl - ci). Letting f
dencte the natural growth function of the resource, then Xg = 8 {histori-

cally given), and

1 2
X = f(xt c.m¢

£l t), t=0, 1, 2, ces

The properties of £ are
f is differentiable and f' > O.
f is concave

F(0) = 0, lim £'{x) > 1.
x4+ 0

It can easily be shown that, given the properties of f, there exists

2 unique X > 0 such that x = F(x).
The preferences of agent i (i = 1, 2) are expressed by a utility

function uy satisfying the standard properties from optimal growth theory:
u is differentiable and u' > 0.
u is strictly concave

lim u'(0) < +w .
40

Furthermore, the objective of agent i, whose time rate of preference
is given by the discount factor 0 < § < 1, is to maximize the present
i

(discounted) value of utility over an infinite horizon while taking into



consideration the actions of the other agent. Specifically, the payoff

to agent i is:

Lo a)
’ i t. i
Ji e P = _Z sjus k), t=0,1,2, ... (2.1)
t=0
i . 1 2
i \ ct if Ct + Ct < xt
where kt = 1 5
¥Xt/2 if ct + Ct > xt

The state transition law is glven by

. flx,-c)- i) < 0, x, =58 {2.2)

Xt £ “t

with X, > Cl >0, X, >»¢ 20, t=0,1,2,... {2.3)

Constraint (2.3) is the feasibility condition which forces individual
consumptions to be positive and at most equal to the available stock. A
pair ({c¢'}, {c°}} is referred to as feasible if it satisfies constraints

(2.2)-(2.3)

and SHIE t=0,1, ... {2.4)

It is interior if, in addition, constraints (2.3) and (2.4) hold with all
strict inequalities, and as a corner or boundary pair if (2.4) and (2.3)
are satisfied with at least one equality.

One could also impose the constraint ci + ci S Xy t =0, 1, ...,
thus making the acticns available to one player dependent on those taken
by the other player, and obtaining a generalized game formation {(Cf. Debreu

[1952]1 Furthermore, it turns out that the assumptions u'(0) = 4+~ and

£(0} = 0 are sufficient to guarantee intericr Nash equilibria; in other



words, the constraints (2.3) are never binding at equilibrium,

The Nash equilibrium is commonly considered as the appropriate sclu-
tion concept for non-cooperative resource extraction. Based on the c¢ri-
terion that neither player can improve on his payoff by unilaterally de-
parting from the equilibrium, it is defined as follows, for the preblem

at hand:

Definition 2.1

* *
A Nash pair ({cl }s {ci }) is said to constitute a Nash eguilibrium

1* 2% ; . .
for the game problem (2.1)-(2.3) if: =({c }, {¢, D) is a feasible pair.
1% 1 1 .

-J1({c |3 z J. e ) , for all {c,} such that the pair
t { 2*} 1 t { 2*} t
c c .
t t ({cl}, {ci }) is feasible.
-5 ({2 J ({cz}) for all {ce} such that the pair
2't% A t

b, {c2}) is reasible.

We restrict the information available to each player, at any given
stage of the sequential game (2.1)-(2.3), to the knowledge of the state
Xy at that period. We will thus be concerned with Nash equilibria in pure
stationary strategies: policies which take the same action whenever the
system is in the state, regardless of date. Such equilibria satisfy a
strong version of subgame perfection. They are alsc referred to as
closed-loop no-memory {Basar-Olsder [1982] or as recursive equilibria
(Cave [1984]). They rule out the possibility of threats or retalitory

behavier, and are insensitive tc the history through which a given state

is arrived at.



This information structure is thus somewhat restrictive and does not
capture some important strategic interactions that one might associate with
non-cooperative extraction of common-property resources. Nevertheless, such
equilibria have considerable appeal in dynamic models of strategic com-
petition. Furthermore, they remain equilibria even when strategies are

allowed to depend on (all or part of) the history of the game.

3.  Properties of the Best Response Map

This section provides some intermediate results needed for the charac-
terization of Nash equilibria, the subject of the next section. We will
be concerned with the dynamic optimization problem faced by Player I when
Player Il's stationary strategy is given as a single-valued function Y2(°)

satisfying 0 < Y2(X) <x, for x >0, namely:

max J{c'h = T 8 (cy) (3.1)
1 t £=0 17177t
{e, }
t
subject to
1 ;
Xeoq - f(xt‘ct'Ye(xt}) < q, Xy = 8 (fixed) {3.2)
1
< < - -
and 0 = c, £ X, YZ(xt), t =0, 1, ... {3.3)

The maximizer in problem (3.1)-(3.3), to be represented by Y1(-), is
the best response of Player 1 to yg(-). It is in general a multivalued

function or correspondence, Clearly, the properties of v,(+} will depend

1
on those of 72(‘). First, observe that since the cbjiective functional is
concave, Y1(') will be a (single-valued) function if the constraint set

given by the intersection of the two sets represented by inequalities



(3.2} and (3.3} is convex. This will be the case if and only if YZ(')

is a convex function, as is easily seen. However, there is no justifica-
tion for restricting the players to use only convex strategies, particularly
since the best response to a convex strategy is continuous but not ne-

cessarily convex.

Define a value function V to Player 1 of responding optimally toc

Let x = max{xo, x}, where X is the unique fixed-point of f. The properties

of f imply that x_ g X for all t =0, 1, ... , and hence

t

It is easily shown that VY is the unique fixed-point of the contrac-
2
tion mapping R: B[O,xm] - B[O,xm] {bounded functions on [O,xm3 with
sup norm} v -+ sup {u1{c) + Gv[f(x—c—YZ(x))]}.
Ogch-y2(x)

Hence, Vy (x) = max M1(c1;x), (3.4)
2 Ogcjgx—Yg(x)

where M1(c1;x) = u

1 1
Jle )+ 51VY2[f(x—c “Y,(x )], (3.5)

Before proceeding to the statement of results, we set some notations
and abbreviations: For a real-valued function F(+}, we denote the left
and right-hand limits of F at a point x by F{x~) and F(x"), the left and

right hand (one-sided) derivatives by F'(x" ) and Frix"). Semicontinuity
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for single-valued functions is abbreviated u.s.c. (uppersemi-continuous)
or 1.8.c. {lowersemi-continuous). The corresponding notions for set-

valued functions are abbreviated u.h.c. (uppersemi-continuous)and l.h.c.

{lowersemi-continuous), in accordance with Hildenbrand-Kirman [1976].
Finally, an e-neighborhcod of a point x will be referred to as N{(x;e}.

The following result gives a sufficient condition for M1{c ;%) to

1

achieve its maximum (as a function of c¢ for ¢, in [0,x]), or in other

1’ 1

words for the optimization problem (3.1)-{3.3) to be well-defined.

Lemma 3.1. The best response Y1(') to the strategy YB(-) is welldefined

if Y2{‘) is a l.s.c. function. Furthermore, Y1('} is a u.h.c. set-valued

function.

Proof of Lemma 3.1

Ir YZ(-) i1s a l.s.c. function, then by Theorem 4.2.2 in Bank et al.
[1983], VY (-) is a u.s.c. function. Hence,
Z
M1(c1;x} = u1(c1) + GTVYZEf(x—ci-thx))] is also a u.s.c. function of c,
and thus achieves its maximum on [0,x].

That the best response correspondence y1(-) is u.h.c. follows directly

from Theorem 4.2.1 in Bank et al. {1983].

On the other hand, it is apparent from the pﬁoof of Lemma 3.1 that irf
YZ('J is a u.s.c. function, M1(';X) will be a l.s.c. function of ¢, and
thus may or may not achieve its maximum on [C, xm]. Likewise, Player 1
may choose a u.s.c. selection from the u.h.c. correspondence Y1(‘), thus
possibly making Player 2's subsequent best response optimization ill-defined.

However, if Player 1 also picks a l.s.c. selection out of Y1(‘) {such a



selection will be shown to always exlist), then this peotential difficulty
does not arise.

In the corresponding one-person dynamic program, it is well-known that
the value function is an increasing continuous function (see, e.g. Amir
[1985a)). In the present context, however, the properties of V1 will
clearly depend on those of Y2- We show in particular that V1 and Y, are
differentiable and continuous at the same points, and that V1 increases
between two given points if and only if the effective stock level (i.e.
the stock level after Player 2's consumption) increases between those

two points.

Lemma 3.2. The value function Vy satisfies: VY (x) % VY (y) if and only
2
Yz(xJ - Yz(y) < 2 2
if r— s, for all distinct x, y in [0, xm}.
Proof of Lemma 3.2
Let yz(v) pe any (single-valued) strategy by Player 2 and Y1(-) be the

(multi-valued) best response of Player 1. Consider two different values
of the initial resource stock, say x > 0 and x + o, a > 0.
By the principle of optimality, if starting at initial stock x Player 1
alters his consumption level in the first period, thx), to
{Y1(X+a -a + Y2{X+a) - Ye(x)}1 while Player 2 maintains his first-period

consumption at Yg(x), it follows that

V1(x)

u1[Y1(x)] + 61VT[f(x-Y1(x}-Y2{x))] {(a.1)

3%

u1[y1(x+a)*u+y2(x+a)-72(x)]+61V1[f(x+u~y1{X+a)—y2(x+a}}]. (A.2)

Likewise, starting at x+a :

1Y (x) should be considered as any point in the set{y'1(xﬂ (The same

interpretation is attached to v, {x+q)), provided the same point is taken
throughout the argument. !
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VT(X+Q) u1[Y1(x+a)]+51vl[f(x+a—Y1(x+a}—Y2(X+Q))] (A.3)

n

u1{Y1(x}+a-Y2(x+u)+Y2(x)]+51V1[f{x—71(x)-yz(x))]. (A.4)

Comparing (A.2) and (A.3), then (A.4) and (A.1), we get, respectively:

I
%3
(@]

V1(x) 2 V1{Xﬂ1) if Yz(x+a) - Yz(x) - Q
and

V1(x+a) 2 VT(X) if —1é(x+a) + yé(x) + a2 0,

so that Vl(x+a)

V?(x) if and only if Yé{x+a)- Yz(x)- a = 0.

The desired conclusion clearly follows by setting v = X+q.

Lemma 3.3. A necessary condition for Y1(X) to be the best response cor-

respondence to the single valued strategy ye(x) is that:

'1 i Y1(x)-Y1(y) ) Yz(x)-Yz(y)

» 0, for all distinct

'1 ) Ye(xJ-Yz(y)
X-y

X-y X -y

X, y in [0, xm].

Proof of Lemma 3.3

The following preliminary result is needed:

Lemma A.1. Suppose that u : B" >R is a strictly concave, increasing

function, and that a, b, ¢, d are distinct real numbers such that

a+d = b+c. Then a

A

b g g dimplies that ula) + ul{d) g ulb) + ulc).

Conversely if u(a} + uld) £ ulb) + ulc), then

min{a,d}

A

min{b,c} < max{b,c} < max{a,d}

Proof. It is straightforward.



I
Now, to prove Lemma 3.1, add inequalities (A.2) and (A.4):
u1[Y1(x)1 + u1[Y1(x+u)] 2 u1[Y1(x+a)-a+y2(x+a)-y2(x)]
+ u1[Y1(x}+a-Y2(x+u)¥Y2(x)]. {A.5)

| G,
Let 4
QGa(x,a)

(x,0) = Y1(x+0u) - @+ yz(x+a} - Yz(x)

Y1(x) + a - YZ(X+G) + YZ(X)-

Then, by Lemma A.1, since G, + G2 = YT(X) + y1{x+a), we have

1

max{GT, Gz} > max{y1{x), Y.

1(x+a)} 2 min{y1(x), 71(x+a)} ;_min{G 'Gz},

This, in turn, implies that, either

G, {x,a) 2 y1(x+a)

(A.6)
G1(x,aJ 2 Y1(x)
or
GT(x,a) < YT(x+aJ
(A.7)
GT(x,on) g \(.!(x)
Equivalently,
% Y2(x+&) - Y2(x) .
$ & (A.6a)
Dy txaa) - Y (x) 0 Y,(xea) - Y,(x)
+ z 1
- o o
or
(x+a) - (x)
ng Yo -
a (A.7a)
} Y1(x«x)- YT(X) Yz(xax)- yz(x)

+
A
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The argument given above is valid only if the altered consumption

levels via inequalities (A.2) and (A.4) are feasible, that is, if

0 £ G, (x,a) s {A.8a)

Il
”

[ ]
A

Gz(x,a} < x+0. {A.8b)

The upper bounds are easily seen to be satisfied. One of the two lower
bounds must alsc be satisfied since G1(x,a) + G2(x,a) = Yl(X) + Yz(x+u} > 0.
Assume that the lower bound in (A.8a) is not satisfied, i.e., that

G1(x,u) < 0, then since GI + G2 = 71(x) + YY(Xfa),

S‘Gz(x,u) > Y1(x)

LGZ(x,a) > Y1(x+a}

Solving this system of equations yields {A.7a). Similarly if G2(x,a) <0

it can be shown that (A.6a) follows. Hence, the same conclusion follows

without using changes in paths if feasibility is violated in (A4.2) and (A4.4).
Finally, since x and a are arbitrary, we can express {4.6a} and (A.7a)

in the more compact fashion given in the statement of the Lemma.

The condition given in Lemma 3.3 has a clear strategic implication:
If Player II'2 strategy Yo is "greedy" (resp. "helpful") between stock
levels x and y, i.e. has slopes larger (resp. smaller} than one, then
Player I will respond in such a way that total consumption is "greedy"
{resp. "helpful")}.

The following result may be referred to as the envelope theorem for

problem (3.%1}-(3.3):
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Lemma 3.4. The value function V is continuous (resp. differentiable)
2
at a point x in [O, xm] if and only if Y, is continuous at x (resp. if

and only if Y4 is continuous at x and YE is differentiable at xJ). Further

more, at points of differentiability of VY ’ V+ is given by
2 2

v (x) :-u'[y1(x)](1-yé(x)),

Y2
and at points of discontinuity of UY ,1
2
2
s +o, 1IF Yz(x ) = =, s = % or -
v, o(x7) =
¥> (=, if Yé(xs) = 40, S = + Or -

Proof of Lemma 3.4

From (A4.4) and (A.1), it follows that, for any sequence (an) + 0
Vo lxeg ) = Vo(xd 2wy (%) 4o - yylxee )+ y,(x0] - u by, ()] (4.9)

or equivalently,

- (x+q ) {x} -
V, (x+0 ) =¥, (x) To ™" T .
Y2 “n Y2 N u1tY1(x)+ 1 - 'J—u1[Y1(X}] . Yg(x+an)_Y2(X)
a = yz(x+an) Yz(x) B o,
gyl -
o
: n
(A.10)
Likewise, (A.2) and (A.3) imply that
VYz(x+an)‘VY2(x)§u][Y1(x+a)3~u1[y1(x+an)-a+72(x+gn)—yg(x)] (A.11)
/ JAxeo ) Y (x N
Vo (x+q )-V_ (x) - { _ Y2 n’ 2 |
Yo % Y, 3 U1[Y1(X+0ln) U, Y1{x+0Ln)-EQ & A’}bYa(an)—Ya(x)I
e e YZUHQnFYE(xW I o, J
a
- ; (A.12)

1 . ; . : C s
If x is a point of jump discontinuity of a real-value function F,

then we adopt the convention that F'{X") = +o , for s = + or -



14

Since y,(-) is u.h.c., there will always exist a selection ?1 with the

property that 1lim ¥

{x+an) exists, for any given sequence (an) ¥+ 0.
an+0

1

Taking the limit as . ¥ O in (A.10) and (A.12), noticing that v;(x+)
exists if and only if Yé(x+) exists and Y is continuous at x, in which

case both RHS's have a common limit, it follows that for all such x's :

cally, () 10-y3(x") if vy3(x") exists (and is finite)

vro(x" ) s ww

_Y2 } o= +00 if 'Yé{}(

§

o if yi(x")

—

Similarly, starting at the stock level x - o, and repeating the above

argument yields:

[u;[?1(x)](1-Yé(x )) if yJ(x7) exists {and is finite)

- | -
VI (X7) = < 4+ if yH{x™) = ~»
Y, ) 2
]

. +
o if vi(x")

§

Now, to a given u.s.c. strategy Y1('} of Player 1, Player 2 will de-
termine his best response correspondence Y2('} by solving an optimization
problem similar to {3.7)-(3.3).

Let Y1(-) be a selection from the maximizer in the optimization

problem (3.1}-{3,3), and define

HYé(X) = f(x-Y1(x)—Y2(x)), x e [0, xm].

Lemma 3.5. For all x, y in [0, x ], V  satisfies
m —_—
2

v, [H, (%) - v, [H, (y)]
Y2 Y2 Y2 Y2
H {x) - H,6 (y)

I
o
.
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Proof: First, consider the case where Y1 is a corner maximizer at x,

that is Y1(x) = 0 or Y1(x) =X - Yz(x). Ir Y1(X) = 0, it follows from

{A.5) that for any y > O, Yg(y} - Yz(x) = y-x. Letting y = 0, and then
YB(y) = 0, it follows that thx) = x, and HYz{n) = 3, hence the desired
inequality for any y > 0.
Ir Y1(x) = x - Y2(X)’ then HYé(X} = 0, and the conclusion follows.
Now, if Y, is interior at x, consider first the case where there
exists € > 0 such that H is constant on N(x,e€}. Then the desired re-
lation clearly holds with eguality for any two points in N{x,¢).

Finally, if H is not constant on N{(x,g) for all € » 0, select a

seqguence (xn), x> X, such that V' [H (xn)] +~lim V! {H
2 2 y>X Y2

{y}] and
Yz

V’[H(xn)] exists for all n {this is possible since Y2, being of bounded

variation, implies V_ is differentiable a.e., by Lemma 3.4). For all n,

F

the first-order condition for maximization in {3.4) can be written as

u{[YT(xn}]
5f'(xn-Y1(xn)-Y

V+ [HY (xn)] =

5 Y, (an)

2
Taking the limit as n * ® ylelds

u{[YT(X)]

x_Y1(X)—Y2(x ))

lim v; [HY (y)] = SFT >0,

2 2
where Y1(x) is an appropriate selection from the closed set {Y}(X)}.
Repeating this argument for each of the other three Dini derivates (Cf.

Ropden [1968] of V at H{x), the proof is completed.

Remark: The various conditions on the slopes of the functions under

consideration can be similarly stated in terms of Dini derivates (i.e.
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lim and lim of the left and right-hand incrementary ratics) of these
functions, in an obvious manner, Cf. Titschmarch [1938].

Two useful corollaries follow immediately from the proof of Lemma 3.5.

Corollary 3.6: For all xe¢ (0, xm], the Dini derivates of V at H(x) are

urly, ()T
bounded by 0 below and by K above, where K = sup Sf'(x-YT(x)-YE(x}}
Corollary 3.7: For all x,y e [0, xm], HY satisfies
2
H [H (x)] - H {(H  (y)]
Y2 Yo Yo Yo 9
H (x) - H Iy} :
T2 12

Proof: This is a direct consequence of Lemmé 3.2, 3.3 and 3.5

The interpretation of this result is worth noting: Given a strategy
Yo by Player II {i1.s.c. and with bounded variation), Player I responds in
such a way that the resulting state trajectory is monctonic, In particular,
by Lemma 3.3 and Cerollary 3.7, the generated states do not lie on the
"greedy” portions of Y, {where the Dini derivates are larger than one).
Thus, the state sequence resulting from the strategies YZ('} and a best
response to it, y1(-), does not lie on portions of s at which Y2 is

“greedy," except possibly the initial state.

4, Existence of Nash Equilibria.

This section contains the Main Theorem which states that a Nash
equilibrium in stationary strategies exists for the game at hand. The
proof is given in the sequel. We start by setting up useful notations

and definitions.



17

For a given initial state x

0’ let Sx denote the compact interval
0

Lo, xm]. Define the following spaces of functicns on SX :

0
BV = {Y : Sx -+ SX , such that vy is of bounded variation, l.s.c.
0 0
and 0 € y{x) $x, ¥xeS.}.
b
0
r =1{y:s = S_ such that y(0) = 0, Y is l.s.c. and yix) - yiy) £,
Xg X Xy X -

¥X,Y¥ € SXO/{XO}}.

L B
4

"
-
(9]

+

: S., v{0) = § vy is l.s.c. and there exists h € T
0 X0 %o X

0
such that vy is the best response to h}.

We first prove:

Lemma 4.1: The space BV includes both T and T
X0 0
Proof: Let x £ [ . Define g(x) = x - y{x), x ¢ S_ /{x.,}. Then
—_— X X 0
0 0
x) - oly) _ %) - YW 5 5. Stace vix) =
X _y X -y

= x . ¢lx), £ is of

bounded variation {(the difference of two increasing functions).

Let v ¢ T . Then
o

v, (x) =

h u, [y(x)] + 8, v [H (x)],

where Hh{x} = f{x-y{x)-h{x)).

Clearly, vy(x) = U;]{Vh{x) - 61Vh[Hh(x}]}.

By Lemmas 3.2, 3.4, Vh and Hh are nondecreasing, and hence y € BV

Note also that the l.s.c

. requirement in the definition of f is
0
not vacucus; indeed, the pointwise minimum selection ouf of the u.h.c.
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best response is easily seen to be l.s.c., in this case.

Let L, : T «x T~ T x [ be the best response map, i.e.
1 xo XO XO XO

L1(Y1,Y2) = (YX’Y2) where Vyz{x} = Uj[Y1(X)] + GTVYE [HYZ{X})} and

V. (x) = u2[§2(x)1 + 8,0 [HY (x)], yxesS .

Y Yy Yy 0
Llet T: I+ T be defined by
X
0 0
) ’Y{xo) » X = Xy
Ty(x) =

x + min [Y(y)-y], x % Xq
0sysx

In words, T? is the largest function bounded above by ?, and whose slopes

are all less than one. The mir is achieved since [Y(y)-y] is l.s.c. in y.

F,,)* (TY TY)
e 1770
An important consequence of Ccrollary 3.7 is that any fixed-point of
the operator L = L_oL, : ' x ' =T «x T. 1is a Nash equilibrium of
2 X X X
0 0 0 0
the sequential game at hand, Tc see this, notice that for any y, e BY,

Corollary 3.7 impilies that if‘.yI is a best response to Y2 {in the sense

of solving Problem (3.1)-(3.3)), then Y, is also a best responée to
Ty, € T .
2 X

We are now ready for

Main Theorem: There exist a Nash equilibrium in stationary strategies

for the sequential game (2.1)-{2.3}. Furthermore, the equilibrium




19

strategies are such that all their slopes are bounded above by cne.

Before proceeding to the proof, some mathematical preliminaries are
presented; more details on this material may be found in the survey by
Kall [1986] and Rockafellar and Wets [1984], Let LSC be the linear
space of all real-valued l.s.c. functions on some compact subset D of R.
Endow LSC with the topology of epi-convergence {to be denoted e) defined

as follows:

fn -3 £, if Vx e D,

Ay ) » x such that Iim £ _(y_ ) < f(x) , and
n i “n'“n

Vix ) »x, Mmf {x ) z f‘(x).1
It T n n

With the e topology, LSC is known to be Hausdorff, first countable
linear topological space; convergence may thus be described in terms of
sequences only. Alsc, bounded subsets of LSC are relatively compact.

Fxo is clearly a closed subset of LSC. Hence Fxo is also compact
in the e-topology, and is further metrizable (Cf. Rockafellar and Wets
[1984].

Uniform (or continuous) convergence implies e_convergence., However,
pointwise and e-convergence are generally not comparable, nevertheless,
if a sequence of functions is equi-l.s.c. (Cf. Kall [1986]), the latter
two convergence modes are eqguivalent,

Finally, the importance of the topology of epi-convergence lies

in the following fundamental fact in optimization theory:

1 It follows then that for the sequence (y ), lim £ (y ) = f(x}.
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fn_?-.. f = inf f —— inf f.
Observe that pointwise convergence, and hence weak convergence (i.e,
pocintwise convergence at every point of continuity of the limit function,

Cf. Billingsley [1968] do not enjoy this property, crucial to the analysis

here.

Proof of Main Theorem: The aim is to use Tychonoff's fixed-point theorem

for the map L = L.°L, (Cf. Istratescu [1983]). The domain T x [. is
2 1 XO XO

compact in the e-topolcogy, since it is a closed subset of LSC.

We start with a preliminary result of a general nature {(u = uniform).

Lemma 4.2: Let fn : DTC: R -~ D2C1 R and hn : D2 + B be such that
u

e . ,
fn — f and hn -—— h. Moreover, let hn be a nondecreasing continuous

functicn. Then hnfn =, hef.

Proof: First, we show that for any sequence Y, > Vs

hn(yn) + h{y). To this end, consider
|hn(yn) - hiy)| s Ihn(yn) - h(yn)[ + [h(yn) - hiy)|
< sup|hn(x) - hix)] + Ih(yn) - h(y)‘gfi 0
x€D2

{the first term goes to O since hn LR h, and the second since h is a
continuous function).

. e
Now, since fn — f, for any sequence (xn) + X, wWe have

lim fn(xn) 2 f{x). By above result, and taking an appropriate subsequence
n
;m hn[fn(xn)] = h {lif fn(xn)]

[h%

n[f(x}], since h is nondecreasing.
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Also, since fn SN f, there exists a sequence (zn) = X such that

m fn(zn) z f(x). Again,

im hn[f‘n{zn)] = h[lnﬁ f‘n(zn)] = hlfix}].

We conclude that h of = hof

-~ ~

Lemma 4.3: L. : T x ' =+ T x T is a continuous map in the e-topology.
—_— 1 X Xg o Xg X

n_n, e . ncn, L n_n
Proof: Let ':Y1 ,'Y2) —_— ('Y1,Y2) in FXO X Txo’ and 1etG1$Yg) = Ln(Y1’Y2)'

e - ~

We must show that (?:,?;) — (Y1’Y2) = Ly ). By defini-

1772
tion of L, we have, ¥Xg 8 ,
*0

~n
-51V n[H n(x)] = u][y1(x)] -V n(x) (46.1)
To Yo P

By Lemma 3.4, -V n is a decreasing l.s.c function, for each n. Hence,
Y2
the sequence (-V n) has an epi-convergent subsequence, appropriately

relabled|-V ),withae-limit-v. As y? = Y., and Yn = Yo
i | 1 2 2
H - H = flx-y.(x)-y,(x)). We now show: V oH —o» VoH
n Y 1 2 n n Y
Y. ’ 2
z
To this end, first extend the domain of each Vn from Dn :'{Hn(X)'XESx}
0
to j (Convex hull Dn), by adding straight lines to the graph of Vn in
n=1
such a way that Vn is continuous and nondecreasing. This is possible by

Coroliary 3.6, which also impiies that the new sequence (Vn) is equi-
continuous and hence also equi-l.s.c. This, in turn, yields the point-
wise, and therefore the uniform convergence (by Arzela-Asccli theorem),
of (Vn) to V. Then, VnoHn £ VoH follows from Lemma 4.2.

¥
Taking termwise e-limits in (4.1):

-8, VIH, (x))] = u1[?1(x>]~vtxJ (4.2)

Yo
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~

Since V (x) u1[h(x)] + 51V n[f(x-h(x)-Yg(x)J], ¥h e Fx , 1t follows
Y: Y 0
2

i

that

Vix)

u, [wrT (x)]+51V[H,Y2(x)]

(1%

u1[h(x)]+51V[f(x-h(x)-Y2(x))].

This establishes that Y1 z L1(Y2). A similar argument for Player II's

best response ¢optimization finishes the proof.

Lemma #%.4: L. : [ x f =T x Px is a continuous map in thee-topoclogy.

Z X Xq X 0
Proof: Clearly, it suffices to show that T : Px - Fx is continuous.'
0 0
Let ? = ? in f_ . We have to show that TY = Y in T_ . Fix
n X n X,
X € Sx .OIf TY(x) = ¥(x), i.e. the min in the definition of T is achieved

0
at y = x, then clearly TYn e-converges to T? at x. If the min is achieved

at some z_ < x, then Ty (x) = x+y {z Jez_ = x+ min [¥_(y)-y] + x+ min [Y{y)-y]
n n n n n
Osysx Osysx

= TY(x), since [?n(y)-y] = [Y(y)>y]. This establishes the pointwise con-
vergence of T?n to T? for those points x for which T?{x‘4=?(x), Since for
any such point x, there exists N(x, s} such that T? and TYn, for sufficiently
large n, are linear with slope 1 on N(x,c), the pointwise convergence is
also uniferm on N(x,c), and nence implies e-convergence.

Finally, if x = Xqs then T?n(xo) = §n{x0) clearly e-converges to

T?(xo} . ?(xo).

This actually follows from more abstract general results on the cor
vergence of Yosida estimates, Cf. Attouch [1984]. The reason for
selecting this newly developed topology for thé strategy spaces lies
in this Lemma. It is well known that L_ fails to be continuous in the
more natural topology of weak convergence (on i; and I% }.

0 0



‘auRd TBUITTJO &Yy Jo wnidgirinbs ysey B oS[E €1 ﬁmm.ﬁmu 1BUy JEST3 ST

1T *peqondqsucd aq Aew ,Fm ge go1qJdadoad suwes 3yjg yjgim «Cg ‘ATJETIWIS

“KfX TR JOog ‘L 5 £-x 1BUY Yons ST UYOTM pue 0
b L T
(£)'8 - (x) '8

x 9® ATqissod

qdaoxa adoyumAdars ‘8 yjIM SIPIDUIOD UDIUM Fm Uolq2aT1ss Jayjgour €]1UHpe
11 ‘@ouapuodsaddos "o y'n B S1 Nw 07 asuodsad 18249 syjg ad0UTS ‘MON
*untJaqgiTinbas yseNy ® 2q 07 uass ATISBA ST YoTyMm ﬁmwhpmv

pajgousp aurod psXiJ B Sy ﬁqmmq = 1 dew syjy ‘waJaoaysy g, JJoucysL] £g

e



24

References

Amir, R. [1985], "A Characterization of Globally Optimal Paths in the
Non classical Growth Model," Cowles Foundation Discussion Paper 754,
Yale University.

Basar, T. and G.J. Olsder [1982], Dynamic Non cooperative Game Theory,
Academic Press.

Bank, B., J. Guddat, D. Klatte, B.Kummer and K. Tammer [1983], Nonlinear
Parametric Optimizaticn, Birkhauser Verlag.

Bernheim, D. and D. Ray [1983], "Altruistic Growth Economics, IMSSS
report, Stanford University.

Bertsekas, D. [1971], Dynamic Programming and Stochastic Control, Academic
Press

Billingsley [1968], Weak Convergence of Probability Measures, John Wiley
and Sons, New York.

Debreu, G. [1952], "A Social Equilibrium Existence Theorem," Proc. of
Nat. Acad. of Science, U.S.A., Vel. 38, pp. 886 8G3.

Dechert, D. and K., Nishimura [1983]}, "A Complete Characterization of
Optimal Growth Paths in an Aggregated Model with a Non Concave
Production Function," Journal of Economic Theory, 3k (2), 332 354.

Hildenbrand, W. and A. Kirman [19761, Introduction to Equilibrium Analysis,
North Holland/American Elsevier.

Kall, P. [1986], "Approximation to Optimization Problems: An Elementary
Review," Math. of Oper. Res., Vol. 11, No. 1.

Leininger, W. [1983], "The Existence of Perfect Equilibria in a Model of
Growth with Altruism Between Generation," ICERD Werking Paper 84/83,
London School of Economics.

Levhan, D. and L. Mirman [1980], "The Great Fish War: An Example Using
a Dynamic Cournot Nash Sclution,™ Beli Journal of Economics, pp. 322
344,

Mirman, L. [1979], "Dynamic Models of Fishing: A Heuristic Approach,”
in P.T. Liu and J.G. Sutinen, ets., Control Theory in Mathematical
Economics, New York, Decker, 39 73.

Nash, J. [1951], "Noncooperative Games," Annals of Mathematics, 54, No. 2,
pp. 286 295. :



*gh-gf rdd
‘gi -Top ‘uotgeziwradp pUE TOJJUOD UO TBUINOL WYIS , ‘seuen Tetiusanbag
sa1qeJdadoon uoyN Jo uoljemixoaddy pue uoijqequasgeuday, ‘[086i] "M ‘13 TUM

‘ghh =10 ‘PUBTOH U3JON :WEDJLI]SWy ‘souen TRIJUSJISIITJ Ul
sordol ‘(°pe) aJalwdedyg 'y ul ,‘3IPsJd) ON PUR POOH STQRJINDPUOHN
oUO Y3IM AWOUoDy UEB UT AUOK 4BTdy ‘[€L6L] 33TUM "M pue ‘| “jianyg

‘00LL~G60L *dd ‘6f ‘¥gn ‘eocuerog Jo AwapEly
TRUOT3BN oy3 JO sSuipsadodd ,‘sswen 013sBY203S, ‘[£G61] "1 ‘Aerdeug

"¢ "ON ‘g% “TOAp {BoTJg800U0sy ‘uoIoung
UOT3ONPOJd SABDUO) XSAUOD B UITM Yjmoas Tewtsdo, ‘[gL6L] "¥'V ‘B2qiNAg

*3Jof MaN ‘Auedwo) UBRTTIWOBW ‘SISATBUY TESd ‘[896L] "H ‘uspioy

*vG-1 *dd 4601 ToA ‘FeTasp asButady ‘ ylel UT $910N a8dnj3se] Ul
L fUO011oNpOJGUT UBR ‘SwaqSAS TRUOTABTIJBA, ‘S48M Y pue ' ‘Jaflajexooy

*fFoTouyse] JO 29N IQSUl BIUJOJLITED ,‘saddnosay AjJdadoud
UOWWO) STYBMSUSJUCY JO UOT40BJ4XYT dA14BJadooDuCN, ‘[1861] [ ‘wWnuesulay.

4a



	Sequential Games of Resource Extraction: Existence of Nash Equilibria
	Recommended Citation

	d0825.pdf

