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C. ABSTRACT

This paper studies cointegrated systems of multiple time series which
are individually well described as integrated processes (with or without a
drift). Necessary and sufficient conditions for cointegration are given.
These conditions form the basis for a new class of statistical procedures
designed to test for cointegration. The new procedures rely on principal
components methods. They are simple to employ and they involve only the
standard normal distribution. Monte Carle simulations reported in the paper
indicate that the new procedures provide simple and apparently rather power-
ful diagnostics for the detection of cointegration. Some empirical applica-

tions to macroeconomic data are conducted.
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1. ZINTRODUCTION

A recent development that seems likely to be of lasting importance to
the statistical analysis of economic time series is the theory of cointegra-
tion. The idea of cointegrated variables was introduced by Granger (1981,
1983) and Granger and Weiss (1983) and has been more systematically studied
in the recent paper by Engle and Granger (1987). Cointegrated systems allow
individual time series to be integrated of order one (I(1l)) but require
certain linear combinations of the series to be stationary or I(0) . This
framework accommodates rather well the empirical observation that individual
economic time series often exhibit nonstationary characteristics but that
certain combinations of the series tend to move together over time. The
notion may also be regarded as a statistical embodiment of ideas from eco-
nomic theory concerning long run regularities or steady state behavior among
economic variables. Examples now include modern theories of asset prices and
the term structure of interest rates (see Campbell (1985) and Campbell and
Shiller (1986)) as well as steady state theories of aggregate variables. The
hypothesis of cointegration is therefore important in terms of its under-
lying economic ideas of long run equilibrium and in terms of its statistical
implications for applied research. Useful overviews of the subject have
recently been written by Granger (1986) and by Hendry (1986).

Evidence that a cointegrating vector exists provides strong support for
a long run relationship amongst a group of variables whose short run behav-
ior may be very much more complex. However, detecting the existence of
cointegration in a muitiple time series seems to give rise to nonstandard
testing procedures. This is because the asymptotic theory of regression in
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3
cointegrated systems 1s very different from conventional theory for station-
ary time series, as is clear from earlier work by Phillips (1986b) and
Phillips and Durlauf (1986). These authors provide a detailed study of re-
gression theory in the presence and absence of cointegration. In both cases
the limiting distribution theory is nonstandard. Conventional significance
tests and regression diagnostics have nuisance parameter dependencies even
asymptotically and this complicates the use of the asymptotic theory for
inference. Moreover, in the absence of cointegration the parameters of the
system are unidentified and the estimated regression coefficients have non
degenerate limiting distributions. This further complicates the asymptotic
theory for residual based diagnostic tests.

All of these complications present obstacles to the development of sta-
tistical tests of cointegration. Engle and Granger (1987) recommend the use
of tests based on the residuals of cointegrating regressions. Under the
null hypothesis of no cointegration all linear combinations of the variables
are nonstationary. Under the alternative of cointegration, at least one
linear combination (which may be consistently estimated by the cointegrating
regression) is stationary. Test statistics for nonstationarity (or the
presence of a unit root) in the residuals of the cointegrating regression
might therefore be expected to provide discriminatory power against the
(alternative) hypothesis of cointegration. However, because of the compli-
cations discussed in the last paragraph, all of the statistics considered by
Engle and Granger have nonstandard limiting distributions and these distri-
butions are different. from the usual limit distributions of simple tests for
unit roots. The asymptotic properties of these residual based tests for

cointegration have recently been studied in another paper by the authors



(Phillips and Ouliaris (1987)).

It is possible to test for cointegration without using the residuals of
a cointegrating regression. One alternative arises from the work of
Phillips and Durlauf (1986). These authors explored multivariate tests for
the presence of unit roots in multiple time series and gave a limiting dis-
tribution theory for Wald and modified Wald statistics under the null of no
cointegration. They also constructed some general specification tests whose
asymptotic distributions are x2 , again under the null of no cointegra-
tion. Both procedures may be used to test against the alternative of a
cointegrated system and both yield consistent tests. The Phillips-Durlauf
tests rely in a simple way on the estimated coefficient matrix in a first
order vector autoregression (VAR). Under the null of no cointegration this
estimator is O(T)-consistent for the unit matrix. But, in a cointegrated
system its probability limit is no longer the unit matrix. Hence, multivar-
iate unit root tests may be expected to provide discriminatory power in the
presence of cointegration. Stock and Watson (1986) have subsequently pur-
sued this approach to the subject. Their paper explains the prefiltering of
the data and the serial correlation corrections that are needed to remove
parameter dependencies; and they recommend that attention be focussed on the
modulus of the smallest latent root of the regression coefficient matrix (of
the VAR) in mounting a test of cointegration. In the scalar case their pro-
cedure reduces to the unit root test introduced in Phillips (1987).

The main purpose of the present paper is to suggest an entirely new
approach to testing for cointegration. The intuition behind the procedures
we develop is simple and compelling. In effect, our approach is to perform

a form of principal components analysis for time series. When a multiple



time series is cointegrated, the cointegrating vector effectively reduces
the variability in the original series (which are taken to be I(1l) pro-
cesses) by an order of magnitude (from I(1) to I(0)) . This reduction in
variance should be detectable by principal components methods.

More specifically, if multiple time series which are indiwvidually 1I(1)
move together over time so that some combination of the series is 1I(0) ,
then this implies restrictions on the innovations that drive the full
system. Phillips (1986b) showed that a necessary condition for
cointegration is that the spectral density matrix of the innovation sequence
(wvhich we take to be weakly stationary) has deficient rank at the origin.

We call this matrix =T . Moreover, the number of zero latent roots of 3
is the number of cointegrating vectors and the associated latent vectors of
Z are the cointegrating vectors themselves. This result suggests that we
can test for cointegration by assessing whether or not I has a negligible
latent root. Moreover, since nonparametric consistent estimates of I are
easily obtained it is possible to develop simple asymptotic tests of the
cointegration hypothesis which apply for a very wide class of underlying
innovations. To make matters even simpler, under very general conditions
consistent estimates of X and hence its latent roots are asymptotically
normal. Thus, the procedures we develop involve only the standard normal
distribution!

This paper suggests two new procedures for detecting the presence of
cointegration. The first test involves computing one sided confidence
intervals for the sma}lest latent root of I (or an associated correlation
matrix P ). The second test is similar but relies on the ratio of the

smallest latent root to the sum of the latent roots of £ (or P ). We



also conduct a Monte Carlo study to assess the properties of the new tests.
The new procedures, which we call bounds tests seem, to possess good power
in the presence of cointegration and yet they are very conservative in size.
On the basis of the Monte Carlo simulations, we recommend a simple rule for
detecting cointegration amongst a group of integrated time series. This
rule works well in our experiments for models of different dimensions and
for a wide variety of data generating mechanisms.

In the scalar case our procedures may be used as (autoregressive) unit
root tests. But they are more directly interpretable as tests for the
presence of a unit root in the moving average (MA) representation of a sta-
tionary time series. In effect, our tests may be regarded as tests for the
invertibility of an MA representation. This hypothesis is itself of inde-
pendent interest. We therefore hope that our test procedures will have use-
ful applications in this context as well as that of cointegrated systems.

Qur organization of the paper is as follows. Necessary and sufficient
conditions for cointegration are established in Section 2. Our new bounds
tests for cointegration are developed in Section 3. We present several
possible procedures, all centered on the same basic idea; and in Section 4
we show how these results may be interpreted as tests of invertibility. The
new procedures are examined and compared in simulations that we report in
Section 5. Size and power comparisons are given for models of different
dimensions and various plausible data generating mechanisms. On the basis
of our simulation experiments (which allow for 50 different data generating
mechanisms in the ARIMA family) we also develop two explicit latent root
tests of cointegration. These tests involve the minimum latent root and the

ratio of the minimum latent root to the average of the roots of a consistent



estimator of P . They are designed to deal with situations where the
bounds test is inconclusive and they provide sharp criteria for acceptance
or rejection of the null hypothesis in the latent root space. Secticn 6
reports some empirical applications of our methods to macroeconomic data.

Concluding remarks are made In Section 7.

2. CONDITIONS FOR COINTEGRATION

Let lyt}g be a multiple (n X 1) time series that is generated in

discrete time according to:
(1L yt - Ayt_l + u, ; t=1, 2,

with

and where Yo may be any random vector, including a constant. In (1) {ut}

is a zero mean, weakly stationary innovation sequence with spectral density

matrix fuu(A) . Throughout the paper we shall require that:

(2 Elul? <o (1=1, ..., n) for some £>2;

and

(3) {ut}g is strong mixing with mixing numbers a, that satisfy

Zm al_z/ﬁ < @
m=]1"m

Under these conditions



(4) T = 2ﬂfuu(0) - E(uoué) + EkglE(uouL + ukué)

{(Phillips and Durlauf (1986, Corollary 2.2)). In fact, the series defining
Z 1is absolutely summable in view of (2) and (3). Under these conditions,
therefore, fuu(A) is bounded and (uniformly) continuous on [-m, =]

We now make explicit the hypothesis of cointegration. The variables of
y, are said to be cointegrated if there exists an n-vector vy = 0 for
which 7’yt is stationary. More specifically, we shall define Y to be
cointegrated if there exists a vector vy = 0 for which v - 7'yt is
weakly stationary with continuous spectral density. This ensures that the
action of the cointegrating vector - reduces the integrated process Ye
to a stationary time series with properties analogous to those of the

innovations driving the mechanism (1). It follows directly from (1) that:

(%) YU = vt - Vt—l .

Thus, some combination of the innovations in (1) has an MA representation
with a unit root. (Note that we are not asserting that Ve is white

noise). We deduce:

THEQREM 2.1 The system (1) is cointegrated with cointegrating vector -y » 0

iff
2 2
(6) 1'fuu(A)1 = cA” +o0(A") as x-=+0

for some constant c¢ .(possibly zero).



PROOF. In view of (5) the spectrum of 1'ut is zero at the origin. To

prove the necessity of (6) we observe that

2
, ix
1 £ 7 = |1 -] £ )

where fV(A) is the spectrum of v, - 1'yt . Since fv(A) is continuous

2
: i 2 4
under the hypothesis of cointegration and since |1 - e" | =2°+007) as

A = 0 we deduce that for some constant c¢

2 2
7'fuu(A)7 = cA” + o(AT) ,

proving the necessity of (6). This condition is also sufficient because

1A

fv(A) is continuous and bounded on every interval ¢ < ) 27, £ >0
(since fuu(A) is continuous and bounded); and, in view of (6), fv(A) -+ c

as A =+ 0 . Hence, v, has continuous and bounded spectrum and is weakly

stationary. O
Note that (6) implies the necessary condition
"N Y2y =0

(that is, Z 1is singular and v 1lies in its null space). This necessary
condition was given and discussed earlier in Phillips (1986b). When there
are several distinct cointegrating vectors vy (i =1, ..., k< n) we have
27i =0 and ¥ has k zero latent roots.

Condition (6) is necessary and sufficient. It is important in what
follows because it more completely characterizes the properties of the spec-
trum fuu(A) under the hypothesis of cointegration. 1In particular, it

tells us that T'fuu(A)v is not only zero at X = 0 Dbut flat at the origin
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as well. This means that for cointegrated systems such components of the
spectrum should be well estimated by an average of the periodogram ordinates

in a band centered on the origin.

3. NEW TESTS OF COINTEGRATION

We shall develop tests based on the latent roots of a consistent esti-
mate of the covariance matrix I given in (4). These tests may be regarded
as performing a form of principal component analysis in the frequency do-
main, a subject on which there is a large literature (see, for example,
Brillinger (1981, Ch. 9) and the references therein). The latter methods
are concerned with approximating a given multiple time series by another
that is of lower dimension and yvet contains much of the information of the
original series. When a multiple time series is cointegrated there clearly
exists a linear filter of the series which retains much of the variability
of the original series but which is of lower dimension. The issue of prac-
tical importance is whether the variability that is lost by this reduction
is small enough to be negligible. 1In a cointegrated system the lost vari-
ability is smaller by an order of magnitude (of integration) so it should be
possible to make an empirical assessment of the existence of cointegration
by principal component methods. The tests we now develop are inspired by
this line of reasoning.

We first consider the following estimator of I :

p, 1k 2ns
(8) Stk = 2’rfuu(o) - 2“[2k+125-—k1uu[ T ]]

2n k 2rs
- [t - el ()]
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where qu(A) - wu(A)wu(A)* is the periodogram and
wu(A) - (2xT)_1/22{uteiAt is the finite Fourier transform. In practical
work qu(l) can be computed using the fast Fourier transform for highly
composite T , although the computation of (8) is in no way burdensome for
typical sample sizes in economics.
S is a smoothed periodogram estimate of I = Zﬂfuu(O) . It is con-

Tk
sistent as T t » provided k t « in such a manner that k/T 4 0 . The

assoclated matrix %uu(o) in (8) is the Daniell estimate of the spectral
density matrix at the origin (see, for example, Priestley (1981, pp.
440-441)) and this involves a rectangular spectral window. Of course, other
choices of spectral window may be used, leading to alternative estimators of
Z . However, the flat behavior of 1'fuu(l)7 in the vicinity of the origin
in the presence of cointegration (see (6) above) indicates that the choice
of a rectangular spectral window may be rather appropriate for the purpose
we intend.

To make our approach as general as possible we shall often wish to

allow for a drift in the generating mechanism (1). In this case (1) is

replaced by

1) =- u + + : -

(1) Ve = #*+ Yy, tu o t=1,

with some constant n-vector u . When there is cointegration in the system
we have 'y = 0 , so that the cointegrating vector 4 now amnihilates the

drift as well as the spectrum of u_ at the origin.
It is easy to accommodate (1)’ in our approach. We simply remove the
zero frequency periodogram ordinate from (8) and continue to compute the

finite Fourier transforms using first differences by, - This is equivalent
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to computing (8) using first differences ahbout their fitted mean (i.e.
by - Ay ). Adjusting degrees of freedom in (8), we therefore recommend the

use of the following estimate of X :

x k 2rns
Tk  k 2s-lRe{qu{ T J}

which we compute using measured first differences u - Ayt .

{9) S

As T t = with k fixed we know from standard spectral theory (for

example, Brillinger (1981), Theorem 7.3.3) that:

1
(10) S Wn(2k, fuu(O)) = 5% Wn(Zk, )

> X
Tk k
where Wn(-,-) signifies a Wishart matrix of dimension n X n with degrees
of freedom and covariance matrix given by the first and second arguments of

Wn , respectively., The latent roots of ST are correspondingly distrib-

k
uted as the latent roots of the scaled Wishart matrix in (10) when T t «
for k fixed (Brillinger (1981), Theorem 9.4.4). Note that we use the
symbol " = " in (10) to signify equality in distribution.

In view of Theorem 2.1 our main concern in testing for cointegration is
naturally with the smallest latent roots of STk . In particular, we need
to assess whether these roots are negligible or statistically insignificant.
This is, of course, a central element in principal components theory in
multivariate analysis. Here the relevant distribution theory for the latent
roots and extreme latent roots of a Wishart matrix has been fully developed
in recent years. Muirhead (1982, Ch. 9) provides an extensive review of

these developments. Unfortunately, the distributions of the extreme roots

depend on the full eigenstructure of the covariance matrix Z and involve
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zonal polynomial representations which make computational work difficult.
The conventional approach in principal components theory has therefore been
to work with large sample approximations to the Wishart distribution
Wn(2k, Z) for large k . Much of this theory was originally developed by
Anderson (1963). When the latent roots of X are distinct the results are
particularly simple. If £i and Ai (i=1, ..., n) are the latent roots
of § and X then 21 is asymptotically independent of Ej (1= 3

Tk

and the standardized wvariates
1/2 .
k (Bi - Ai)/ki (i=1, ..., n)

are asymptotically (k t =) N(0,1) (see, for example, Muirhead (1982), p.
403). Now order the roots as A, > . > ... > A and £, . =2 R,z ... =228
1 2 n 1 2 n

We deduce that
1/2
(11) k (Bn - An)/ln - N(0,1)

If 2, is the one-tailed 100(l-a)% upper significance point of the
N(0,1) distribution then (11) implies the following (approximate)

100(1—e)% one-sided confidence bound for An
_ 1/2 1/2
(12) An < En/(l za/k ) £n + Enza/k

Similarly, a 100(l-a)% upper confidence bound for the sum of the m' = m+l

smallest latent roots of = is

(13) o n [‘? 2?]1/2 1/2
Jmn-m”

J=n—m j < 2:j-n--—m k! z,/k

o
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Anderson (1963) suggested the following test. If the upper bound in (12) is
sufficiently small then the smallest root An may be taken to be neglig-
ible. In the same way if the upper bound in (13) is sufficiently small then
the m' smallest latent roots of 2 may be deemed negligible.
These inferential procedures based on (12) and (13) may be used in the
present context of tests for cointegration. However, the latent rows of X

and ST depend on the units of measurement and this presents difficulty in

k
the selection of a "sufficiently small" criterion for the upper bounds (12)
and (13). Anderson (1963) suggests an alternative procedure based on the

ratio of the smallest latent roots to the sum of all the latent roots. In

this case we obtain by simple manipulations the following 100(l-a)% upper

confidence bound:

Zn ¥
(14) Jopmm § o Jmnm] L, gt/
4] In [+ 4
>R W =, .2,
j=1"] J=17]

where

2 2 1/2 2
n n-m-1, 2 n-m-1 n 2 n
B ~ |Iz, 2. (=, 25y + [z. z.] T, z.} [z. 2.]
[[ j=n-m J] ( j=1 J) j=1 7j) Tj=n-m"j / j=173

(see Anderson (1984), p. 475). Once again, if the upper bound given by (14)
is sufficiently small then the smallest latent roots An, ee., A may be
deemed negligible relative to the sum of all the roots.

It is easy to assess when the upper bound of (14) is small. Take for
example, the case where m = 1 and our focus of attention is the smallest

root of E . If the upper bound given in (14) is less than 0.10/n then we

can say with (approximate) 100(l-a)% confidence that the smallest latent
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root of X is less than 10% of the average of the roots, i.e. E?Aj/n .
This might be interpreted as strong evidence in favor of cointegration (our
alternative hypothesis),
Note that we can apply the test in the opposite direction to provide
confirmation of the null hypothesis of no cointegration. Thus, a lower

100(1-a)% confidence bound for the ratio of the roots 1s given by:

Il T

%ot 172 Zienms

(15) SN Lot N P 7 PN Lo L. N R
st g @ =7,
j=1"] J=1"]

In this case if the lower bound (15) is greater than 0.10/n then we have
100(1-e)% confidence that the smallest root of I 1is greater than 10% of
the average of the roots, Z?Aj/n . This might be interpreted as substan-
tial support for the absence of cointegration.

The bounds tests based on (14) and (15) relate different latent roots
of Z . If the units of measurement of the variables that comprise Ye in
(1) or (1)’ are all the same this procedure seems justified. However, we
may often be interested in situations where the component variables involve
different units of measurement. This is most likely to be the case when the
long run equilibrium relationship of interest relates real and monetary ag-
gregates (as in the quantity theory of monmey). In such situations it seems
preferable to work with dimensionless quantities. These may be constructed
as follows,

First we define the variance of the innovation sequence [ut} in (1)

or (1)', viz,

Eo = E(utut)
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We may require 20 to be nonsingular. Otherwise the support of the distri-

bution of u, has dimension less than n and there is an exact linear de-
pendence in the series which could be removed prior to the analysis. Now

define the matrix

-1/2

(16) P=73 -1/2

b3

0 0 -1+ zm_l(rm + F&)

where

_ < 1/2 R
Pm 20 E(uoum)z0

and 23/2 is the positive definite square root of EO . Next, we introduce

the sample estimate of 20

—1 TA ~ ,
S =T Elutut

where ﬁt - Ayt - Ay = measured first differences about the mean. The cor-

responding sample estimate of P is

-1/2 1/2

S..S

(17) R=S Tk

Since § = Zo + OP(T-l/z) we now find in place of (10):

_1
R > 2kW (2k, P)

as T+« with k fixed. Define r., =z r

= = .,..27T to be the latent
1 n

2
roots of R and Py > Py > ... > P to be the latent roots of P . In the
same way as before, the latent roots r, are (approximately) independently

distributed as N(pi’ p?/k) for large k . We may therefore deduce confi-
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dence bounds for the roots of P and ratics of the roots of P as we did
before for % .
Thus, for the smallest root Py of P, we have the upper 100(l-a)%

confidence limit:

1/2 |
(18) Py < r + rnza/k N

and the corresponding lower 100(l-a)% confidence limit:

1/2
(19) r -rz /K<,

where, as before, Q(za) = l-aa and &( ) 1is the standard N(0,1) c¢.d.f.
Similarly, upper and lower 100(l-a)% confidence bounds for the ratio of

the sum of the m smallest roots to the sum of all of the roots of P are

given by:
n n
pI p. z T,
(20) I ) < jn“ m, zaD/kl/z
=, . Z, .r,
3=173 j=1%3
and
n c 50 5
(21) Thmm J o, D/k1/2 < 70T ]
st oo, @ =0
J=173 j=173
where

D - [[z“ r ]2(zn‘m'1r2) + [z“‘m§1 ]22“ r2 /[z“ i
jmn-u’j) 3=l Ty =15 ) “3men’ =)

In applying these confidence bounds to tests of cointegration some gen-

eral guidelines will once again be useful. Since we are now working in
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terms of dimensionless quantities like correlation coefficients some broadly
applicable rules are possible. Thus, for the smallest root bounds given by
(18) and (19) we could suggest the following: if the upper bound (18) is
less than 0.05 then there is strong evidence in favor of cointegration; if
the upper bound is less than 0.0l then the evidence might be taken as being
very strong. Conversely, if the lower bound is above 0.05 (respectively,
0.10) then the evidence favors (respectively, strongly favors) the null of
no cointegration. For the ratio bounds given by (20) and (21) we might con-
tinue to work with the earlier rule based on the value 0.10/n . For
example, if the upper bound (19) is less than 0.10/n then the evidence
supports the existence of m cointegrating vectors.

The adequacy of these broadly defined criteria for the bounds tests has
been investigated by simulation methods. The results, which are very en-

couraging in terms of both size and power, are reported below in Section 5.

4, TESTS FOR INVERTIBILITY AND UNIT ROOTS

The bounds tests developed in the preceding section may be integpreted
as simple tests of the invertibility of the moving average representation of
a stationary time series. Note that P, = 0 1iff An =0 (i.e. the small-
est latent voot of T is zero). This is true iff there is a degeneracy in
the MA representation of the stationary process u_ . In particular,

A, () =0 iff we can write
min

(22) u, - D(L)st_— {AC(L) + (1—L)B(L)}ct

where A is nxn of rank <n , C(L) and B(L) are matrices of poly-

nomials in the lag operator L and £, is an 1id(0,0) sequence of prim-
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itive innovations with nonsingular covariance matrix € . The degeneracy in
D{(L) occurs for any vector + in the null space of the matrix A . Then
¥'D(l) = 0 and 1'ut - (le)-y'B(L)::t -V T Ve for v, stationary with
spectral density 1'B(eiA)QB(eiA)*7 . In such cases the MA representation
(22) is noninvertible. Test of the invertibility of (22) may therefore be
mounted using the bounds test procedures developed in the previous section.
Note that the null hypothesis in this case is invertibility and the alterna-
tive is noninvertibility (corresponding to I and P being of deficient
rank). We should remark, in addition, that invertibility may fail due to
the existence of a degeneracy in the spectrum fuu(A) = pg(z) = D(z)OQD(z)*
at a point on the unit circle z = eiA other than A = 0 . Obviously the
bounds tests described earlier are constructed to focus attention on the
frequency X = 0 . Analogous procedures may be developed to explore pos-

sible degeneracies at other frequencies.

In the univariate case (n = 1) the bounds tests may also be inter-
2

preted as tests for the presence of a unit root. We now write o = I |
02 = 3 S, = 8§ 2 . P and r2 =R Our interest is in th
0" % ' Stk T %tk P e est is in the

(alternative) hypothesis

H : p2 - az/ag =0 .
We accept H if the upper limit

r2 + rzza/kl/2

is sufficiently small ( < 0.05 say) for a preassigned significance level of

o (one-tailed 5%, say). We reject H on the other hand if the lower limit
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r2 - rzzc‘[/k]'/2

is above a preassigned point such as 0.05. Note that when H {is true we
necessarily have the MA representation

- -v
Y T Ve t-1

(cf. (22) above). It follows from (1) that Ve =V and Ye is station-

t
ary. Thus, the alternative hypothesis in this test corresponds to a sta-
tionary alternative to (l). Thus, the bounds test based on r2 here
corresponds to a test for the presence of a unit root in the autoregressive
representation (1) against a stationary alternative. We remark that this
idea has recently been pursued in interesting empirical research by Cochrane
(1986). Cochrane's approach is to empirically estimate the variance ratio

az/ag for aggregate time series like GNP and assess its magnitude. Our

bounds test formalizes this notion into a statistical test.

5. MONTE CARIO RESULTS

{a) Bounds Tests
This section reports the results of a Monte Carlc experiment designed
to assess the performance of the latent root bounds tests for no cointegra-
tion. We are primarily interested in two issues: (a) the stability of the
empirical distribution functions of the bounds statistics to the form of the
data generation process (DGP) of the innovation sequence [ut} ; and
{(b) the power of the test procedures under the alternative of cointegration.
The simulations were carried out for model sizes ranging from two to

five integrated variables, and for three different assumptions about the



21

data generation process:

{a) vector MA(l) : u, - st + ¢§t-1

(b)) wvector AR(1l) : u_ = ¢ut_1 + ét

(¢) wvector ARMA(1,1) : u, = ¢*ut_1 + ¢*§t_1 + Et
where % , ¢ , ¢* and ¢* are the parameter matrices (each n xn ) of
the process and &t is n-vector white noise.

Estimates of the asymptotic distributions of the various test criteria
under the null hypothesis of no cointegration were generated using 500 ob-
servations and 5000 repetitions. The innovation sequences for the integrated
processes were assumed to be independent so as to ensure that the multiple
correlation coefficient between the innovation sequences was zero under the
null (see Phillips and Quliaris (1987), Section 2). Thus, the parameter
matrices % , ¥*¥ , and ¢ and ¢* were all set to diagonal matrices.
Specific values for the diagonal entries are given in the notes to Tables
1-2.

Simulations under the alternative of cointegration were conducted for
sample sizes equal to 100, 150 and 200 observations, using 2500 iterations.
Note that under the alternative of cointegration, the innovation sequences
are generated to be linearly dependent with multiple correlation coeffi-
cient, p , equal to unity (compared to zero under the null)--again see
Phillips and Ouliaris (1987). In order to center the cointegrating regres-
sion, it was assumed that there was a single cointegrating vector (m = 1)
of the form ' = (1, -i’) , where i 1is the (n~1) x 1 sum vector and n
is (as before) the dimension of the system. Note that cointegrating vec-
tors of this form appéar quite frequently in modern economic models of long-

run equilibrium behavior. Examples include the term structure of interest



22
rates, purchasing power parity, and the monetary equation, MV = PY . (See
Campbell and Shiller (1986) and Engle and Granger (1987) for additional
examples). Finally, the spectral density matrix was estimated by (18), us-
ing k = TO°6 ordinates of the second-order periodogram, which was computed
using the IMSL Fast Fourier transform routine FIRCC.

Tables 1 and 2 and Figures 1 and 2 summarize the results for the crit-
jcal values and power of the latent root procedures for testing the null
hypothesis of mno cointegration. These procedures are based on the confi-
dence bounds given by (13), (14), (18) and (20). Note that the critical
values of the ratic test are expressed as a proportion of the mean of the
latent roots. The simulations show that the critical wvalues of the upper
bounds for the minimum latent root {see (13) and (18)) are sensitive to the
assumptions made about the form of the DGP (see Tables la and 1b). This, of
course, makes it difficult to design simple decision rules for rejecting the
null hypothesis of no cointegration. However, the simulations indicate that
the probability of obtaining a latent root that is near zero under the null
hypothesis of no cointegration is essentially zero. Thus, the minimum upper
bound for the smallest latent root is much greater than zero for all the
models considered. Moreover, the tabulations reported in Table 2 show that
the power of the minimum latent root procedure based on STk and inequality
(13) is high and is seldom below 90% at the 5% level of significance. 1In
the case of the unit free bounds test for the minimum latent root, power was
found to be 100%, irrespective of the form the DGP, the number of observa-
tions, and the dimension of the model. This feature of the bounds test is
shown clearly in Figure 1 which plots the cumulative distribution function

obtained under the null and the alternative for Models 5(a)-5(c). As this
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figure demonstrates, the location of the distributions under the null and
the alternative are so clearly differentiated that their respective supports
are quite disjoint.

In the case of the ratio bounds procedures based on STk and inequal-
ity (14), we see even stronger evidence of the absence of a zero latent root
under the null hypothesis of no cointegration. The minimum upper bound for
the smallest latent root as a percentage of the overall mean is less than
10% only in the case of Model 5(c) (see Table 1lb), and is typically much
higher. This, of course, implies that a 10% decision rule for rejecting the
null hypothesis would be too conservative, since the true size of the test,
at least for the DGP's considered in the tables, would be zero. However,
the power of the ratio test, although high for models involving two inte-
grated variables, is low for Models 5(b) and 5(c) (see Table 2).

Turning to the unit free ratio bounds procedure (based on inequality
(20)), we observe that the critical values of the upper bounds are relative-
1y stable across DGPs for the innovation sequence, though they do appear to
be sensitive to the dimension of the system (see the Ratio Test panel of
Table 1(b)). Power was found to be 100%, once again irrespective of the DGP
for the innovation sequence, the number of observations being used, and the
dimension of the model. The stability of the upper bounds and the power of
the unit free bounds test is shown clearly in Figure 2. Again we see that
the distribution of the bounds test under the null and the alternative are
clearly differentiated. The figure also highlights the conservative nature
of a 10% rejection rule for the unit free ratio test.

In summary, the Monte Carlo results indicate that latent root proce-

dures are apparently very powerful tools for detecting the presence or
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absence of a cointegrating vector. On the basis of our results we feel able
to recommend the following diagnostic procedure for testing the null hypo-
thesis of no cointegration:

(1) Evaluate the upper and lower bound confidence bounds given in (20)
and (21) for the ratio of the minimum latent root to the overall
mean of the roots of R ;

{2) Reject the null hypothesis of no cointegration if the upper bound
is less than 0.10; '

(3) Accept the null hypothesis of no cointegration if the lower bound
is greater than 0.10.

Our simulations indicate that this is a simple, powerful and yet conserva-

tive procedure for testing for cointegration.

(b) Explicit latent Root Tests

The bounds procedure recommended above involves a region in which the
test is inconclusive, just as in the case of the Durbin-Watson bounds tests
of conventional regression theory. The inconclusive region arises when the
10% decision rule lies between the computed lower and upper bounds for the
minimum latent root. In order to overcome this problem, we need to revert
to a more traditional significance testing approach which partitions the
support of the null distribution into acceptance and rejection regions. The
tests we develop in this section are of this type. They are suggested by
the Monte Carlo simulations for the unit free versions of the bounds tests.
These simulations demonstrated that the empirical distributions of the
bounds tests under the null and the alternative hypotheses are typically
quite disjoint. This feature of the empirical distributions, together with

their apparent stability to variations in the form of the DGP for the
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innovation sequence, makes it possible to select critical values for the
minimum latent root and its ratio to the overall mean which fall in the
region between the empirical domains of the null and alternative distribu-
tions. Relative to the 10% rule for the bounds tests, these critical wvalues
would yield tests which are more powerful, but compromise on size.

We therefore derived critical values for the unit free minimum latent
root and its ratio to the overall mean of the latent roots, Table 3 con-
tains the critical values for the tests statistic at various levels of sig-
nificance for systems involving 2 te 5 integrated variables. The critical
values are for the unit free estimator, which showed the least sensitivity
to the form of the DGP in the simulations for the bounds procedure reported
above.

The critical values presented in Table 3 were obtained by averaging the
corresponding upper and lower percentiles values of the null and alternative
distributions, respectively, across 50 DGP's for the innovation sequence.
The empirical distributions were generated using 2000 iterations and 250
observations. The form of the DGP was assumed to be ARMA(1l,1). The param-
eters of the process were selected randomly from a uniform distribution over
the interval [a,b] , restricting draws to ensure a stationary and invert-
ible ARMA(1l,1) by setting a = -0.60 , b = 0.80 . This delimitation of
parameter constellations avoids potential problems arising from ARMA coeffi-
cients in the region [-1, =0.6]. This region provides a buffer zone between
the null and alternative hypotheses. By eliminating the region we help to
keep power high and yet retain very conservative size in our test procedure
for a wide class of potential innovation sequences. Note that as a =+ -1

the system becomes trivially cointegrated since it involves variables with
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different orders of integration. Thus, when the autoregressive coefficient
+ =1 we have a system involving TI(1) and I{2) variables, whereas when
the moving average coefficient » -1 we end up with a system of I(l) and
I(0) wvariables. Our test is designed to be powerful against these forms of
cointegration as well as those that involve just I(l) system variables.

The critical values presented in Table 3 are easy to use. The null
hypothesis of no cointegration is rejected if the computed test statistic is
less than the critical wvalue at a given level of significance. 1In the case
of systems involving 2 integrated variables, for example, we reject the null
hypothesis of no cointegration at the 99% level if the minimum latent root
is less than 0.3397, or the ratioc of the minimum latent root to the overall
mean is less than 0.2521. Note that relative to the 10% decision rule for
the upper bounds, these statistics are more liberal in terms of size, but

involve greater power.

6. EMPIRICAL APPLICATIONS

In this section we apply the unit free bounds procedure and the exact
latent root tests for testing the null hypothesis of no cointegration to
five models of potentially cointegrated systems:

(1) Total and Non-Durable Consumption and Disposable Income;

(2) Nominal Money and Income;

(3) The Quantity Equation: MV = PY ;

(4) Real Stock Prices and Dividends; and

(5) The Term Structure of Interest Rates.

Models (1)-(3) were originally formulated as cointegrated systems by

Engle and Granger (1987). They found evidence in favor of a cointegrating
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vector only in the case of real non-durable consumption and disposable in-
come. Their analysis was based on the residuals of the cointegrating re-
gression, using the DW and ADF statistics to detect nonstationarity in this
vector. The critical values for the DW and ADF were generated by a small
Monte Carlo experiment for an assumed, but arbitrary, DGP for the innovation
sequence. Campbell and Shiller (1986) employed these critical wvalues to
accept the null hypothesis of no cointegration between real stock prices and
dividends, and accept cointegration between short- and long-term yields on
bonds (the one month and 20 year yields respectively).

Table 4 presents the results of applying the unit free bounds proce-
dures and the exact latent root tests to the above models. The innovations
for the system were estimated by the measured differences of the original
series. Using the 10% decision rule for the ratio test, we find that the
null hypothesis of no cointegration cannot be rejected for Models 3-5. In-
deed, there is strong evidence against cointegration. For example, in the
case of the real quantity equation, the lower bounds for the minimum latent
root, expressed either in absolute terms or as a proportion of the average
root, are not close to zero. This result holds true for all definitions of
the money supply--Ml, M2, M3 and total liquid asset holdings. The results
for consumption and disposable income (Model 1) are inconclusive, since the
lower bound of the minimum latent root as a ratio of the overall mean is
less than 10%. In the case of Model 2, which is testing the long run rela-
tionship between nominal income and money, the bounds test is inconclusive
using M2 and M3.

Additional evidence is brought to bear when we apply the explicit

latent root tests. Using either the exact minimum latent root test or the



28
exact ratio test we may reject the null hypothesis that consumption (however
defined) and disposable income is not cointegrated. At the 90% level, nom-
inal income and M2, M3, and aggregate liquid assets are found to be cointe-
grated using either decision rule. In the case of Model 3, which is testing
the stationarity of velocity over the sample period, we cannot accept the
null hypothesis of no cointegration using the explicit minimum latent root
test. Using the ratio test, we cannot reject the null hypothesis when money
is defined as M1, but reject for broader definitions of the money supply at
all significance levels. However, the minimum latent roots for these models
are too large relative to the critical value of the minimum eigenvalue to
strongly reject no cointegration in these cases. Finally, at the 90% level,
we cannot reject the null hypothesis of no cointegration in the case of the
term structure of interest rates and stock prices and dividends.

Acceptance of no cointegration for real stock prices and dividends is
consistent with the results of Shiller (1981), who rejected the present
value model of stock prices using volatility bounds tests. The results for
the term structure of interest rates are consistent with previous results
for the rational expectations theory of the term structure (see Shiller
(1986, Table 2) for a summary of these results). Given the observed empiri-
cal repularity of the relationship between consumption and income, strong
rejection of cointegration between consumption and disposable income using
the bounds procedure is somewhat surprising, but is probably a reflection of
the conservative nature of the 10% bounds rule in terms of size. Accepting
the null hypothesis of no cointegration between narrowly defined measures of
money and income is consistent with the empirical observation that the vel-

ocity of money, for narrowly defined definitions of the money supply, has
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behaved erratically since the deregulation of the banking system in 1981.

7. CONCIUSION

Testing for the presence of cointegration amongst agpregate economic
time series seems likely to become a standard method of assessing the empir-
ical support for steady state theories of macroeconomic behavior. Cointe-
grated systems capture the i1dea that individual economic time series often
exhibit nonstationary characteristics but that certain combinations of the
series move together over time. Since linear combinations of nonstationary
variables are typically also nonstationary, evidence that a cointegrating
vector exists obviously provides strong support for the existence of a long-
run relationship amongst a group of integrated variables.

This paper develops diagnostic procedures that are designed to detect
the presence of cointegration in multiple time series. Drawing on earlier
work, we provide necessary and sufficient conditions for cointegration.
These conditions prescribe the behavior of fuu(A) , the spectral density
matrix of the innovations, in a neighborhood of the origin. Under cointe-
gration, I = 2wfuu(0) is singular and its smallest latent root is zero.
These results motivate a new class of statistical tests for cointegration
that are based on principal components methods. The tests place upper and
lower bounds on the minimum latent root (and ratioc of the minimum to the
average latent root) of a unit free form of the matrix 2 . The resulting
bounds tests are simple to construct, involve only the standard normal dis-
tribution and yield criteria for acceptance and rejection of cointegration.
Monte Carlo simulations indicate that the bounds test that we recommend in

Section 5 provides a powerful diagnostic procedure for testing the null
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hypothesis of no cointegration. We also develop exact latent root signifi-
cance tests to deal with situations where the bounds test is inconclusive.
These partition the latent root space into acceptance and rejection regions
and thereby provide sharp criteria for the presence or absence of cointegra-
tion, The exact latent root tests appear froﬁ our simulation evidence to be
more powerful than the bounds procedure, but less conservative in terms of
test size.

We emphasize that our diagnostic procedures do not purport to test a
null hypothesis of cointegration or, more specifically, the hypothesis
Amin(z) = 0 . The pitfalls of developing classical Neyman Pearson tests of
the nmull Amin(E) = 0 have recently been considered at length in Phillips
and Ouliaris (1987). 1In effect, no generally applicable theory is possible
and classical tests of this null are inconsistent. Our appreoach in this
paper works from a null hypothesis of no cointegration. This enables us to
use conventional asymptotic methods to assess whether any latent roots of Z
are negligible. The methods we recommend have an established precedent in
principal components theory. Indeed, they may be regarded as performing a

form of principal components analysis for time series.



TABLE 1

(a) CRITICAL VALUES FCR BOUNDS TESTS OF

NO-COINTEGRATION BASED ON §

Tk
Size Min 5% 10% 15% 20% 25% Max
Minimum Latent Root RBound (Inequalit 13

2(a) 1.4503 2.2308 2.3796 2.4729 2.5523 2.6340 4.8233
(b) 2.9681 4.,1828 4.4459 4.6194 4.7702 4.,8923 g8.9191
(c) 9.4610 13.4401 14.3726 15.0415 15.5502 6.0805 1.2651

5(a) 0.8148 1.2406 1.3186 1.3673 1.4111 1.4494 2.4358
(b) 1.8669 2.7031 2.8781 3.0009 3.0998 3.1865 5.6714
{(c) 2.0251 2.9079 3.0986 3.2165 3.3194 3.4037 6.1329

Minimum Latent Bound: Ratio Test (Inequalit 4

2(a) 0.4555 0.7358 0.7758 0.8007 0.8225 0.8403 1.2109
() 0.4433 G.5709 0.6089 0.6325 0.6541 0.6721 1.1151
(c) 0.1185 0.2226 0.2448 0.2600 0.2731 0.2847 0.7244

5(a) 0.3477 0.4906 0.5190 0.5398 0.5569 0.5717 0.9770
(b) 0.1015 0.1645 0.177¢9 0.1869 0.1945 0.201e 0.4522
(¢) 0.0567 0.1051 0.1140 0.1202 0.1250 0.1294 0.3031

(b) CRITICAL VALUES FOR BOUNDS TESTS OF
NO-COINTEGRATION BASED ON R
Size Min 5% 10% 15% 20% 25% Max
Minimum Latent Bound (Inequality (18))

2(a) 1.3669 1.9253 2.0145 2.0811 2.1312 2.1788 3.3051
(b) 2.5414 3.3412 3.9710C 3.5695 3.6469 3.7084 5.3405
(c) 4.4783 5.6640 5.8338 5.9547 6.0406 6.1132 7.5020

5(a) 0.8633 1.2540 1.3259 1.3740 1.4068 1.4410 2.3076
(b) 1.6536 2.4808 2.5937 2.6782 2.7450 2.8064 4.0417
(c) 1.5223 2.2549 2.3617 2.4487 2.5090 2.5519 3.7517

Minimum Bound: Ratio Test (Tmequality (20))

2(a) 0.7584 0.9671 0.9965 1.0165 1.0331 1.0466 1.2151
(b) 0.7688 0.8959 0.9217 0.9354 0.9473 0.9579 1.2090
{c) 0.9489 1.0422 1.0589 1.0693 1.0772 1.0842 1.2136

5(a) 0.5083 0.6804 0.7123 0.7364 0.75862 0.7702 1.1043
{b) 0.4066 0.5891 0.6158 0.6339 0.6476 0.6602 0.9332
(c) 0.4529 0.6084 0.6357 0.6539 0.6673 0.6800 0.9641




TABLE 2

REJECTION RATES FOR BOUNDS TESTS OF NO-COINTEGRATION

T-2

BASED ON sTk
Model Sample
Size Size Min 5% 10% 15% 20% 25%
Minimum Latent Root Bound (Inequalit 13

2(a) 100 84.95 99.20 99.55 99.70 99.75 99.85
(b) 96.05 99,55 99.75 99.90 99.90 99.90
{(c) 100.00 100.00 100.00 100.00 100.00 100.00
(a) 150 95.60 99 .85 99.95 100.00 100.00 100.00
(b) 92.10 98.60 99.15 99 .60 99.75 99.75
(e) 100.00 100.00 100.00 100.00 100.00 100.00
{(a) 200 98.15 100.00 100.00 100.00 100.00 100.00
(b) 98.65 100.00 100.00 100.00 100.00 100.00
(c) 100.00 100.00 100.00 100.00 100.00 100.00

5(a) 100 65.30 88.40 90.45 91.55 92.25 92.60
(b) 41.10 83.35 B8.05 90.95 92.25 93.90
(c) 66.65 96 .45 98.20 G8.80 99_20 99.45
(a) 150 76.90 92.40 94 .05 94.75 95.20 95.55
(b) 33.80 83.30 88.55 91.80 94.05 95.10
(c) 76.55 98.65 99.25 99 .55 99 .80 99,90
(a) 200 81.60 94.10 95.40 96.15 96.85 97.00
(b) 26.15 79.35 86.40 90.55 92.35 94 .00
(c) 83.65 99,80 100.00 100.00 100.00 100,00

Minimum tent Root Ratio (Inequalit 4

2(a) 100 80.75 99 .30 99.65 99.65 99 .75 99.75
(b) 82.05 95,20 96.65 97.40 97.90 98.15
(c) 96.25 99.90 99,95 99.95 99,95 100.00
{a) 150 89.90 99.90 99,95 99.95 99.95 89,95
(b) 92.15 98.60 99.15 99 .60 99.75 99,75
{c) 74.55 98.80 99,25 99 .50 99.60 99.75
(a) 200 94 .25 99.95 100.00 100.00 100.00 100.00
(b) 96.45 99.60 99.85 100.00 100.00 100.00
{(c) 82.00 99.50 99.70 99 .80 99.90 99 .95

5(a) 100 88.35 98.05 98.75 99.15 99 .40 99 .60
(b) 4.00 26.10 31.90 35.95 39.90 43,55
(c) 9.55 58.05 6€5.00 69.45 72.80 75.95
(a) 150 91.60 98.70 99 .35 99,50 99 .85 99.85
(b) 2.75 25.50 32.30 37.80 41.80 45.10
(c) 13.75 72.85 79.35 83.55 86.45 88.65
(a) 200 92.75 99.40 99.65 99,65 99.75 99.75
(b) 1.65 25.95 34.50 40 .45 45,35 50.30
{c) 18.35 85.55 90.70 93.15 94.90 95.80




(1)

(ii)

(iii)

(iv)

(v)

(vi)

NOTES TO TABLES 1l-2

The empirical distribution under the null hypothesis of no cointegra-
tion was generated using 5000 iterations and 500 observations. Simu-
lations under the alternative used 2000 iterations, and sample sizes
were between 100 and 200 observations.

Model dimension includes the dependent variable.

The parameters of the DGP of u_ were set to:

Model MA(L) AR(1) ARMA(1,1)
Size Diagonal of » Diagonal of ¢ Diagonal of ¢*
1 0.90 0.75 0.89 0.95
2 0.45 0.53 0.77 0.11
3 0.35 0.42 0.12 0.56
4 0.67 0.92 0.45 0.05
5 0.12 0.88 0.34 0.98
Remaining elements of % , ¢ , ¢* and y* were set to zero.

Thus, for a ARMA(1l,l) model with 2 integrated variables, the data
generation process for the innovation sequence would be as follows:

First process U= 0.89u1t_1 + 0.95£1t_1 + ¢

o = 0.77u2t_1 + 0.11£2t_1 + £

1t
5 d
econd process u 2t

The random numbers e were drawn from N(0,1) distribution using
the random number generator: "SUPER-DUPER."
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TABLE 3

CRITICAL VALUES FOR EXPLICIT LATENT ROOT TESTS
BASED ON THE UNIT FREE ESTIMATOR R

99% 95% 90% 85% 80% 75%

Minimum Latent Root

2 0.3397 0.3620 0.3763 0.3869 0.3958 0.4038
3 0.2782 0.2987 0.3124 0.3224 0.3304 0.3381
4 0.2106 0.2340 0.2476 0.2576 0.2660 0.2732
5 0.2018 0.2220 0.2349 0.2438 0.2514 0.2584
Ratio of Minimum Latent Root to Mean
2 0.2521 0.2554 0.2592 0.2624 0.2655 0.2685
3 0.1718 0.1803 0.1866 0.1914 0.1955 0.1994
4 0.1360 0.1487 0.1565 0.1620 0.1668 0.1709
5 0.1261 0.1371 0.1438 0.1490 0.1533 0.1572
Notes to Table 3
(i) Critical values were obtained by averaging, across all the data gen-
eration processes, the upper and lower percentile values of the
empirical distributions obtained under the alternative of co-
integration and the null of no cointegration, respectively.
(ii) The innovation sequences followed an ARMA(1l,l1) process, viz:
Beg T fi%e1,s Yo S0 BT e 0
-0.70 < 91 =0.60 , -0.40 = ¢i =< 0.80 .
(1{1i) The critical values reported above are based on 50 random selections

of [¢i, ¢i] . For each selection of [¢i, ¢i] , we generated the

empirical distributions of the latent roots using 2000 iterations and
250 observations,



TABLE 4

EMPIRICAL RESULTS FOR COINTEGRATION MODELS:

UNIT FREE ESTIMATOR

Bounds
_ upper lower upper lower

Model T k r, rn/r T, r (rn/r) (rn/r)
1. Consumption and Disposable Income:

(Real, per capita, 828%)

1947(2)-1986(1)

(a) Non-Durable 156 12 0.3120 ¢0.1508 0.7187 0.1903 0.5066 0.0966

(b) Total 0.2814 0.1271 0©.6482 0.1716 0.4319 0.0767
2. Nominal Money and Income:

1959(3)~1986(1)

(ay M1 108 10 0.4504 (0.1925 1.1846 0.2655 0.6567 0.1122

(b) M2 0.3663 0.1613 0.9634 0.2158 0.5598 00,0854

{c) M3 0.3921 0.1740 1.0314 0.2310 0.6000 0.0960

(d) Liquid Assets 0.3795 0.2119 0.9981 0.2234 0.7166 0.1310
3. Quantity Equation: MV = PY

1959(3)-1986(1)

(2) Ml 108 10 1.8257 0.2077 4.8019 1.0762 1.0092 0.2379

(b) M2 1.6355 0.16%0 4.3009 0.9641 0.8299 0.1843

(c) M3 1.6027 0.1552 4.2154 0.9447 0.7657 0.1656

(d) Liquid Assets 1.3769 0.1350 33,6217 0.8116 0.6724 0.1378
4, Stock Prices and Dividends

1872-1985 114 10 0.5556 0.2881 1.4561 0.3262 0.9359 0.2167
5. Term-Structure: One Month, 20 Year Yield

1959(4)-1983(1) 296 17 0.4010 0.2894 0.7644 0.2595 0.B555 0.3024

Notes: Data for Models 1-3 are from the June edition of the 1986 Citibase

databank. Data for Models 4 and 5 were kindly provided by J.

Campbell and R. Shiller.
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