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Abstract

A theory of choice under uncertainty is proposed which removes the com-

pleteness assumption from the Anscombe-Aumann formulation of Savage’s theory

and introduces an inertia assumption. The inertia assumptlon is that there

i1s such 2 thing as the status gquo and an alternative is accepted only if it

is preferred to the status gquo. This theory is one way of giving rigorous

expression to Frank Knight's distinction between risk and uncertainty.
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INTRODUCTICN

Many years ago, Frank Knight (1921) made a distinction between risk and
uncertainty. A random variable is risky if its probability distribution is
known, uncertain if its distribution is unknown. He argued that uncertainty
in this sense is very common in economic life and he based a theory of prof-
it and entrepreneurship on the idea that the function of the entrepreneur is
to undertake investments with uncertain outcome,

From the point of view of Bayesian decision theory, Knight’'s distinc-
tion has no interesting consequences. According to the Bayesian theory
decision makers act so as to maximize the expected value of their gain, no
matter whether the fluctuations faced are risky or uncertain.

However, Knight's idea does seem to have some intuitive appeal. Ells-
berg's (1961, 1963), experiments seem to show that people are repelled by
vagueness of probabilities. Bayesian decision theory also has the following
disturbing implication. Suppose two decision makers are faced with the same
decision problem with the same objectives, constraints and information, but
with uncertain outcome. Suppose the objective function is strictly concave
and the constraint set convex, so that the prior distribution of a Bayesian
maximizer determines a unique decision. Then, if the decision makers do not
choose the same decision, one must conclude that they have different prior
distributions and so would be willing to make bets with each other about the
ocutcomes. These conclusions strike me as questionable. Betting outside of
gambling casinos and race tracks is uncommon, but disagreement over coopera-
tive decisions seems to be part of every-day life. One may try to explain
the lack of betting by mutual suspicion that the other decision maker has
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secretly acquired superior information. I find this argument hard to re-
concile with the observation that people usually seem very fond of their own
decisions. Knight's ideas suggest another way to explain the absence of
bets. In the presence of uncertainty, decisions may not be determinate, and
bets may be shunned unless they are very favorable.

In this paper, I propose a rigorous formulation of Knight's somewhat
vague ideas. Thelbasic idea is to drop the completeness assumption from
Savage's (1954) framework and to add an assumption of inertia. (In fact, I
drop completeness from the reformulation of Savage's theory made by Anscombe
and Aumann (1963).) The completeness assumption asserts that any two lot-
teries are comparable in the preference ordering; that is, one is preferred
to the other or they are equivalent in the ordering. When this axiom is
dropped, one obtains a set of subjective probability distributions rather
than a single one. One lottery is preferred to another if its expected
value is higher according to all the distributions. The idea of the inertia
assumption is that a person never accepts a lottery unless he prefers ac-
ceptance to rejection. There is a status guo with which he stays unless an
alternative is preferred. Without the inertia assumption, choices between
all incomparable alternatives would be arbitrary. 1 apply the adjective
"Knightian" to behavior consistent with the assumptions just described.

Knightian behavior seems to correspond to Knight's intuition about in-
vestor behavior. If an individual found a new investment opportunity uncer-
tain and hard to evaluate, he would be unlikely to undertake it, for he
would do so only if it had positive expected value for each of a large set
of probability distributions. There is a form of aversion to uncertainty

which is distinct from the usual risk aversiom,



Also, Knightian behavior does not lead to the paradoxical high propen-
sity to bet mentioned earlier. Two Knightian decision makers in disagree-
ment would not be willing to bet with each other on some event unless the
minimum probability one decision maker assigned to the event exceeded the
maximum probability assigned by the other.

It is important that in Knightian decision theory ome cannot predict
decisions from knowledge of preferences. The theory can say only which de-
cisions would be undominated by others and would be preferred to the status
quo. The theory would not be contradicted if a decision maker cannot be
persuaded to move from one undominated decision to another, as 1 ghall ex-
plain presently.

The indeterminateness of decision may be viewed as a defect of the
Knightian theory, since theories should explain as much as possible. But 1
suspect that indeterminateness, as well as uncertainty aversion and inertia,
may turn out to be real and important. If this is so, they will have to be
accommodated, perhaps, of course, by a better theory than the one proposed
here.

The inertia assumption prevents a Knightian decision maker from making
intransitive choices, provided the choices are between lotteries that are to
be carried out. Choices between hypothetical choices could, however, be
highly intransitive.

What I call the Knightian theory is not original. There exists a size-
able literature on the subject, including papers by Aumann (1962), Smith
(1961}, Walley (1981, 1982), and Williams (1974). This literature is re-
viewed in Section 7. What is mew in this paper, 1 believe, is the emphasis

on the inertia assumption. This assumption strikes me as crucial, yet I



have nowhere found it made explicit or defended.

It is perhaps unfair of me to apply Frank Knight’s name to the theory
described in this paper. It is not entirely clear what he had in mind, and
there is an attractive alternative class of preferences which display uncer-
tainty aversion. These are complete preferences represented by a utility

function of the form u(x) = min Eﬂx , where x 1is a random variable, A
neA

is a set of probability distributions and E‘,r is the expectation with re-
spect to =« . Such preferences have been characterized axiomatically by
Gilboa and Schmeidler (1986). Hereafter, I will refer to them as Gilboa-
Schmeidler preferences. Such preferences are probably more convenient than
the Knightian theory of this paper for the foundation of statistics, as I
explain in Section 7. However, Gilboa-Schmeidler preferences do not lead to
the sorts of economic behavior which make Knightian behavior interesting.
For instance, unless an individual with Gilboa-Schmeidler preferences has
the same utility in all states of the world he may behave much like an in-
dividual with preferences obeying the expected utility hypothesis of Savage.
The distinction between Gilboa-Schmeidler and Knightian behavior is dis-
cussed in Section 5.

I propose the Knightian model of behavior because it helps rationalize
many economic phenomena which otherwise seem difficult to explain., Some of
these are discussed in the conclusion. The ability of the Knightian model
to explain economic phenomena does not make it true in a descriptive sense.
Only careful empirical work can establish whether the predictions of the
Knightian theory occur with sufficient regularity that the theory may serve
as a sound basis for economic analysis. I discuss experimental work and

possible experiments in Section 6.



For good reasons, economists tend not to view empirical evidence as
sufficient reason for accepting models of individual behavior. Economists
want their models also to represent individuals as rational beings. I have
viewed my main task in writing this paper to be to convince readers that
Knightian behavior is ratiomal, just as rational as behavior generated by
the expected utility hypothesis or by Gilboa-Schmeidler preferences.

A person is defined to be rational, I believe, if he does the best he
can, using reason and all available information, to further his own inter-
ests and values. I argue that Knightian behavior is rational in this sense.
However, rationality is often used loosely in another sense, which is that
all behavior {s rationalizable as serving to maximize some preferemce. The
two senses of rational are in a way converse., The first says that when
preference exists, behavior serves it. The second says that all behavior is
generated by preferences. The second sense seems to be very unlikely to be
true, except by definition. It does not even seém to be useful as a defini-
tion. If choice is made the definition of preference, then one is led, like
a true sophist, to the conclusion that people always do what they want to
do, even when compelled to do things by threats of violence. The first
sense of rationality is the one which is important for economic theory, at
least as it is presently formulated., One would like to believe that people
usually act so as to serve their own economic interests, at least when these
interests are clear and do not conflict with other interests. If one iden-
tifies the two converse senses of rationality, one needlessly jeopardizes
the first sense, since the second sense is probably more likely to be re-
jected than the:first.

Associated with each definition of rationality is a different point of



view toward incomplete preference. The view associated with the first def-
inition of rationality is that the preference ordering is a constituent of a
model which explains some but not all behavior. Behavior never contradicts
the ordering, but not all choices are explained by it, nor are all stated or
felt preferences. The model is not contradicted if an individual expresses
strong preferences between alternatives which he finds incomparable accord-
ing to the model. Such unexplained preferences or choices may be erratic
and intransitive, but this is no cause for concern. Such behavior does not
make the individual irrational, since the intransitive choices are not as-
sumed to be in pursuit of some goal. The individual becomes irrational only
if one tries to infer some unchanging goals from his choices or statements.
It is because I adopt the point of view just stated that I said earlier that
the Knightian theory is not contradicted if an individual shows a preference
for one undominated choice over another.

I now turn to the view of incomplete preference associated with the
second definition of rationality. This view accepts all stated or revealed
preference at face value, but adds a category of incomparability to the cat-
egories of indifference and strict preference. That is, an individual may
assert that two alternatives are incomparable. Choice behavior cannot dis-
tinguish indifference from incomparability. In fact, if one thinks about
choice behavior one can quickly convince cneself that incomparability is an
empty category. (If an individual chooses x over y , he either will or
will not accept a small bribe to reverse his choices.) It is for this
reason, I believe, that incompleteness is oftén referred to in the litera-
ture as intransitivity of indifferencé. A disadvantage of the second view

of incompleteness is that it makes all individuals rational by definition.



The obvious way to escape from this tautology is to impose structure on
preferences, such as transitivity and monotonicity. But a strong model of
this sort is too frequently contradicted by reality, I believe. Is not
everyday life full of incoﬁsistent choice and unresolved goal conflicts?
One could assert that only economic decisions are assumed to be rational,
but this assertion can be justified only by the first definition of ratiomn-
ality.

One could also argue that the concept of preference is operational only
if it is identified with choice. However, this is not so. The Knightian
theory makes fairly obvious testable predictioms. These stem largely from
the inertia assumption.

The central problem of this paper is to make the inertia assumption
precise and to defend its rationality. The intuitive idea of the assumption
is that if a new alternative arises, an individual makes use of it only if
doing so would put him in a preferred position., "New" means previously un-
available, and rejection of a new alternative means carrying on with prev-
ious plams.

It is not immediately clear how to make sense of this idea. If one
adopts the usual point of view of decision theory, ome assumes that a deci-
sion maker chooses at the beginning of his life an undominated program for
his entire lifetime decision tree. What is the status quo or initial posi-
tion in such a decision tree? If one is defined, why should the decision
maker choose only programs preferred to it? It would be equally rational to
choose a program incomparable to the initial position.

The answer to the second question is that inertia is not a consequence

of rationality. Inertia is an extra assumption which is consistent with



rationality.

I present three different versions of inertia. The first, given in
Section 2, defines new alternatives to be ones to whose appearance the deci-
sion maker had previously assigned probability zero. The initial position
is the position planned before the appearance of the new alternatives. The
inertia assumption applies to the decision maker'’s way of reacting to new
alternatives when they arrive.

The second approach to inertia defines inertia as a property of the
undominated program chosen at the beginning of life. It is assumed that
certain choices appearing after the initial period can be identified in a
natural way as new, even though they are anticipated. An independence as-
sumption guarantees that choices among new alternatives do not interact with
other choices. The inertia assumption is that the chosen program makes use
of new alternatives only if any program not doing so would be dominated. It
is proved that there exists an undominated program satisfying the inertia
assumption. In this sense, inertia is rational. This approach to inertia
is presented in Section 3.

Section 4 contains the third approach to inertia. This approach makes
a slight concession to bounded rationality in that it recognizes that a de-
cision maker cannot possibly formulate a lifetime plan covering all conting-
encies. The disadvantage of bounded rationality is that it makes the con-
cept of rational behavior very ambiguous. The best one can do is to imagine
what a sensible, self-interested and boundedly rational person might do. I
simply tell a plausible story in which inertia may be identified. I assume
that the decision maker continually makes approximate plans. The inertia

assumption is that these plans are abandoned only if doing so is judged



necessary for an improvement. This picture of reality motivates a loose
definition of inertia given in Section 4. it is probably the loose defini-

tion which should be used when applying the theory.

1. STRUCTURAL THEQREMS

I here present representation theorems for incomplete preferences over
gambles. This material is not original. The proofs are contained essenti-
ally in Aumann (1962, 1964), Smith (1961), and Walley (1981). 1In spite of
all this previous work, I present my own structural theorems. None of the
sources presents the material in a way that is really suitable for my pur-
peses. The presentation here is such that the theory of von Neumann and
Morgenstern remains unchanged if the probabilities are known objectively.
Incompleteness applies only to gambles over events of unknown probability.

I follows the Anscombe-Aumann (1963) formulation of choice under un-
certainty, I have alsoc been much influenced in choosing assumptions by
recent papers of Myerson (1979, 1986). I retain essentially all of their
assumptions except completeness.

I retain these assumptions not because I believe them but because they
do have some normative justification. Experimental evidence seems to show
that the assumptions do not describe behavior accurately. However, if lot-
teries are repeated often and the probabilities are known, their expected
values do approximate actual outcomes. In this limited context, at least,
it would be foolish to violate the assumptions.

If probabilities are not known, there seems to be no normative justifi-
cation for completeness. The usual argument against incompleteness is that

haphazard choice among incomparable alternatives can be intransitive and so
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lead to exploitation by a money pump. But any of the inertia assumptions
prevents such exploitation, as is explained in Section 5. (A money pump
occurs if a person chooses B minus a little money over A, C over B
and A over C . 1If this cycle were repeated, the person would lose a
little on each round.)

Incompleteness itself might be thought irrational. But from the point
of view of the first definition of rationality mentioned in the Introduc-
tion, incompleteness simply limits the criterion for defining rationality.
If a rational person is one who acts so as to achieve his objectives, a
person without cbjectives is both rational and irrational, just as any
statement is true of an empty set.l

I now turn to fhe representation theorems, In order to make clear the
structure of the theory, I first of all present the case in which utility is
linear in rewards or payoffs. The utility should be thought of as wvon
Neumann-Morgenstern utility.

The mathematical notation is as follows. S is a finite set of states
of nature. If B c S , RB is the set of real-valued functions on B

B S

Identify RB with the obvious subspace of RS . The function T : RS - RP

is the natural projection. The symbol e, denotes the indicator function

B
of B . That is, eB(s) =1, if s € B, and eB(s) = 0 otherwise. If
X &€ RS » X is the reward or utility in state s . If x and y belong
to RS ,» X >y means X, 2V for all n, and x»y . If =x is a
probability on 8, if B c 8 and x € RS , then Eﬂ[xIB] -denotes the

expectation of x with respect to #x , conditional on B

Aumann (1962, 1964a) has criticized the completeness assumption both
as normatively unsound and descriptively inaccurate.
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The preference ordering consists of an ordering }B on RS , for each
non-empty subset B of S . The expression x >B y means X 1is preferred
to y if B is known to be true. I write 2> for }s . No relation of

indifference is assumed. However, X and y are said to be egquivalent if
for all z and B, xg, z if and only if y&y z and z >y x if and
only if =z >B y .

X denotes a field of subsets of S of objectively known probability,
q A~ [0,1] is the objective probability. q is objective in the sense
that all observers would be conscious of q and agree to it.

The first assumption expresses the natural relation between the condi-

tional and unconditional preference orderings.

Assumption 1.1. For all non-empty subsets, B, of S and all x and ¥y

in R , X >B y if and only if IIBx.> IIBy .
The next assumption says simply that more utility is better.

Assumption 1.2. x > Ey implies x 3Py .

The following assumption says that % is an ordering of strict prefer-

ence.

Assumption 1.3. x>y > z implies x> z and for no x is x> ¥ .
The next assumption is of only technical significance.
Assumption 1.6. For all x , {yly$ x) is open in RS

The key structural assumption is the following one. It has an obvious

interpretation if one thinks of ax + (l-a)y as the lottery giving x with
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probability « and y with probability 1l-a .

Assumption 1.5. For all x, y and z , and for all « € (0,1)

. Yoz

if and only if ox + (l-a)y & ax + (l-a)z .

The last assumption asserts that the known probabilities of events in

A are treated as they should be.

Assumption 1.6. For all A € X , e, is equivalent to the lottery

q(A)eS .

Theorem 1.1. If the I>B satisfy assumptions 1.1-1.6, then there is a
closed convex set A of probabilities on S such that
(i) for all x and y and B, x >B y if and only if
E"[x]B] > Eﬂ[y|B] , for all = e A ,
(ii) for all A e A , w(A5 = q(A) , and
(iii) for all e A, =x(B) >0, for all non-empty subsets, B , of
s

The proof of this theorem appears in the appendix.

In the light of Theorem 1.1, one may define an indifference relation on
RS by x ~g ¥ if and only if Eﬂ[x[B] - Eﬂ[yIB] , for all n e A .
Clearly, if x.EB ¥y EB z , then X'EE Z . However, the statement
"ox ZB y " does not imply " x <B Yy -" The ordering E is complete on the

set of x in RS such that x 1is measurable with respect to A .

S

One may define > to be complete if for all x € R° , the closure of

{y € Rsly S xXor x>yl is all of_ RS . Clearly, 2> 1is complete if and

only if A consists of a singleton and so the expected utility hypothesis

applies.
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I now turn to the case in which preferences are for lotteries over
consequences, so that one must infer the existence of a von Neumann-
Morgenstern utility function. Let X be a finite set of consequences. Let

A be the set of probability distributions in X . Identify x € X with

the probability measure 6X € A which assigns probability one te x . For
' B B S B
a non-empty subset B of S, let A = I A and let I : A" =~ A De
sEB

the natural projection. Fix =x% € X and identify X €& AB with the vector

3

’ 3 |- 3 [ s
XE A defined by AS AS , 1f seB, and AS Sx* , 1f s & B .

With this identification, AB is thought of as a subset of As . AS is
given the usual topology as a subset of a Euclidean space.

Preferences are expressed by orderings >B on AS , where B wvaries
over the non-empty subsets of S5 . An ordering :>B is said to be complete

if for each X € AS , AS equals the closure of ({A'|XA’ }B A oor A >B A

if >B is complete, X ~p A’ means neither A>B X' mor X' >B A . In-
difference is not the same as the notion of equivalence, defined earlier.
The field X of subsets of S and the probability q :.AL~ [0,1] are

as before.

Three additional assumptions are needed. Let

S '
diag " {» € ASI,\S = A_,, for all s and s’}
Assumption 1.7. The restriction of 2 to AS. is the same for all
{s} diag
s &S
Assumption 1.8. For all s € S , }is} is complete.

- ’ 1 ! i .
Assumption 1.9. For any s 8 >ks} 6o for some x and x’ in X

Assum#tions 1.2, 1.4 and 1.6 are now replaced by the following.
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Assumptio 2a. AS> A if A > A, for all s and Ao

for
~{s)

(s} *

some s

Assumption 1.4a. For all X , (A']a' > ) and (X |Ax' €A} are open in

Assumption 1.6a. For any A€ X and any A and X' in A, the vector

A, € AS  defined by X

1 1s = q(A)x + (1 - gq(ay)x’ , for all s , is equiva-

lent to the vector A, defined by A, =2

9 if s eA and X, =X’

2s ! 2s

if s & A .

Think of assumptions 1.1, 1.3 and 1.5 as applying to the )>B defined

on AS rather than Rs

If u: X=R and X & AS , EAu € RS denotes the vector whose sth

component is A (ulx)
s
xeX

Theorem 1.2. 1If the >B satisfy assumptions 1.1, 1.2a, 1.3, l.ha; 1.5,
1.6a, and 1.7-1.9, then there exists a function u : X+ R and a closed
convex set A of probabilities in § such that
(i) for all X, A* and B, A >B A" if and only if
Eﬂ[EAulB] > EW[EA,uIB] , for all =€ a ,
(ii) for all A €A, n{(A) = q(A)

, Ffor all n €A , and

(iii) for all we€ A, =#(B) >0, for all non-empty subsets B of

S .

The proof of this theorem appears in the appendix,
A result of this sort apparently appears in a book being written by
Walley. (I have seen a manuscript of only the introduction, Walley (1984).)

Theorems 1.1 and 1.2 are given only in order to show that Knightian
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behavior is consistent with very strong notions of rationality. From a
descriptive point of view, many of the restrictions imposed are not desir-
able. The assumptions essential for the Knightian theory are an iInertia
assumption and the structural assumptions given below., Assume that payoffs

are in utility and let S , RS , and so on be as before.

Structural Assumption 1.10. For each non-empty subset B of 8§ , there is

a preference ordering 2, on 2% such that x > if and only if
g oy g Y

HBx >S HBy . The ordering >S is transitive and inreflexive and is mono-

tone in the sense that x >S y whenever x >y .

Structural Assumption 1.11. There is & set A of probabilities on § such
that if ]{>3 y , then Eﬂ{x—yIB] >0, for all =& A . Also,

#{B) >0 , for all « € A and for all non-empty subsets B of S

Notice that it is mot assumed that x », y - whenever Eﬂ[x—yIB] >0 ,
for all =« . This implication seems to be of little interest for economic
applications.

The "fatness" of A 1is a measure of the Knightian uncertainty about

events in S

2. BEBAVIORAIL ASSUMPTIONS

I now present assumptions relating behavior to preferences. These as-
sumptions are a version of the inertia assumption and the obvious assumption
that decision makers make undominated choices. In order to express the
inertia assumption rigorously, it is necessary to define a decision problem,

Let the periods of time be t =0, 1, ..., T . The description of the
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environment at time t is e, € Et , where Et is a finite set and Eo
is a singleton. The state or event at time t 1is s, = (eo, e , et)

T
S denotes E. X E. X ,,. x E and S = U S is the event tree. S is

t 0 1 t t

t=0

ordered naturally by succession. That is,
- e ... eds s_ = (e ce., € . If
Seen ~ (80 » %0 Cetre P Cryn) Succe Y &)
i i it is implied that s

Ser Seq1e - st+n are written consecutively, P e+l
succeeds S, and so on. For each s &€ S , A(s) denotes the set of
actions available in state s . Assume that each A(s) 1is finite. A

deterministic program is a function a giving the action a(s) € A(s) ,
for each s € 5 . If actions are determined by a program a , then the

reward in state s is r(g(so), E(sl), U ﬂ(sT); sT) = r(a, s

T Y . Re-

wards are assumed to be measured in utility.
I now describe how programs are compared. It is assumed that the

states s_ may be endogenous. That is, their evolution may be influenced

by actions. The underlying set of states of nature,  , may be described
as follows. For each t =0, 1, ..., T-1 , let Z = (s, at)|st € s, and
a e A(st)} . Let ﬂt - {wt : Et -+ St+1|wt(st’ at) succeeds St’ for all

s, and at} . Then, £ = QO X 91 X ... X nT—l - A deterministic program a

and an w € {3 together determine a sequence of successive states in S

call it (50, sl(g,w), e, ST(E.W))

Assume that the decision maker’s preferences satisfy the assumptions of
Theorem 1.1. Since ( 1is finite, that theorem applies. Let A be the
closed convex set of evaluating probabilities on O . If x# € A and a 1is

a deterministic program, let E £(a) = I n(w)f(a, s.(a,w)) .
To- wel = T

The list of objects (S, A, r, @, A) defines a decision problem, which

I call P .
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A random program is a probability distribution over the set of
deterministic programs. Random programs are denoted by vy and determinis-
tic ones by a . Deterministic programs may, of course, be thought of as
special cases of random ones. If a decision maker uses a random program
v . he chooses a deterministic program a according to the probability

distribution ¥ and then uses action a(s) 1in each state s at which he

arrives.
For a program =~y , £E(v, ST) denotes I vy(a)f(a, sp) - A program v
a
dominates program «' if Eﬂf(y) > Eﬂf(v') , for all = € A, where
Eﬂf(y) -3 7(a)Eﬂf(§) . A program is undominated if ne program dominates

a

-—

it. Because S and the A(s) are finite, an undominated program exists.
The sets S and A(s) may be assumed to be infinite, provided enough as-
sumptions are made to guarantee that undominated programs exist.

A new decision problem is said to occur by surprise at time t if a
state s& occurs which does not belong to S and if associated with SE
there is a decision preblem P(sé) = (§', A', r', @', &') , where the set
S5’ is a tree with elements (sé, ey si) . It is assumed that state sé
and problem P(sé) were not anticipated by the decision maker. If he had
thought of the possibility that they might occur, he had assigned the possi-
bility probability zero. Assume that to every state sﬁ € S’ there
naturally corresponds a state f(s;) € S . By “"naturalily,®™ I mean that the
description of the environment corresponding to sé contains all that is in
the description of the environment corresponding to f(sﬁ) . A program a
for the decision problem P 1is said to apply to P(sé) if

a(f(s*)) € A'(s') , for all s’ € S' . Suppose the decision maker is

following program a for P when a new problem P(s;) eccurs by surprise.
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If a applies to P(sé) , then the decision maker is said to adopt a new
program - for P(Sé) if + does not equal the program for P(SE)
defined by a .

The behavioral assumptions are the following.

Maximality Assumption. In any decision problem, the decision maker’'s

actions are determined by an undominated program.

Inertia Assumption. If any decision problem occurs by surprise, the deci-
sion maker changes his program only if the new program dominates the old one

in the new problem,

These assumptions imply that if a series of surprise problem changes
occur, then each time a change occurs the decision maker chooses an undom-
inated program which differs from his previous program only if the new pro-
gram dominates the old one. The inertia assumption implies that the initial
point with which new alternatives are compared is planned behavior.

It might seem that inertia implies irrationality, for people can be
truly surprised only if they assign probability zero to events which in fact
do occur., However, there is nothing necessarily irrational in making as-
sumptions about reality which turn out to be false. Such assumptions are

irrational only if there is good reason to doubt them.
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3. INERTI D INDEPENDENCE

I now present a version of the inertia assumption in which the arrival
of new alternatives is anticipated, but they are used only if doing so is
necessary in order to achieve an undominated program. The new actions are
assumed to be distinguished from old omes in a natural way. In order to ex-

press this distinction within the model of the previous section, assume that

there are finite sets AO' Al’ e AT such that

A(st) - AO x Al X ... X At , for all s, and t . The actions iIin At are
new at time t . If a 1is a deterministic program, g(st) may be written
as (go(st), C e gt(st)) , where gn(st) € An , for all n . The program

2, is called the tth component program of a .

Assume also that there are functions Ty iy e Ig such that
r(alsy), ..., alsp); sp) = xg(ag(sg), .., 35(sp)s sp)
+ r1<§1(sl)’ . gl(sT); sT) + ... + rT(ET(sT); sT) . The function
rt(gt(st), . gt(sT); sT) is written as rt(gt, sT) , 5o that

T

£(a, s.) = Tt _(a,, s.)

T 0 t'~t T

It is assumed that for each ¢ > 0 , there is a point Ot 1= At such
that rt(Ot, . Ot; sT) = 0 , for all ag - The action 0t corresponds
to not using At . The tth component program Qt is defined by
Qt(sn) - 0t , for all s, with n > ¢t

It will be assumed that the decision maker uses a special kind of pro-

gram, which I call a behavioral program. Let Z be the set of all

= e tions
zt (ao, eea 8 9, st) , where S, € § and ay y g are actio
in preceding states. That is a € A(sn) , for all n , where the s,
Precede s, - For each Z. the‘subproblem
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P(zt) - (S(st), A, ', Q(zt), A(zt)) is the decision problem obtained by
restricting the original problem P to the state s_ and its successors.

P(zt) may depend on all the components of z, because actions taken before

S influence rewards. The states of P(ao, cevs Bl 9o St) are

S(st) - {5 & S|s -s_ors succeeds st] . The rewards for a deterministic
¥ ’ »

program a’ for P(s.) are r'(a’(s), ..., a'(sp); sp)

- r(ao, cees Al g g’(st), cees g'(sT); sT) . The set of states over which

probabilities are defined is Q(ao, -r 8L 1> st)

= {w € 0|st(a0, - at—l’ w) =- sT} where st(ao, ces @1 w) 1is the
state at time t determined by Ay -ees AL and « . The set of eval-
uating probabilities is A(ao, 8L 1o st)

- [ﬂ-[-

n(ao, TR NEE St)}‘ﬂ € ) . Clearly, P(zo) = P(so) = P , where

P 1is the entire decision problem.

A behavioral program g specifies for each z € Z a probability dis-
tribution ﬁ(zt) over the tth component programs a, for P(zt) . A
decision maker using a behavioral program g selects a tth component pro-
gram, a_, for P(zt) according to the probability distribution ﬁ(zt)
The program a, determines his choice of actions in At until time T . A
behavioral program therefore detérmines actions at every state, If B8 1is a
behavioral program and x € A, then Eﬂf(ﬁ) is defined in the obvious
way. It is not hard to see that for any behavioral program g , there
exists a random program «v such that Eﬂf(ﬂ) - Eﬁf(y) , for all = e A .

For ;ny z, € Z, let ;(zt) be the behavioral program for P(zt)
defined by B8 . If ﬁ(zt) is not the zero program 9: ,» let Bo(zt) be
the behavioral program for P(zt) which is the same as B(zt)' except that

the tth component program is 0. -
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A behavioral program g 1is said to have the inertia property if for

every z_ either ﬁ(zt) is the tth component zero program, Qt , for
P(zt) or ﬁ(zt) dominates ﬁo(zt) in P(zt) . That is, the decision

maker uses actions in At only if doing so is advantageous from the peint

of view of time ¢t .

Inertia Assumption. The decision maker chooses a behavioral program with

the inertia property.

Trivial examples show that no undominated program may have the Inertia
property. However, such programs do exist if an independence assumption is
made. Before proceeding, 1 must define independence. Let En , for
n=1, ., N, be partitions of 1 . For such n , let A(En)

= {wn\wn is the restriction to the field generated by‘En of some m € A}

The partitions En are said to be mutually independent with respect to A

if given any m, € ACPn) , for n=1, ..., N, there exists x € A such
N N

that ﬁ(nzlAn) - nglﬂn(An) ., for any sets Al, s AN , such that

An IS Pn , for all n . (It does not follow that the partitions :Bn are

mutually independent in the usual sense with respect to every =« € A .)
Functions gl, s By defined on Q are independent if the partitions
they generate are independent.

I now define the independence assumption. Let A be the set of all
deterministic programs a . In the independence assumption about to be
stated, consider ft as the function h : O+ {g : A+ (~=,»)} defined by
h{w)(a) = %t(it, sT(E,w)) . Similarly, consider s, as the function

h:0- (g: A - St} defined by h(w)(a) = st(g,w)
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Independence Assumption. The functions fo, sy fT are mutually indepen-
dent with respect to A , and, for all t , the functions ft and S,
are independent with respect to A . Finally, for all t , if we is
such that #(w) > 0 for some x € A, then ft<§t’ ST(E,w)) does not de-
pend on a for n = t , where a to the nth component program of
a .

The following assumption is also needed.

R , ,
Separation Assumption. For each So and ST in ST such that So e Sp o

there exists t and a tth component program a_ such that

£ (a_, sT) » ft(gt, s

'
t -t )

T

Theorem 3.1. If the above assumptions are satisfied, then there exists a

behavioral program which is undominated and has the inertia property.

This theorem is proved in the appendix.

The assumptions of this theorem may no doubt be weakened, but some in-

dependence assumption seems necessary.

4., INERTIA AND INCOMPLETE PLANNING

One might like to make use of the inertia assumption in settings where
the decision maker would have gained had he anticipated that a particular
new alternative might appear and probably would have assigned its appearance
positive probability, had he considered the matter previously. For these

reasons, one might define inertia loosely as follows.
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Loose Inertia Assumptjon. If the decision maker has not previously planned
how to react to particular new alternatives, he does not make use of them
unless doing so leads to an improvement from the point of view of the moment

when he becomes aware of their existence.

If the stricter version of inertia given in Section 2 is valid from a
descriptive point of view, then the above version is probably valid as well.
The question to be dealt with is whether the looser version corresponds to
rational behavior.

One might be tempted to argue that in the presence of uncertainty, an
undominated program may be achieved even if one does not plan for events of
low probability. Thus, it would be rational not to plan for new alterna-
tives, if their appearance was thought unlikely. This intuition is valid in

some cases. However, that it is not always valid is demonstrated by the

following example.

Example. There are three periods, labeled 0, 1 and 2. The problem is to
distribute purchasing power between periods 0 and 2. The utility function
for expenditures, x , in each period is log(l+x) . Utility is enjoyed
only in periods 0 and 2. Income is earned in period 2. There are two
states in period 2, states L and H . Income is 3 in state L and 5 in
state H . The individual may borrow in pericd 0 at no interest. The loan
must be repaid in period 2. There is uncertainty about the state in period
2. In periods 0 and 1, the individual believes that the probability of
state L |, L lies in the interval [1/6, 1/3]. Insurance against state
L may be offered in period 1. 1If insurance is offered, two units of ac-

count in state L may be had in exchange for one in state H . At time O,
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the individual believes that insurance will be offered with probability

a >0, where a 1is small,

Suppose that the individual ignores the possibility that insurance may

be offered. If we solve max{log(l + xo) + log(l + x,,)

*o
+ (1 - ﬂL)lOg(l + KZH)] , Subject to Xpp = 3 - X, and Xy ~ 5 - Xq o
and with Ty - 1/3 , one obtains xo -2, Xoy ™ 1, x2H = 3 , This is

therefore an undominated program provided the possibility of insurance is
ignored. 1If this program is used and insurance becomes available in period
1, then buying insurance in period 1 would not lead to a preferred position.
For suppose that a > 0 units of insurance in state L were purchased.

~ Evaluating the gain with T 1/6 , one finds that it is at most

a
"'Z'E(O.

Suppose now that at time 0 the individual took into account the possi-
bility that insurance might become available. Suppose he changed his pro-

gram by borrowing ¢ > 0 more and buying ¢ > 0 units of insurance in

period 1 if it became available. The derivative of his gain with respect to

e at £ =0 |is

1 1{3 1 1 1
‘*[5 - - “L)z[i]] ¥ <1'°‘)[5 B ’&.’z] -

which is positive for any o > 0 and any 7 € [1/6, 1/3] . Thus, if
¢ > 0 1is small, this change leads to an unambiguous gain. It is not ra-
tional to ignore the possibility that insurance may become available, no

matter how small a may be.

If one had chosen the initial program by maximizing with respect to
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some 7, < 1/3 , then it would have been rational to plan not to buy insur-
ance, if a were sufficiently small. This observation might tempt one to
restrict attention to undominated programs which were optimal with respect
to some intermediate prior distribution (in the relative interior of 4 ),
However, such a restriction would conflict with the inertia assumption. In
a general decision problem with an initial point, the only undominated pro-
gram dominating the initial point may be one which is optimal with respect
to a prior distribution near to the boundary of the set A of prior distri-
butions.

One is thus pushed toward bounded rationality in looking for arguments
to defend the rationality of the loose inertia assumption. Bounded
rationality certainly makes sense in the context of lifetime decision plan-
ning. It is obviously impossible to specify in advance a complete lifetime
decision problem, Powerful computers would not help overcome this limita-
tion, since the limiting factor is imagination, not computational capacity.

If complete forward planning is impossible, it makes sense to change
one's mind from time to time and not to act according to plan. Inertia is
the refusal to change plans unless doing so leads to an improvement.

The disadvantage of bounded rationality is that the concept of ration-
ality itself becomes ambiguous. 1In trying to describe rational behavior,
the best one can do is to imagine what a wise person might do in trying to
advance his own interests. Such a person might well show inertia. Inertia
may sound conservative and boring, but it can simplify life by reducing the
frequency of changes in plans and by eliminating from consideration new al-
ternatives which may arise. There seems to be little more that one can say.

Some insight may be gained into the meaning of the loose inertia as-
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sumption by trying to express it slightly more formally in the context of
bounded rationality. Suppose the deci;ion maker is faced with a decision
problem (S, A, r, @2, A) of the sort described in Section 2. If the prob-
lem were much too large and complex to be solved completely, a sensible
decision maker might organize his thinking by solving a simple approximation
to the problem at each stage s, - Let M(St) - (5', A', x', Q', &A') Dbe

t

the approximating model used in state s_ . We can imagine that the

decision maker could achieve coherence between current and future behavior

by specifying a function fs at state s_ . The function fs would
t t
assign to any model M(st+n) , for mn> 0 , a program for M(st+n) . The
progran fs (M(St)) should be maximal in M(st) . This program would
t
determine action at state s, - The fs could correspond to rules of
t

thumb or standardized procedures for reacting to situations. Of course,

fs could also simply specify the program maximal with respect to some
t

fixed prior distribution, if one could be specified in advance.

Inertia Assumption. If fst(M(st+1)) is maximal in M(st+1) , then
£ = f . Otherwise, £ (M(s }) dominates £ (M(s ) in
Sesl S, S.i1 t+l Se t+1

Mis 4q)
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5. DIAGRAMMATIC TLLUSTRATION

The relation between the Savage and Knightian theories may be seen
easily in a diagrammatic representation of the case with two states. Let
§ = {1,2} and label the abscissa and ordinate with the payoffs, r, and

T, , in states 1 and 2, respectively. Payoffs are in units of utility. 1In

the Savage case, the preference ordering is represented by indifference

curves vwhich are parallel straight lines with slope -fl(l - ﬂl)—l , where
L is the subjective probability of state 1. Ty is defined by the rela-
tion (=4, «1) - (1,0) . (See Figure 1.)
2
1
(%), %)
T
1 > "1
FIGURE 1

According to the Knightian theory of Theorem 1.1, preferences are
defined by two families of parallel straight lines with slopes

and -z, (1 - !1)—1 , respectively, where 0 < g, < ;1 <1

- - =1
-ﬂl(l - nl)



A point y is preferred to x if and only if y is above the two lines

through x . The preference ordering is complete if and only if x, = =

-1

(See Figure 2.) 1If the Knightian theory is that of assumptions 1.10 and

1.11, then one can assert only that if y 1is preferred to x , then y

lies above the two lines through x .

/

”,,/”

_—

(ﬂl, wl)‘,,f"””
oY

3]

[
v
'_I

FIGURE 2
The numbers ;1 and 2, may be thought of as upper and lower proba-

bilities for state 1, respectively. ;1 is defined by (a,a) o (1,0) if

28
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and only if a > ;1 . @y is defined by (a,a) < (1,0) 1if and only if

a < I - That is, the decision maker is willing to receive $a in exchange
for 1 in state 1 if and only if a > ;l . Similarly, he is willing to give
$a in exchange for $§1 in state 1 if and only if a < my - Forany >0,

LR and ;1 + ¢ are possible bidding and asking prices, respectively,

for $1 in state 1. 1If r <acg ;1 , then (a,0) and (1,0) are not com-

1
parable. Similar definitions may be given for upper and lower probabilities
for state 2, ;2 and T, . respectively. They satisfy ;2 =1~ z, and

mp=l-m

Notice that if X, > 0 and X, < 0, then x>0 if and only if
1% + ;2x2 > 0 . Gains are weighted by the upper probability and losses by
the lower probability. This conservative weighting of gains and losses re-
sults in uncertainty aversion,

When there are only two states, preferences are defined entirely by
upper and lower probabilities. When there are more than two states, it may
not be possible to derive preferences from upper and lower probabilities,
for the set A of subjective probabilities may be "round."

According to the inertia assumption of Section 2, if x 1in Figure 2 is
the initial point, then a point such as vy would be chosen instead of x )
if y wvere offered by surprise as an alternative to X . A point such as
z would not be chosen over x . After ¥y 1is chosen, it becomes the new
initial point. Thus, the inertia assumption would prevent intransitive
choices among successive surprise alternatives, However, if various altern-
atives were offered in some sequence which was foreseen or at least thought

possible, some successive choices might be intransitive. However, the maxi-

mality or undominatedness of the program guiding these choices would prevent
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the occurrence of a money pump. If either of the other two versions of
inertia are assumed, a money pump is impossible for the same reasons.

According to the inertia assumption of Section 3, the initial point
necessarily plays a role in choice only if the events 1 and 2 are indepen-
dent of all else of significance in the decision maker’'s life. If they are
independent of the rest of his life, then we can say only that any choices
made must be preferred to zero. It will not necessarily be the case that
each choice becomes the new initial point.

If a set, such as C in Figure 3, is made available and if the initial
point is zero, then any point on the boundary of C between A anq B

could be chosen. Two decision makers with the same preferences might choose

FIGURE 3
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different points along this frontier. The inertia assumptions of Section 1
or 3 imply that once a choice was made, the decision maker would not want to
move to another point along the frontier AB . Two decision makers making
different choices would not want to make side bets with each other unless an
upper probability of one decision maker were less than the corresponding
lower probability of the other decision maker.

Uncertainty aversion could discourage mutual insurance. Let the re-
wards r_ now be measured in units of one commodity and suppose that util-
ity is concave in r_ . Then, the Edgeworth box diagram for the case of two
states and two traders could be as in Figure 4. Assume that the initial en-
dowment point, w , is also the initial point. The sets of points preferred

to the initial point are denoted P1 and P2 ) respectivély. Even if

\ 2

F 3

X/
/7/7/ ,/ / —
% 7,

)
-l

FIGURE 4
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endowments were very asymmetric and the preferences of the traders were the
same, there might be mo trade in insurance. Nevertheless, the equilibrium
would be Pareto optimal. I now compare the interpretation of Knight pre-
sented in this paper with the competing one of Gilboa and Schmeidler (1986)
mentioned in the Introduction. Recall that Gilboa-Schmeidler preferences
are complete and represented by the utility function of the form

u{x) = min Exx . Here, x : S = (—«,@) is a gamble over a set of states §
rEA

with rewards in utility, and A 1is a set of probability distributions over
S . These preferences display uncertainty aversion since preferred sets are
convex. However, these preferences otherwise have implications quite dif-
ferent from those described in Section 1. People with Gilboa-Schmeidler

preferences would be very apt to buy insurance. The Edgeworth box diagram

J

L

"
Y

FIGURE 5



33

corresponding to Figure &4 would be as in Figure 5. Trades in the shadowed
area Pareto dominate the initial endowment point.

If two decision makers with the same Gilboa-Schmeidler preferences were
offered a set C as in Figure 3, then they would choose the same point, If
two Gilboa-Schmeidler decision makers choose different points from C , they
would be willing to make side bets with each other after the choices were
made, as is 1llustrated in Figure 6. The decision maker with the solid in-
difference curves would choose point A . The decision maker with dotted

indifference curves would choose point B .
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6. RELATION TO EXPERIMENTAL EVIDENCE

The expected utility hypothesis seems to be rejected systematically by
experimental evidence. (Surveys of the experimental literature on the sub-
ject may be found in Machina (1982, 1983) and Schoemaker (1982).) Since the
von Neumann-Morgenstern theory is a special case of the Knightian theory of
Theorems 1.1 and 1.2, that theory is rejected too. However, the essence of
the Knightian theory has little to do with the expected utility hypothesis.
The Knightian theory is captured by the inertia assumption and structural
assumptions 1.10 and 1.11. These do not imply the expected utility hypo-
thesis. But they do imply the essential phenomena of uncertainty aversion
and inertia. These phenomena may have some chance of being verified exper-
imentally.

It is perhaps encouraging that the essential phenomena have little to
do explicitly with probabilities or the calculus of probabilities. Proba-
bility is foreign to most people’s everyday experience. It requires train-
ing, after all, simply to get used to the elementary concepts of expected
value, independence and conditioning. Since lotteries with known probabil-
ities are encountered rarely by most people, the law of large numbers does
not justify the axioms of von Neumann-Morgenstern. Because decision making
under Knightian uncertainty is a large part of life, there may be some
grounds for hope that people react more systematically to it than they do to
lotteries with explicit probabilities.

One of the implications of inertia and uncertainty aversion is that bid
prices for insurance of an uncertain eveﬁt may be systematically less than
asking prices, even if the insured event results in a loss to the bidder and

not to the asker or seller. Many explanations may be given for this bid-ask
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spread. Game and information theoretic explanations may be found in Leamer
(1985a). Still another explanation may be found in Einhorn and Hogarth
(1985).2 The same paper reports experimental work which tends to confirm
the existence of bid-ask spreads on insurance of an event of vague probabil-
ity, even when the event causes a loss to the bidder.

One might imagine that Ellsberg’s (1961) experiments lend support to
the Knightian theory. However, the choices among the alternatives he offer-
ed would be indeterminate according to the theory presented here, so that
his experiments neither confirm nor contradict the theory. Ellsberg's
(1961, 1963) experiments are, however, consistent with preferences of the
Gilboa-Schmeidler type discussed in the previous section. This fact is an
advantage of such preferences, These preferences, however, would not ex-
plain a gap between bid and ask prices for insurance against a loss suffered
by the bidder.

One can imagine simple experiments designed to test the Knightian
theory. For instance, subjects could be shown a photograph of someone whose
age 1s verifiable but unknown to the subject. The subject could be offered
a sequence of lotteries whose outcome would depend on the true age. Once a
lottery was accepted, each new lottery should be offered as an alternative
to the one previously accepted. The sequence of choices offered should not
depend on choices made, and this fact should be made clear to the subject.
The last lottery accepted should be paid off at the end of the session when
the true age was revealed. Some of the payoffs must be negative. In order

to induce participation, it might be necessary to pay a fixed sum in

2I owe this reference to Sidney Winter.
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addition. Payoffs should be large enough to interest the subjects but so
small that utility could be assumed to be linear in payoffs.

Structural assumptions 1.10 and 1.1l and the loose inertia assumption
of Section 4 imply that if any lottery is chosen, it should have a positive
worth according to a set of prior probability distributions. Also, if new
lotteries were accepted in succession, each should be at least as valuable
as the previously accepted one according to the same probability distribu-
tions. The experiment could determine whether behavior was consistent with
these assertions.

If the strict inertia assumption of Section 2 is assumed, one could as-
sert only that each lottery chosen should have positive value according to
all the prior probability distributions. One could not assert that each new
alternative chosen should dominate the previous choice, for one could not
assure that each new alternative was a surprise. The subject would surely
expect a sequence of alternatives to be offered. Hence, behavior in the ex-
periment would be largely as predicted by the Gilboa-Schmeidler theory.

Only if choices seemed to be irregular or indeterminate could one assert
that the experimental results favored the Knightian theory over that of
Gilboa-Schmeidler.

It could be difficult to design an experiment which could distinguish
clearly Gilboa-Schmeidler preferences from incomplete preferences obeying
the strict inertia assumption of Section 2. It is hard to imagine how one
could generate true surprise so as to manipulate the initial position., It
seems that one would have to take the initial positions as given and seek
subjects with different initial positions with respect to some events. For

instance, one could offer to buy or sell small but real insurance contracts
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on some event of vague probability from which certain subjects would suffer
financially. An example would be job loss., The object would be to deter-
mine if potential sufferers were willing to pay as much as non-sufferers
were willing to accept for such contracts. GClearly, any such experiment

would be fraught with ambiguities.

7. RELATED LITERATURE

There are twe bodies of literature very clgsely related to what has
been presented here, one in economics and done chiefly by Robert Aumann, and
another in statistics,

Robert Aumann (1962, 1964a, b) studied the representation of incomplete
preferences on what he called mixture spaces. Among other things, he gave
conditions on an ordering such that a linear utility function u represents
it in the sense that )<>-y implies wu(x) > u(y) . His work is described
in Fishburn (1970), Chapter 9, and has been extended to infinite dimensional
spaces by Kannai (1963). None of these authors related the work to Knight-
ian uncertainty. The typical interpretation made of this work by economists
seems to be that incompleteness 1s consistent with the expected utility
hypothesis. (See, for example, Yaari (1985).) The representation theorems
of Section 1 in this paper are essentially interpretations of Aumann’'s
theorems.

The body of literature in statistics consists of papers by Smith
(1961), williams (1976) and Walley (1981, 1982, 1984). Smith, among other
things, presents in an informal way Theorem 1.1 of this paper. His work is
formalized and elaborated in the papers by Williams and Walley. All these

authors are interested mainly in upper and lower probabilities as tools of
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statistical analysis. These may be derived as follows from preferences
obeying Theorem 1.1. If A c S, the upper probability of § 1is
P(A) = {n(A)|x € 8) . The lower probability of A 1is
p(A) = E(S\A) - min(ﬂ(A)|ﬂ € A) . Because of the authors’ interest in prob-
abilities, their presentation is not in a form convenient for economic In-
terpretation, so that I could not replace the structural theorems of Sec-
tion 1 by citations of their work. These authors tend to focus on the set
K= ({x¢€ Rs|x;> 0} rather than on the entire preference ordering. The set
K 1is referred to as the set of desirable or acceptable gambles., Assump-
tions are made such that K is a convex cone not intersecting

RS = {x € RS]x < 0} or such that the convex hull of K does not intersect

RS . It is taken for granted that no gamble would be accepted unless it

were preferred to zero. Thus, the inertia assumption is implicit. In fact,
the authors in statistics seem not tc make any use of the incompleteness of
preferences. Williams (1974} does not even mention incompleteness. It seems
to me that Gilboa-Schmeidler preferences are the most appropriate foundation
for the use in statistics of upper and lower probability.3 A normatively
sound theory of choice should be encugh for the foundations of statistics.
Why should statisticians care about the descriptive accuracy of the theory
of choice they use? Why saddle statistics with the ambiguities associated
with incomplete preferences?

There is a large statistical literature on upper and lower probabili-

ties, which I do not cite. I mention, however, that there is a philosophi-

- cal literature which uses upper and lower probabilities to characterize

3Leonid Hurwicz (1951) has made such a suggestion.



39
beliefs and discusses how a rational person cught to relate his beliefs to
information or evidence. General sources in this area are Levi (1980, 1984)
and Shafer (1978). Leamer (1985b) has argued that upper and lower probabil-

ities should be used to present econometric conclusions.

B. CONCLUSION

Even though one cannot be sure that uncertainty aversion and inertia
are facts of 1ife, one can speculate about their role in economic life. I
intend to indulge in such speculations in future papers for I believe that
Knightian decision theory may explain many puzzling economic phenomena. I
here sketch some possible insights.

One of the consequences of the incompleteness of preferences and uncer-
tainty aversion is that uncertainty can make very simple programs be undomi-
nated. Apparently excessively simple economic behavior becomes rational
when seen from a Knightian point of view. Examples of such behavior are the
use of mark-up pricing rules in retail firms (see Cyert and March (1963),
Chapter 7 and Baumol and Stewart (1971)), and the frequent lack of diversi-
fication of individual investment portfolios {(see Blume and Friend (1978)).
The same arguments can rationalize the behavioral routines discussed in
Nelson and Winter’s (1982) theory of the firm.

As has already been mentioned in Section 5, uncertainty aversion and
inertia can explain reluctance to buy or sell insurance when the probability
of loss is ambiguous. .Thus, Knightian behavior may explain the absence of
many markets for insurance and forward contracts.

Uncertainty aversion and inertia can be used to give a rigorous presen-

tation of Knight's theory of the entrepreneur in terms of a general
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equilibrium model. The entrepreneurs are those with fatter comes of prefer-
ences or smaller sets of subjective probabilities.

Knightian decision theory may also offer a possible solution to the
vexing question of how to explain wage rigidity, layoffs, and rigid long-
term contracts in general. In fact, I was led to Knightian decision theory
by exasperation and defeat in trying to deal with these questions using the
concepts of asymmetric information and risk aversion.

I try to give an intuitive explanation of the connection between wage
contracts and Knightian decision theory. I believe that this explanation
has something in common with the ideas of Oliver Williamson (1975, 1983).

Imagine the employees of a firm and the firm’s owners as being locked
in a long-term relationship, with the employees being capable of collective
action. Leave aside the question of where that capacity comes from. (Cne
can resort to the theory of repeated games in order to make strikes subgame
perfect.) Suppose the employees and owners have already agreed on a criter-
ion for fair division of.the benefits of their relationship. Imagine that
the business prospects of the firm and the value marginal products of labor
and capital are hard to assess. Suppose the two sides have the same objec-
tive information about all relevant matters. If they did not have the same
information, one would imagine that it would be to their mutual advantage to
share it, since in models of bargaining asymmetric information leads to a
Pareto loss. 1In the context of a long-term relationship, there ought to be
little reluctance to share information, since it should be possible to pun-
ish either side for taking unfair advantage of shared information. Because
of the Knightian uncertainty, it would not necessarily be clear what the

agreed-on criterion of fairness implied, even though there was no asymmetric
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information about observables. Even if the two sides were honest, they
could disagree and no outsider would be able to say who was right. Because
of the ambiguity, there would be room for posturing and falsification of
one’s opinion.

If the only issue at stake were fairmess, an arbiter might be used, if
onie could be found who understand the complex business situation. But more
than fairness might be at issue, for if the wage were too high in the opin-
ion of the owners, then they might be discouraged from investing in the
firm, which would in turn be against the interests of the employees. But,
again, there may be vagueness about the relation between investment and the
Wage B

This vagueness cannot be resolved by arbitration, for it is important
that the wage be acceptable to the owners. The vagueness must be resolved
by bargaining. But bargaining is meaningless without some loss that can be
imposed to prevent posturing by either side. The role of strikes, lock-
outs, and other bargaining costs may be to prevent pesturing and to achieve
incentive compatibility in the bargaining process. There is asymmetric in-
formation about each side’s judgment as to an appropriate outcome.

The greater the vagueness, the greater the potential punishments needed
and the more likely it is that they will be imposed. Thus, bargaining costs
increase with vagueness. For this reason, it is valuable to have contracts
be simple; simpler contracts being easier to evaluate, Simplicity may imply
wage rigidity and lack of indexation.

The fact that contracts are long-term may be explained by bargaining
costs resulting from ambiguity. Suppose one had weekly bargaining for week-

ly contracts. The incentive for posturing might be as large in bargaining
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APPENDTX
Proof of Theoyem 1.1
Let K= (X € RS|x & 0) . I show that for x and y in RS . X P>y

if and only if x - y € K . By assumption 1.5, for all x

R® and a€(0,1) , ySz if and only if (l-a)x + ay & (l-a)x + az

., ¥ and z in

Letting x = 0 , one obtains y & z if and.only ay & az . Hence,
y—-—z2 0=z -2z if and only if X%E > E%E , which by assumption 1.5 is
true if and only if y > z .

I next show that K 1is a convex, open cone containing
Ri\[O} = {x € Rslx >0} . K 1is convex, for suppose that x and y belong
to K and ae€ (0,1) . ox + (l-e)y & ax , by assumption 1.5, since
ye 0. Since x>0, ax$ 0 . Hence, by transitivity ax + (I-a)y S 0
of ox + (l-a)y e K . K 1is a cone, for let x €K and t >0 . If

t<1l, txeK by what has already been proved. If t > 1

X = t-l(tx) € K only if tx € K, by what has been proved. By assumption
1.2, K contains Ri\[O} . By assumption 1.4, K 1is open. By assumption
1.3, 0gK.

By the Minkowskl separation theorem, the set
A= (1t : § = [O,I]IE ro- 1l and =nex > 0, for all x € K} 1is non-empty and
s

K=1(xe RSIﬂ-x >0, for all m &€ A} . Consider the =« in A to be prob-

ability measures on §

If B is a non-empty subset of § , e € K and so #n(B) = meeq >0,

for all r e A .

This proves part (iii) of the theorem.
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By assumption 1.1, for x and y in RS and B a non-empty subset
of S, x.>3 y if and only if °x > HBy , which is true if and only if
EF[XIB] > Eﬂ{Y‘B] , for all =~ € & . This proves part (i) of the theorem.
In order to prove part (ii), let A €& and let ¢ > 0 be arbitrarily
small. By assumptions 1.2 and 1.6, (q(&) + :)es > e, » SO that for all
xme s, 0<x-((qfA) + z)eS - eA) = q(A) + ¢ — »{a) . Similarly,
(q(a) - .-:)eS < e, » SO that #(A) > q(AY — & . Therefore, m{(A) = q(A)

Q.E.D.
" Proof of Theorem 1.2
It follows from assumption 1.5 that
A1) if A2 A and if 0 <a< g <1, then
Br + (1-8)A" 2 aX + (l-a))’
By assumption 1.7, the orderings }15} , for s €8 , induce a unique
order }0 on A . By assumption 1.1, }0 satisfies assumptions 1.3, 1l.4a,

1.5 and 1.9. Hence, statement A.l applies to }0 . By assumption 1.8, }0
is complete. Let ~, be the indifference relation associated with }0 .
Since statement A.l1 and assumptions 1.3 and l.4a apply to }0 , the rela-

tion 20 is transitive.
Let x and x in X 1is such that x ﬁb X 50 X , for all x € X .
By assumption 1.5 x 4, X $, x , for all xe&A . By assumption 1.9,

X {b X . By statement A.l and assumption 1.4a, for each X € A , there is

a unique u(d) € [0,1] such that u(A)x + (1 - u(d))x ~0 A . From assump-

tion 1.5, it follows that if 0 <a <1, then u(al + (1-a)X') = aqu(d) +

{1-2)u(X’') . Hence, u{l) = I X(x)u(x)
xeX

S

If A e A, let UM € AS be the vector defined by
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U(J\)s - u(AS)6§ + (1 - u(As))Sx , for all s e s .

S

emma. If A and A’ belong to A” , then X XA’ if and only if
V(XY > U(xY)
Proof. Suppose that A 3> A’ . By assumptions 1.2a and 1l.4a and statement

A.1, it is possible to choose A" € AS such that av S A and

A 2{5} Az, for all s, and A >{s} Ay s for some s . By assumption
1.2a, U{A) > 1" . Therefore, U(A) > A’ . A similar argument proves that
Uy e u(x)

The same sort of argument proves that XA g A' if U(A) > U(A")

Q.E.D.

The proof of Theorem 1.1 may now be applied to the orderings >B re-
stricted to {U(A)IA € AS} , Which is isomorphic to a subset of RS . The
proof must be modified slightly because now utility levels vary over [0,1]

whereas in Theorem 1.1 they wvaried over (—=, )

Eroof of Theorem 3.1

For aﬁy t , let 'St = {S(st) n STlst € St} be the partition of §

T
generated by information available at time ¢t . Let Pt be the partition
of ST generated by r. - That is, ‘Pt is generated by the function h :

T
h : ST +{g: I At =+ (~»,=)] defined by h(sT)(at, C e, aT)
n=t
= rt(at, cees 8 sT) For n=1¢, ..., T, let '?tn be the partition
{E|for some E' E‘Sn’ E = U(E" E.Pt]E" N E'" = @) . ’Btn represents informa-
tion about the function r. available at time n . Clearly, ’rtT - It .

By the independence of st and ft assumed in the independence assumption,
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2., = (Sp) . Since 2t,n+1 refines 2_ , for all n, the partitions
Ett’ It,t+1’ e, ItT from a tree., Call this tree T% )
Let P_ be the (T-t+l)-period decision problem (Tt, A, TL, Bl A0

defined as follows. At(E) - A, for every E € I} . If Ee PtT and

] . -
a_ € An , for n=1t, ..., T, then rt(at, cees apl E)
T-1
. [ - '
rt(at, R sT) , for some sy € E . QT 1 ﬂtn , where
n=t
ﬂén - [w : Eén -+ St+1} and Etn - {(En, an)|En E'?tn and a € At} . For
w' € Qé and for a program a for Pt , let ET(E' w') be a unique member
of :Et reached if a 1is used and the state of nature is w' ., The mapping

from ' to the function ET(-, w') 1is one to one.

Observe that any deterministic program a_ for Pt may also be

thought of as defined on U S_ , and so may be thought of as a tth com-

n=t

ponent program for the decision problem P . That is, if n 2z t , think of
a, as assigning éction Et(E(sn)) to s e Sn , Where E(sn) is the mem-
ber of Etn containing s_

I now define the sets L Let ' = {w € Qffor all t,
ft(gt, sT(g,w)) does not depend on a . for n » £t} . By the independence
assumption, «(Q') = 1 , for all € A . For each t , let Té be the
partition of @' generated by the function ft . By the independence
assumption, the partitions 4?é are independent with respect to A . Let

ACEL) - {ﬂt|nt is the restriction of n to the field generated by Ié, where
m € A} . The partition Té may be identified with ﬂé . That is, E € 2&
corresponds to the w' & Qé satisfying ST(E’w) € ET(ét' w') , for all

deterministic programs a_ for P

2, e where w 1is any element of E , and

a= (EO' cees ET) is any program for the decision problem P satisfying
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a.=a, . Let A& = A(Pr) , where rt is identified with Qt .

The following notation is applied to the problem Pt . If a 1is a de-

P s Ny - I
terministic program for Pt and ET [ It , then rt(g, ET) rt(g(Et),

., E(ET); ET) . If n e At . then wat(g) - 'Z 'w(w’)ré(g, ET(E' w'))
w Eﬂt

If « 1is a random program for Pt , then fé(w, ET) and Eﬂfé(7) are
defined in the obvious ways. The functions %é should not be confused with
the functions %t defined in Section 3.

I now choose a behavioral program for the decision problem P . First
of all, I select an undominated program ;t for each Pt . If the zero
program Qt is undominated in P, let ;t = Qt . Otherwise, let ;t be
any undominated program for P which dominates gt . If a, is in the

support of vy_ , then a_ may be thought of as a tth component program
PP t 2 ¥y 24 E

for the problem P as well. It is therefore also a tth component program

for any subproblem P(zt) , Where P(zt) is defined as in Section 3.
Thus, ;t defines a random tth component program for each P(zt) . Let
B be the behavioral program defined by ﬁ(zt) = ;t , for all z. - It

must be shown that S satisfies the inertia assumption and is maximal.
I first show that S has the inertia property. Suppose that

- - . . a
Te » Qt , Sso that Ve dominates gt in Pt Let z, € Z and let ﬁ(zt}

A
and ﬂo(zt) be as in the definition of the inertia property. Let =« € A
and let T be the restriction of = to the field generated by :2& ;

Then, E_[E(8(z)) — £(By(z. )|z _ occurs] - F.,,t{r'(vr) - £7(0)1 >0,
provided z, occurs with positive probability.

I now show that for each t , there is =_¢€ A, such that for any

random program -~y for Pt , E- fé(y) < E

- %é(v y . Let G_ be the convex
t t

t t

hull of {h(é) : QE -+ (—w,w)]g is a deterministic program for Pt} , where
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h(a)(e') = £/(a, Eq(a, @')) . Let K = {x:@ =~ (—=,)|E x > E /(7).
for all = € At] . Since Te is maximal for Pt ' Kt N Ct =@ . There-
fore, by the Minkowski separation theorem, there is ;t € At such that
. — A' -
E;tx > E;tc , for all =x € Kt and ¢ € Ct . Hence, Eﬂtc = Ewtrt(7t) ,

for all c¢ € Ct .

By the independence assumption, there is 7 € A such that the restric-

tion of 7 to the field generated by 2! is ;t , for each t and the

partitions P!, ..., Ié of 0’ are mutually independent under x .

I now show that 8 1is undominated.a I must show that if vy 1is any

random program for P , then E;f(1) < E;?(ﬁ) . Clearly, it is sufficient
to show that E;f(g) < E;f(ﬁ) , for any deterministic program a . Let
T
a = (EO’ ey ET) be fixed. Clearly, E;r(g) = 3 E;rt(é) , where
t=0 T
E;rt(g) - X "(w)rt(it' sT(g,w)) . Also, E;r(ﬂ) - EE;rt(-yt)
T weh! t=0
= I E; fé(;t) . Therefore, it is sufficient to prove that
t=0 "t
_A _ A' -
Eﬂ_rt(g) < Eﬂ_trt('yt) , for any t .

Let t be fixed and let ,Bé be the partition of ' defined earlier.
Let Iz be the join of the partitions Ir'l , for n=t . Then,

A - A c .
Ef (a)= £ B m(AnBE-[f (a)[aNnB] . Let A€P and BER . By

BEP& AéEt
the separation assumption, sT(E,w) is the same for all we A nB . Let
SAnB sT(é,w) , for any we€ AN B . By the independence property of T,

7(A|B) = ¥(A 0 B)(x (B)) " = R(A) . Therefore,

E-f (a) - Bi? ?tunA'ze:lp SBE (2,

'
€ t

SAnB’

4W‘nat follows is really an application of Blackwell’s (1964) principle

of irrelevant information. (See Whittle (1983), p. 6.)
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