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THE EXACT DISTRIBUTION OF THE WALD STATISTIC:
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0. ABSTRACT

This paper extends earlier results, which were reported in [7], to
include non null distributions. As in [7], attention is concentrated on
the Wald statistic for testing general linear restrictions on the coeffi-
cients in the multivariate linear model. The results of the present paper
encompass the null distributions derived in [7] and generalize all prev-
iously known results for such statistics as the standard regreésion F

test and Hotelling's T2 test,

*Our thanks go to Glena Ames for her skill and effort in typing the manu-
script of the paper. Phillips' research was supported by the NSF under
Grant No, SES 8218792,



1. INTRODUCTION

In an earlier paper [7] Phillips gave a general formula for the dis-
tribution of the Wald statistic for testing general linear restrictions
in the multivariate linear model., This formula was sufficiently compre-
hensive to include all previously known null distributions for special
cases of the Wald statistic such as the regression F and Hotelling's

2 and generalized Tg tests,

T

The present paper extends the analysis and the results of [7] to in-
clude the general case of non null distributions, The formulae presented
herein therefore cover all earlier results including those of [7]. Spec-
ializations of our formulae to the commonly occurring cases of the non-
central regression F and Hotelling's T2 are given in detail.

Conventional classical assumptions of normally distributed errors

and nonrandom exogenous variables are employed.

2. THE MODEL AND NOTATION

We use the same notation as [7?] for the multivariate linear model:

(1 Ve = Axt +u t=1, ,.., T

t ¥

Ye is a vector of n dependent variables, A is an nxm matrix of

parameters, x, is a vector of nonrandom independent variables and the

u, are i.i. N(0,8) errors with Q positive definite. The hypothesis

under consideration takes the general form

(2) H:DvecA=d,H1:DvecA-d=b#0



where D is a qxnm matrix of known constants of rank q , d is a known
vector and vec (A} stacks the rows of A .

From least squares estimation of (1) we have:
(3) AT = YIXEOTT, et = Y (- POY/N

-1
where Y' = [yl, ...,yT] , X' = [xl, ...,xT] N Px = X(X'X) X' and
N=T-m. We take X to be a matrix of full rank m < T and define
M= x'x)7t .

The Wald statistic for testing the hypothesis (2) is

(4) w = (D vec A*-d)"{D(R* ®@ MD'}"L(D vec A* - 4q)

= NL'BR

where £ = D vec A¥-d is N(b,V) under H, with V = D(R®M)D' , and

1
B={D(COMD'} L, where C=Y'(I- P,)Y is central Wishart with co-
variance matrix & and N degrees of freedom.

We define y = ¢'BL and write y in canonical form as

(5) y = g'Gg

1/2 1/2

where g =V *'“g is N(m, Iq) , m=V "' and

¢! - v 2pcompiv? - Bic®MD , say.

3. THE NON CENTRAL DISTRIBUTION OF W

We start with the canonical variate y as given in (5). The condi-
tional distribution of y given C is that of a noncentral positive

definite quadratic form in the normally distributed random vector g .

. G1/2

We define 2 g and then y = z2'z and



(6) pdf(z]C) = (21 %2 (det 6)" 2exp(-m'm/2)exp(-2'G L2/ 2)exp (67 22wy .

Note that y is invariant under z -+ zk where k € O(1) (i.e., k2 =1).

Making this substitution in (6) and integrating over the (normalized) ortho-

gonal group 0(1) we have:

(7 (21)"Y 2(det G)'l/zexp(-m'm/z)exp(-z'c‘lzfz)Opl(l, %z'c'l/zmm'e'lfzz) .

We now transform 2z <+ (h,y) according to the decomposition z = hyl/2

where y = z'z and h € Vl q (that is, the unit sphere h'h=1 ). The
i

measure changes according to
dz = 2% lay (an)

where (dh) denotes the (unnormalized) Haar measure on the Stiefel mani-

fold V It follows from this decomposition that the required density

l,9 °
of y conditional on C is:

,-a/2-1_-q/2 q/2-1

pdf(y|C) = exp(-m'm/2)y

. (det G)'1/2[ 'etr(-yG-lhh'/Z)OFl(%u %yh'c'lfzmm'c’l/zh)(dh)
-v Pl
1,q

(8) = 2792 [1(q/2)] texp (-n'm/2)y¥ 27t (det 6)7}/2

. etr(-vG lhh'/2) F (13 lyhrs'”zmm'c'lfzh)(dh)
v ofi\> 3 )

L,q

where (dh) denotes the normalized measure on Vl q (that is,

]' (dh) = 1),
Vv
1,q
Series representations of the factors in the integrand of (8) are as



follows:

w J
(9) etr(-yG lhn'/2) = (- ;f) (j)(G'lhh')
=0 '

o k
1 1. ,~=1/2  ~-1/2 ) - (y/4) -1/2_ ,.-1/2, .,
(10) 0F1(2, h'6™ “m' 6™ h kZO iT%T7§T;C(k)(G mm'G™*/ “hh')
in terms of top order zonal polynomials C(j)( ) where (j) denotes the
partition (j, 0, ...,0) of j with only one nonzero part. Formulae for
C(j)( ) are given in [4].
We substitute (9) and (10) into (8) and integrate term by term, which

is permissable in view of the absolute and uniform convergence of the series,

The integral

1., “1/2 =172,
JVI C5y(677BR"IC oy (677 “mm'6™*/ “hh) (dh)
»q

. -1 : -1/2_ ,.-1/2 .
jo(q)c(j)(c HE) (H')C 10y (677 “mm' 6™/ “HE | H') (@)

- (1), (k) (-1 W-1/2 \-1/2..(3), (k)
wﬁ(jg-(k)cw (G™%, G™* “mm'G )cw (E;ys 511)/cw(1q)

-1/2 -1/2

an = ¢ ® e, ¢ meg

2 )/C gy (1) -

In the last two expressions Cé?)’(k) denotes an invariant polynomial in
the elements of its two argument matrices, These polynomials were intro-
duced by Davis [2, 3] to extend the zonal polynomials and the reader is

referred to his articles for a detailed presentation of their properties.

¢ is a partition of the integer f = j+k into < q parts and the nota-

tion ¢ € (j)-(k) which is defined in [2] relates the two sets of partitions



that appear in the summation. In the present case E11 = elei where e
is the first unit vector and only top order partitions appear in the sum-
mation. The final expression above follows because CE%%’(k)(Ell, E11) =1,
To simplify notation we will use C%’k( , ) 1in place of CE%%’(k)( s )
in what follows.

From (8)~(11) we deduce that

(12) pdf(y|C) = 27V 2[r(q/2)) Lexp(-m'm/2)yY 2 (der 6)~1/2

nlaszalasaty ,j. 1, 6 21/

.Zj,k FKT(1/2), )/C(f)(lq) .

Note that when m = 0 only terms for which k = 0 are nonzero, leading to

22 1@/ Y (der 6712, -—zizl'chJ(G )€ 5,1

= 29 21r(q/2)1 V% (et G)‘I’ZOFO(- 3671, y)

as in [7].
Since
-1 (N-n-1)/2
pdf(C) = StX(cf “C/2) (det C)
an/ZI‘n(N/Z) (det @)N/?

we find that



2" 21 p(q/2)] Lexp(-mtm/2)yd/ 31
pdf(y) =
W2 (n/2) (det @)V2

g culamiazelt
i,k Jlk!(l/Z]kC(f)(Iq) {00

etr(-Q'IC/Z)
- (det C)(N'n'l)/zdet(ﬁICGQM)ﬁ“)llzci’k(ﬁ(c()n)ﬁ‘, @c@mD)Y 2mr Becems) /% ac

) exp (-n'n/2)y¥/2"! o cyniaakt
2@ 200 2)r w72y (aer V2 ok TRIGTDE (6T

.Jc O[det(ﬁtaz@BM)ﬁW)l/zc%'k(ﬁtazc)M)ﬁW, (5(2@% )1 2t (B(az@M ") 12
>

< etr{-((1/2)07! - 2)CH],_ (der ) 1)/ 2

where Z dis an nxn matrix of auxiliary variables and 93Z = 3/3Z . The
integral over C in the expreséion above is absolutely and uniformly con-
vergent for all Z satisfying Re(Z) < el where € is any positive quantity
less than the smallest latent root of n'1/2 . As in [7], we may therefore

take both the operator invelving 5Z and the evaluation at Z = 0 outside

the integration, yielding:

iy y8/ 21 R
pdf (y) = exp(-m'm/2)y . (‘1/2) (1/4) 7y c (1)
2(q+nN)/zr(q/2)(det Q)NfQ isk J!kl(lfz)k (f)*°q

- [det BGz@MTY Y 2l X Baz@mD', BGzemd) Y 2m' (bzemb) 4
£

cder(alzz-y M3,



Vil _cyniaely
2Q/2r(q/2) J;k J'k!(l/z)kc(f)(lq)

- exp(-m'm/2)y

+ [det (D(2z@M) D) 1/ el K Bazem T,

(52205 2m' (B(az@M B Y Zyder (1 - 207 M2

Tranforming 2 - 20/ 220}/

1/2,v,1/2

= X and using the rule (see [7]) that

8 = 28 X we obtain:

q/2-1

$ k £
_ exp(-n'm/2)y -7 (/)
(13) pdf(y) (a/2) zj,k jTiTTf?EjkE(f)thj

-[det(L(axcjr)L')l/zc}'k(L(axcjx)L-,(L(ax(JI)L')l/zmm'(L(axcjx)L')I/Z)det(I-x)'N/Z]x=0

where

L= v 2%l 2@ul/?) = (pa@mp) Y 2p(al 2@m/?) |

Since w = Ny we have:

o/ 2w 21 -viasnkwmf
(14) pdf(w) = exp(-m'm/2)w ) (
quzr(qu) i,k J!k!(l/z)kc(f)(lq)

-[det(L{axcjx)L-)1/2c}'k(L(ax()I)L'JL(axc)IJL')l/zmm'(L(ax()I)L'Jl/zldet(I-X)‘N/21x=0

4, SPECIALIZATIONS

4.1. The Regression F Statistic

When n =1, the model reduces to the general linear model g = 02 ,
say, the hypothesis (2} becomes HO : Da=4d and 3X becomes the scalar
operator 3x = d/dx . Since LL' = Iq we find that the density (13) re-

duces to:



q/2-1

. exp(-m'm/2)y (-1)° (1/2) y
(15) pdf(y) r(q/2) i,k J'k'(1/2)kc(f)(1 )
ik ' q/2+f -N/2
Ct (Iq, mm') [3x (1-x) ] 0 *

Note that by the rules of fractional differentiation developed in [6]:

(16) ax*(1-x"% = f§§;§3(1-x)-ﬂ*" 5 Re(B) > 0, Re(B+u) > 0

and from (2):

3.k " = rm ¥
7)€" (15, ma') = Ce(1) (m'm)™/Crpy (1) -

Now using the fact that

(l)k oy (g)k

we deduce from (15), (16) and (17) that:

3 e oKk
d£(y) exp(-m'm/Z)r((N+q)/2)yq/2'1 (-¥)7 (m'm/2)"y" ((N+q)}/2) ¢
party T(q/2)T(N/2) 3,k T,

) k. k 3rene .
} exp(_m.m/z)yq/Z-l (m'm/2}"y"((N+q)/2), = (-y)" ((N+q)/2 k)j

Bla/2, D) & K@D, j 3

q/2-1

E%E§5?l%é§7"]fli'("77ﬁ? 1 1("75' % 5 T+y, )

(1+y)

(18)

It follows that

- - 2
F = Ny/q = Fq’N(é )



as in standard regression theory. The non centrality parameter is

52 = m'm = b'V"1p = (Da-d)' (0MD') "1 (Da-d)/0? .

4.2, Hotelling's T2

In this case the null hypothesis takes the form H, : FAg = d so

that D = Fg' for some m-vector g and qxn matrix F of full rank

-1/2p1/2

q <n. Setting E = (FRF') we find that (13) is:

pdf(y) = €Xp (_m'mjz)yqu-l

. _nigakt
r(q/2) Lj,k JIE!il?iikﬁfETqi

- [der (Eaxe") /el (paxer, (EaxE") 1/ Zmnt (BaxEN) V Hyder 1)V 2y,

As in Section 5 of [7] we construct an nxn orthogonal matrix P' = [E' { K']

and transforming X - PXP' = Z we find

(19) df (y) = exp('m'm/zqu/z-l ('I)J (I/Z)kyf
P r@/2) 43,k JIKI(172),C (1)
q
+[(aet 22, )Y 2l ¥ oz, , 227/ P azlfz)det(z-zll)'N/21211=0
where 211 is the leading qxq sub matrix of Z . Now
_ T ((N+1)/2) i
(20) (det 3z;,)  2der(1-2, yN? ~£L?rTi7ij—det(I-le) (N+1)/2
and
C%’k(azll,azllzmm'aZI/Z)det(I 2,0 - (N+1)/2
- [rq((N+l)/2)]-1J etr(-5) (det 5) M*1/2- @1/ 2c0:K (5 mryas
S»0
I, ((¥1)/2,6) 5\
(21)= ’3’ (1,mm")

Tq((N+1)/2)
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where the final expression follows from one of the Laplace transforms given

in [2] and rq((N+1)/2,f) is the constant introduced by Constantine [1].

In the present case
Pq((N+1)/2,f)/rq((N+1)/2J = ((N+1)/2) ¢
From (19)-(21) and (17) we deduce that:

exp(-n'm/2)T (W1)/2yV2 L ey 2 KyR () /2),

pdf(y) = T(q/?fTA(N/23 zj,k ITkI(a/2)y

'm0y V2L w2 /2, ) (w20,

r(q/2)T((N-q+1}/2) k k!(q/2), “3 it
o _expemtwy2)yV! N+l g m'mf y
= M7z 1T BTy
B(q/2, (N-q+1)/2) (1+y)
Thus
N-g+1 2
F=—d%y - ;
q Fq,l*hq*fl(’S )
where the non centrality parameter is 82 = m'm = bV’ b

= (FAg-d)' (FaF')~ 1 (FAg-d)/g'Mg .

4,3. Asymptotic Theory

As a first approximation to the exact density (14) in the general

case we make the replacement

det(1-X) V2  etr(Nx/2)

which is appropriate in the neighborhood of X = 0 , Formula (14) simpli-

fies under this approximation to:



11

_ /2-1 j X £ .
- exp(-m'm/Z)wq (-1)7(1/2)" (w/N) " q/2+f.3,k .
q/2-1 =

exp{-m'm/2)w (-w/2)j E (m'm/Z)k(w/Z)k
2¥2r(q/2) oo ' k20 KP@/2)y

OFI(%; 2 %))

- exp[~m'm/2)wq/2'1e'w/2
2920 (q/2)

2..2
§
Xq (67
where the noncentrality parameter is
2

52 = m'm = b'V'1b = (D vec A-d)' (D(QEMND') 1 (D vec A-d) .

4.4, The Null Distribution

When m =0 only terms for which k = 0 in (13) are nonzero. Since

cg’o(A,B) = €5, (A, (13) becones:

q/2-1

.Y (-n)°
pdf(y) Ta/2) .

-y)? -N/2
551315 )

[det (L(X®D) LMY %C

(j)(L(axC)I)L')det(I-X) Jx=0

q/2-1

* Yoy N2z

[det (L(X@D LN /2 Fo (-L(X@DILY, y)det (1-1) V2]

as established in [7], equation (14).

5, SUMMARY AND CONCLUSION

This paper extends the distribution theory for the Wald statistic
given in [7] to the noncentral case. Well known formulae for the noncentral
distributions of the regression F statistic and Hotelling's T2 are

derived as special cases of our theory. Also of interest is the fact that



12

our general expression (14) for the probability density of the Wald sta-
tistic yields after a simple manipulation the asymptotic noncentral xz
distribution that holds for local alternatives.

The methods used here and in the earlier articles [5, 6, 7] seem likely
to be useful in many other problems of distribution theory. As we have
seen in Section 4, they have the interesting property of allowing asymp-
totic distributions to be deduced quite simply as specializations of finite
sample results. In this respect they differ from conventional methods
that have been used in this field which often lead to expressions from

which it is very difficult to deduce asymptotic results.
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