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NUCLEAR WARFARE, C°1 AND FIRST AND
SECOND STRIKE SCENARIOS
{A Sensitivity Analysis)
by

P. Bracken, M. Haviv, M, Shubik and U, Tulowitzki”

1. ZERQ AND NONZERQ SUM MODELING

This essay is one in a projected series on the study of certain as-
pects of conflict in general and command and control in particular, The
methodology of game theory is utilized in our attempts to formulate well-
defined models and to obtain certain numerical estimates, However we be-
lieve that careful analysis of many mathematical models in application to
military problems may show a considerable semsitivity to what at first
glance may appear to be slight changes in the initial assumptions.

Qur basic theme is that the solution and analysis of a specific model
without an explicit eonceptual sensitivity analysie {especially when study-
ing strategic problems), may introduce a mindset and a potentially danger-
ous bias. In particular the current most dangerous manifestation comes in

the extremely different mindsets caused by using zero sum or nonzero sum

*This work relates to Department of the Navy Contract NOOO14-77-C-0518,

and NOOO14-B4-K-0429, issued by the Office of Naval Research under Contract
Authority NR 047-006., However, the -content does not necessarily reflect
the position or the policy of the Department of the Navy or the Government,
and no official endorsement should be inferred.

The United States Government has at least a royalty~free, nonexclu-
sive and irrevocable license throughout the world for Government purposes
to publish, translate, reproduce, deliver, perform, dispose of, and to
authorize others so to do, all or any portion of this work.



models of nuclear interchange.

We suggest that for certain purposes (in particular worst case analy-
sis and weapons evaluation) the zero sum model is attractive and worthwhile,
For other situations it is misleading. In the remzinder of this article
we consider the same physical svstem modeled with zero sum and with non-

constant sum payoffs.

2. A SIMPLE ZERO SUM MODEL FOR THE INTERACTION OF STRATEGIC FORCES

In this section we consider a simple strategic model under different
zero sum scenarios, such as sequential and simultaneous games, perfect wea-
pons versus imperfect weapons; systems with no warning mechanisms and those
with perfect warning systems. We analyze how the value of weapons and tar-
gets and the accuracy of the weapons influence the strategies of the two
adverzaries and look at usefulness of warning systems. As our models are
purposely extremely simple we view them more as part of a parable to show
how sensitive conclusions are to variations in basic assumptions. We view
this as a first step in promoting a discussion of conceptual sensitivity

analysis on nuclear warfare,

2.1, The Basic Model

In our first model we consider two sets of military targets, which
represent the agents of two (super) players of a zero sum game, The first
player, Player 1, has one agent, called a , which consists of one missile
with a single warhead. The second player, Playér 2, has three similar
agents, called x, y , and z , which are located in three different
sites and are completely connected by two-way communication links, As we

are not concerned with the issues of protracted nuclear war in this paper,



we do not consider the lonmger term problems of command and control,” Each
of the agents can be in one of the following four states:

1. missile site with its weapon

2. missile site having launched its weapon

3. nissile site destroyved after having launched its weapon

4., missile site and weapon destroyed
We denoted by a(i) if sgent 8 is in state 1 and by va(i) its asso-
ciated value, A similar notation is adopted for any of Player 2's agents.
Hence, there are 32 final states of the form [a(i}, x(j), v(k), z(m)}] ,

as can be seen from the game tree in Figure 1,

Do not fire

FIGURE 1

It is natural to assume that
(1) vt(l) > vt(2) > Vt(S) > Vt(4} , t =28, XxX,¥, 2.

The simplest case involves assuming that the pay-off functions are additive.

*We stress however (see 7.3) that C3I for "grand tactics,™ i.e. nuclear war
decisions to be made in less than twenty minutes pose gualitatively differ-

ent problems than much of tactical c31.



So if the final state is f{a(i), x(3), ¥(kK), z{(m}] the pay-off of Plaver

1 1s
Ppia(i), 2033, k), 2(m)] = v (1) - v (3) - v (k) - v, (m) .

As we consider a zero-sum game the pay-off of Plaver 2 is: P, = -P

2 1°

2.2, Case 1: The Simultaneous Game with Perfect Weapons

To start with, we analyze the simultaneous game resulting out of
the configuration described above under the further assumption that the
weapons are perfect, so a launched missile always hits its target. The
first player has four different strategies namely, not to shoot, to shoot
at x, at y , or at z . The second one has eight strategies, from
not to shoot, over launching one of his missiles or two, to launching all

three of them. Hence, we get the following pay-off table for the first

player (see table 1, page 6):

Analysis of the Model

As we consider here the case of perfect weapons one can quickly
check that Player 2's strategies of shooting more than one missile will

be inefficient and indeed under the assumption that

(2) ve(3) - v (4) <v (1) - v(s} , s, t=x,% 12,

it can be shown that the strategies which impose on Player 2 to launch more
than one missile are dominated by some mixed strategies of launching only
one missilg. Condition (2) is natural, as bofh sides of the inequality
represent the values of the weapon; the left one when its site is destroyed
while the right one is when it is undestroyed. Hence, under this assump-

tion, the game is represented by the left half of the pay-off matrix



given in Table 1.

If we further assume that

(3) ra[l} - va(E) < max [vt(l) —vt(4)]

t=x,v,2
which means that the value of Player 1's weapon is smaller than or equal
to the most valuable target of Player 2, then the strategr "not to shoot™
for Player 1 is dominated by the strategy to attack this most valuable tar-
get, Similarly, the "not to shoot" strategy of Player 2 is dominated if
{4) v (2) - v (3) > t=§f1}:,z[vt(1) -v, (21 .
This means that the value of Player 1's target without its weapon is greater
than or equal to the least valuable weapon of Player 2.

Hence, under assumptions (1) through (4}, which we assume through-
out the paper, the simultaneous game reduces to a game where the "not to
shoot™ strategies are dominated for both players and each of them remains
with three pure strategies where the optimal minimax strategy is some mix-
ture of them. In the case that all the agents of Player 2 are identical,
the optimal mixed strategies, for both players will be (1/3, 1}3, 1/3).

On the other extreme if for example

vx(2) - vx(SJ > max [v

(1) -v (4]
t=y,z t

t

then both players have an optimal pure strategy: Player 1 will shoot at

agent x and Player 2 launches this agent's missile.
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2.3, Case 2: The Sequentiazl Game with Perfect Weapons and Warning

In this case we assume that both players have a warning system.

Each of the players will know if he is attacked, but Player 1 will not know
which missile the other launched and similarly Player 2 will not know which
of his targets is attacked., After the warning they will have enough time
to react,

It turns out that under assumptions (1) through (4) there is no es-
sential difference between this model and the simultaneous game. This is
the case since in the simultaneous game each of the plavers knows that the
other will attack him. The only difference is that now the first to attack
would be the one whose pay-off from the previous game is larger than his
pay-off when both players use the "not to shoot' strategy. Here we can
conclude that with the zero sum assumptions and perfect weapons there is

no advantage in having warning systems in order to prevent a war,

2.4, Case 3: The Assessment Case

In this sequential game we assume perfect information in case that
one player attacks the other, It means that if Player 1 attacks, then
Player 2 will know where the missile is aimed at and he will have enough
time to react accordingly. A similar situation exists if Player 2 attacks
Player 1. Clearly, in case that a war is inevitable, each player prefers
that the other shoots first, because then he can choose his best re-
sponse. If, for example, Player 1 decides to shoot and aims at agent x ,
then of course, under assumption (1), Player 2 will launch agent's x
missile, Therefore, Player 1 will start shooting only if

V(1) - v, (3) < max [v,(1) - v, (3)]
t=X,y,2



which means that even in the worst case Plaver 1's loss in a battle is
smaller than that of Player 2.
On the other hand, if Plaver 2 decides to shoot first and launches,
say missile x , then Player 1 will shoot back at site x, y or :
for which [vx(2)-vx(o)] . [vy(l)-—vy(S)] or [Vz(l)-vzf3)] is maxi-
mal. Hence, Plaver 2 will start shooting only if
va(l)-va(S) > min {[vtfl)-vt(z)]-rmax[vt(2)-vt(3), max(vs(l)-vs(3))]} .
t=X,¥,z st
Since it is not necessary that one of the above conditions will be

satisfied, the assessment systems may prevent a war.

2.5, Case 4:; First Strike Forbidden

In the sequential game with perfect weapons at most one of the play-
ers has an incentive to shoot first. Therefore, if this player adopts the
rule of "first strike forbidden" then peace will be guaranteed. A state-
ment of no first strike would be only of poiitical nature when it is made
by a player who has no incentive for a first strike anyhow. On the other
hand, as we pointed out before both players would like the other to shoot
first if he has enough time to react to the attack with his best response.
This balance could be upset if the time between launch and arrival at its
target of a missile is so reduced that the attacked player would have no

time to react. A preemptive attack would be much more likely.



3. NON PERFECT WEAPONS

In the first part of this paper we considered only perfect weapons,
In order to study the sensitivity of this assumption on the results, we
assume in the following part that a launched missile destroys its target
oniy with probability p , and that all missiles have the same accuracy.
As we are more interested in qualitative results, we are looking nox for
conditions under which the "non shooting" strategies are dominated or domi-

nate the other strategies of the players.

3.1. Case 5: The Simultaneous Game

Similar to the simultaneous game with perfect weapons and non
shooting strategy for Player 1 is dominated if one of Plaver 2's targets,

say x , satisfies:
(5) V(1) - v (2) <p [v (1) -v ()]

and for n=1, 2, 3

(6) (1= (-p)") [v,(4) - v ()]« 1-p)" [V, (1) = v (D] < p [v, (D) -V (3)] .

The left-hand and right-hand sides of these two inequalities represent the
expected loss of Player 1 and Player 2 respectively in case of a war: when
Player 2 does not shoot in (5) and when he launches n of his weapons in
(6}. Of course, for p = 1, condition (5) is exactly condition (3) and
(6) is then satisfied, since by (1), (v (4 - v (3] <0.

Under assumption (3), a straightforward application of (5) and (6)
is that a sufficient condition for the "non shooting" strategy of Player
1 to be dominated by one of his other three strategies will be that the

accuracy p is greater than or equal to p where
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_ Va(l) - \'3(2] Va(l) —va(Z)
p = max V) v () V() -V () +v, (B -V, () +v (D) -V, (37|

Similarly, the "not to shoot" strategy of Player 2 is dominated if
(7 P v (2)-v, (3}] > min [v.(1)-v (2)]
t=X,¥,z2
which again is satisfied for p greater than or equal to Py s where

min v, (1) - v, (D)]
- = 1=x,y,z
Py 7 AP UL @ -, (3)] '

Hence, we can say (under the reasonable assumptions (3) and (4) on
the values of the targets) that we are in the same situation as in the case
of perfect weapons ‘as long as the accuracy is good enough, see the condi-
tions (5) to (7). If we interpret vt(l) - vt(2) as the value of the missile
at site t , t = a, X, v, z we can say that P, is nondecreaéing with
respect to the value of the missiles. This is reasonable since if the
value of the missile is high (e.g., it is expensive) it will be launched

only if it has a reasomnable accuracy.

Non Shooting Dominates

On the other extreme, if inequality (5) holds in the reversed sense

for all targets of Player 2 and
(1- Q-p)™) [V (4) - v,(H)]+ (1=p)" [v, (1) -V, (D] > p [v, (1) - v, (D]

for n=1, 2,3 and t =1x, vy, z, then the "non shooting" strategy of

Player 1 dominates a&ll his other strategies, These conditions are satisfied



11

when the accuracy of the weapons is small enough. A sufficient condition

will be that the accuracy p 1is smaller or equal to p*, where

va(l) -va(z)

p*= R AOENOEIACEERONE t=ia; 2[Vt(l)"\ft(“)] .

Furthermore, if the accuracy p is small enough such that also

P lv,(D-v (4] < min [v.(1)-v (D]
t=Xx,Y,2
then the strategy "not to shoot" dominates the other of Player 2's strat-
egies,

Finally we can say that the non shooting strategies dominate the
shooting strategies for both players if the accuracy of the weapons is
smaller than or equal to Py where

min [vt(l)-vt(ZJ]

t=X,V,2
va(l) - va(4J

p, = min/p*

It is therefore more likely that non shooting domipates the greater
the value of the missiles, Vt(l) - vt(2) , ©or the smaller the value of
the sites with missile, vt(l) - Vt(4) . If the accuracy p lies between
P; and p, then both players will adopt some mixed strategy which might

include the non shooting strategy.

Exgggle

Let the values for all targets t = a, X, ¥, z be:

vt(l) =6, vt(Z) =4, vt(S) =1, vt(4) =0,
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Nor shooting for Plaver 1 is dominated whenever the accuracy p of the
weapons lies between 1/3 and 1. For Player 2 a shooting strategy dominates
when p is greater than or equal to 1/2.

On the other hand the non shooting strategy for both players domi-
nates all shooting strategies when the accuracy is smaller than or equal

to 2/15.

3.2. Case 6: The Sequential Game with Warning

The warning system that we deal with here is the same as the one in
the perfect weapon case. We also assume here that this system fails to
tell each of the players the results of the shooting. We discuss two ver-
sions.

1. The two stage scenario: Here we assume that each of the players
is taking decisions only once. This implies that Player 2 can launch his
missiles only simultaneously.

In this case we have to distinguish between two possibilities. The
first one is that the strategy "not to shoot" is dominated for both players.
As in the perfect weapon case, there is no essential difference between this
sequential game and the simultaneous one; the warning system does not pre-
vent a war.

In the second possibility, when at least one of the players assigns
a positive probability to the "non shooting" strategy in the simultaneous
game, things are more complicated. Suppose in this case Player 1 shoots
first then the situation now is as in the simultaneous game where the pure
strategy 'mot to shoot" for Player 1 is eliminated. Of course, the value
of this reduced game for Player 1 is smaller than or equal to the value

of the original game. Hence, he will not shoot first if and only if he is



better off by this new value than by the pay-off when both do not shoot.”

Clearly, there is a possibility that this condition is not satisfied even

if in the original game he assigns a positive probability for shooting.

A similar argument is valid for Player 2. All this leads us toc the conclu-

sion that in the case of imperfect weapons with only two stages a warning

system may prevent a war that otherwise could (with some probability) happen.
2. The more than two stages scenario: Here we assume that more

than one action can be taken by each of the players, This basically implies

that if Player 2 attacks first, he can shoot again after Player 1's response,

The fact that a warning system can prevent a war is true also here but since

the process may have three stages the number of pure strategies for Player

2 is larger’” and so there is no easy comparison to the original game. We

note that Player 2 has more pure strategies than he had in the previous

scenario, therefore his willingness to start a war may increase.

3.3, Case 7; The Assessment Case

As in the case of perfect weapons, we assume that both players will
have the information whether they are attacked or not and if attacked from
where the missile has been launched and where it is aimed at. On the other
hand, they will not know whether their own weapon hit the target or mnot.

We make the assumption that there is only a limited window in which each
of the players has to make his decisions and we do not consider the possi-
bility of a "shoot-look-shoot" strategy.

In the case of perfect weapons it was clear by the assumptions on

*Again, both players prefer that the other one will attack first if war is
inevitable.

**We have to consider all the possibilities in both his decision's epochs.
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the values that Player 2 would shoot back if for example Player 1 started
shooting. This is not necessarily true when you have weapons which hit only
with an accuracy of p < 1 because first of all Player 1 might miss and
second the expected gain for Player 2 is also smaller. The latter is of
course also true for Player 1 so that he has less incentive to shoot first,
Nevertheless, he will start shooting if even in the worst case one of his
shooting strategies has a higher pay-off than the pay-off when both players

do not shoot. The same is the case for Player 2.

4., EXTENSIONS OF THE GAME WITH PERFECT WEAPONS

In the first part of this paper we considered the case where Player
1 had one missile site and Player 2 had three missile sites. In a more
general setting we assume now that Player 1 has n sites, called
a(l), ..., a(n) , and that Player 2 has m missile sites, called

x(1), +vey x{(m) . Let n be less than or equal to m.

4.1. The Simultaneous Game

First we are Jooking for sufficient conditions that the strategies
of shooting twice at the same target are dominated. As Player 1 has less
missiles than Player 2 targets and the weapons are assumed to always hit
their target, it is clear that Player 1 will never shoot twice at the same
target. The situation for Player 2 is different because he has more mis-
siles than there are targets available. But under the assumption (2) for
s, t = x(1), ..., x{m) his strategies to shoot more than once at the same
target are dominated.

Furthermore, Player 1's shooting strategies dominate the non-shooting

strategy if
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min[va(i)(l)-vaci)(ZJ] < m%x[vx(j)(Z)-

(3}]
; )

Vo s
x(3
i.e., the iess expensive weapon of Player 1 is cheaper than the most expen-
sive target without weapon of Player 2. In a similar way the non-shooting
strategy of Player 2 is dominated if
min[v__ .. (1) -v__ .. (2)] < max[v_,. . (2}-v ... (3)] .
InlVysy B = Vy(g) P < maxlv, () @) - v, 4, ()]

Hence under similar conditions for the values of the targets as in the simple
one versus three model the non-shooting strategies and shooting several

times at the same target strategies are dominated for both players.

Some Remarks on Computational Complexity

We would like to note here, that without any assumptions on the values
of the targets for both players, Player 1 originally has (m+1]n { m+1
to the. n ) strategies and Player 2 has (n+1)m strategies in the simul-
taneous game. After having eliminated shooting more than once at the same

target both players are still left with

N
I niml/il(n-i)! (w-i)! .
i=1

If we assume further (after renumbering of the missile sites), that
[va(i)(l) —va(i)(Z)] < [vx(i)(z)-vx(i)(s)] for i=1, ..., n

then Player 1 could clearly launch all his missiles. Hence, in this circum-
stance both players are left with S = m!/n!(m-n)! strategies. Player 1
chooses the n out of Player 2's targets which he will attack and Player 2

chooses the n out of his m missiles which he will launch. This means
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that if you are to solve this simultaneous game you Still have am S by
S pay-off matrix, which can be fairly large. For example, for m = 20,
n=10, then S = 20!/(10!)2 = 19+17+13-11-4 = 184,866 which is already

unwieldly.

4,2, The Sequential Game with Warning

As we have seen in the simultaneous game above, non shooting is do-
minated for both players under very mild conditions. Therefore, once shoot-
ing dominates a warning system does not provide any new information. The
player, whose pay-off out of the simultaneous game is bigper than the pay-
off if both players adoft the non shooting strategy, will start shooting
and the other player knows it.

Only if non shooting is part of an optimal mixed strategy for the
simultaneous game does a warning system provide some new information.
Against an attack the defender will be able to reoptimize and, hence, the
attacker's pay-off ﬁay be reduced in comparison with the simultaneous fire

game.

4.3, The Assessment Case

Suppose both players have perfect information about each other's
actions. In the two stage scenario, where each player makes his decision
in one epoch and cannot shoot, wait for the other's response and then shoot
again, both players still prefer the other one tc attack if war is inevit-
able, Furthermore, it is conceivable under this scenario that the aggressor
has to shoot all of his missiles because as he has no possibility to shoot
2 second time all not launched missiles are unprotected targets for the
other player. Hence, in this situation Player 1 would start only if there

are n targets of Player 2 such that
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n
le[“x(j)(l"'vxcj)(s)l :

n
iZl{va(i)(l) Vo5 (3] <
As Player Z has more targets than Player 1 and, therefore, has more to lose
when he attacks, he is much less likely to shoot first. This situation
will change when we consider more than two stages in the sequential game,
In this scenario the aggressor could react to the response of the attacked
player. The latter could then shoot a second time as well and so on. As
we do not consider a protracted war, the number of exchanges is. certainly
limited by the time the first missiles hit their targets and interfere with

with or even interrupt the communication lines,

5. GAMES WITH INCOMPLETE INFORMATION

Until now we did not question how the values of the targets (in their
four possibilities) are assigned. Suppose that there is more than one value
a player might assign to his agent's missile sites, but only he knows the
true value., For example, in our simple model if there are two possibilities
for Player 1 and one for Player 2 then there are two possibilities as to
what is the real game. For this more complicated issue with incomplete in-
formation, the players do not know the motivation of the opponent, In
Harsanyi's treatment all that he knows g priori is the various possibili-
ties and the probability distribution that "Nature" assigns over time
(Harsanyi, 1967). Incomplete information models” of any size tend to be
computationally different, An example of this situation is where Player 1
knows that Player 2 has some high value targets, but does not know which

they are nor how valuable they may be.

*An exposition of incomplete information models is given in Shubik (1982,
p' 276) .
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5.1. The Simultaneous Game

For simplicity, we go back to the example where Player 1 is to be
chosen out of two possibilities (and so the values of his target) while
Player 2 has only one. Suppose Player 1's possibilities are nmamed a and
b with the corresponding values vs(l), ey vs(4) , 5= a, b with prob-
abilities g and (1-q) . For Player 2 we use the same notation as before.
As said above, any realization of Player 1 leads to a different scenario
but since Player 2 does not know who his opponent is we have to model this
as one (more complicated) game. For example, (any) Player 1 has to take
into consideration the fact that Player 2 has only imperfect information.
Here a pure strategy for the set of Player 1 has two components, each as-
signs a pure strategy to a different possible realization. The pay-offs
now will be the expected pay-offs of the corresponding pay-offs of the two
simpler games. Obviously, the pay-off matrix now will have 16 rows and 8
columns,

Under assumptions (1) and (2) with the further assumptions

(3" max [vs(l) -vs(Z)] <  max [vt(l) -vt(4)]
s=a,b t=X,¥,2

and

(47) min [v_(2) -v (3)] < min [v (1) -V (2}]
s=a,b s t=Xx,y,2

we get that any strategy which includes 'not shoot" for any of the players
is dominated and so we are left with a 9 by 3 pay-off matrix which can be

used in order to find the value and the optimal mixed strategies.
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5.2, The Sequential Game

As in the original model, under assumptions (1), (2), (3') ard (4%},
a warning system cannot prevent a war. In the assessment case the approach
is as in the original game even though the calculations are more complicated.
We note that in a more general model (i.e., in the case of a larger number
of agents on both sides), the fact that one shoots first changes the (a
priori) probability distribution over the true state. The new distribution
can be found using a Bayesian approach, and both players should take this
fact into consideration. We add, however, that the use of Bayesian updat-
ing of the subjective probabilities implicitly implies that no information

is interpreted as changing the cognitive map of the overall system,

6. NONCONSTANT SUM MODELS WITH THE SAME TECHNOLOGICAL STRUCTURE

The zero-sum game is based upon several attractive assumptions for
those who like their models to be tidy, sclutions concepts clear, human
factors minimized and mathematics nmontrivial, but capable of producing 'hard
numbers."

When we move into the never-never land of nonconstant sum game theory
a host of new and by no méans fully solved basic problems appear. In par-
ticular we must question at least three basic assumptions which could be
answered easily in the zero-sum context. They are:

(1) Do we believe in external symmetry of the players?
(2} What are we going to accept as a solution concept?
{3} Can we describe the payoff functions?

A fourth question of importance that was ignored in the zero sum

treatment and will be ignored here, but cannot be ignored in human affairs

is that there are a set of strategies and outcomes which neither side has



foreseen in their planning exercises, Unexpected innovation may play a

decisive role.

6.1. External Svmmetrv of the Players

In many war games the antiseptic titles of "Red" and "Blue' are hung
on the two major teams.” This somehow is meant to make the game more general
than Americans (Red) and Russians (Blue)} or Cowboys and Indians or Chinese
and Japanese.

When two abstract players are considered, often implicit in the anal-
ysis is that personality, culture, training, morale and abilities are all
equal,

In weapons evaluation it may be reasonable to regard the competence
and morale of both sides as equal for some purposes. In the study of po-
tential war between the Soviet Union and the United States the assumption

of symmetry can be highly misleading.

6.2. What Is the Solution Concept?

For a two-person zero sum game it is easy to argue that the maximin
solution is a reasonably sound extension of individual rationality. Not
only does this happy state of affairs not go over to the nonconstant sum
game, but an extremely dangerous "worst case" bias can appear when the com-
putationally attractive but conceptually unsupported maximin solution is

applied to a nonconstant sum game,

*Why Red and Blue instead of Blue and Grey or Rouge et Noire is an inter-
esting question in itself (see Shubik, 1975).
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6.3. A Disclaimer on Nuclear War Models and Nonconstant Sum Games

All of the results sketched in Sections 2 to 5 were based upon the
utilization of a zero sum pay-off matrix. Basic modeling considerations
and preliminary results which will be described in a subsequent paper indi-
cate that the stability of the system depends in an important manner on
the structure of the nonconstant sum pay-off. Although we believe that
some problems of interest can be posed and examined in the zero sum con-
text we stress that although worst case analysis provides a pessimistic
assessment of resource requirements it grossly distorts the understanding

of threat structure and wipes out consideration of mutual accommodation.

7. A PROGRAM IN THE STUDY OF STRATEGIC SYSTEMS DEFENSE

7.1. First Strike Defense: The One Person Nonconstant Sum Game

CGur basic theme is that the models and mathematics of game theory
can be utilized to help to clarify concepts and to improve the specifica-
tion of problems in strategic systems defense. When the problem is clear
enough and sufficiently important then the actual calculation of a solution
may be called for. Thus there are two distinctive uses to our approach.
The first is to further the ongoing process of conceptualizing the impor-
tant problems and the second involves the obtaining of solutions.

If we assume no first strike by Player ! and we characterize Player
1 by a network of targets, then Shubik and Weber {(1981) have suggested that
we could represent the systems defense network of Blue (Player 1) by the

chargeteristic function™ used in portraying an n-person game in coalitional

“The characteristic function v(S) defined for all S N is a superaddi-

tive set function defined for 2" values where n = INI . Each value
v(S) indicates the worth that can be obtained by the coalition S acting
alone,
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form. Here however the reason for using the characteristic function is
to be able to portray the different values which can be attributed to the
survival of different configurations of the original defense systemn.

In essence there are three levels of complexity which merit consider-
ation in evaluating systems defense, We can consider the pay-offs to be
given as (1) a linear function of surviving targets, (2) a characteristic
function of the surviving set of targets, or (3) a partition function of
the surviving network.

The linear model is the easiest to compute and the least relevant
to network defense studies. The Colonel Blotto game literature provides
examples of this type of analysis.

The characteristic function representation leads to extended Colonel
Blotto games which reflect the complementarity among surviving parts of a
system. But the actual possibility of describing the outcomes goes up as
2" instead of as n in the linear case, where n is the number of nodes
in the network. Thus it becomes practically impossible to carry out an
exhaustive combination for any system with more than 10 to 15 nodes using
a characteristic function unless linear approximations or other simplify-
ing assumptions can be made about many of the configurations.

A third representation is to use the partition function. This ac-
knowledges that it is not merely the set S of targets which survive that
counts, but precisely how they are connected. Mathematical intractability
will in general rule out considering the partition function. But a key
factor in making defense calculations is to understand the nature of the
biases introduced by simplification in order to keep calculation manageable.

If we use the characteristic function to evaluate the value of the

surviving system we implicitly aggregate target and communication net



destruction and do not distinguish the possibility that § targets may
survive with many different states to the communication net among them.

If a system is represented by a graph with nodes being targets and arcs
being communication links then the characteristic function can be used to
consider attacks which by knocking out nodes destrov only the arcs emanat-
ing from that node. We might however wish to consider both the elimination
of a node and the cutting of an arc as might be caused by an electromagnetic
pulse, cutting of cables or jamming of transmission. Figure 2 illustrates

a five target net where, if the center target were destroyed v(2345) would
have only one value, but if we considered the possibility of communication
disruption the system could be in any of the four states indicated in

Figures 2b, c, d, and e,
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As was indicated by Shubik and Wéber (1981) the one person first
strike defense model can be used for the analysis of systems defense pos-
ture on the assumption that Blue is struck first and that both Blue and
Red know'the value of any surviving configurations to Blue. It implicitly
calls for a maxmin or zero sum analysis but can offer some insights into
the effects of hardening silos, varying C.E.P, error, launch error and other

sources of technological variability.

The danger in mathematical analysis here is that the relatively clean
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game formulation can mislead the analyst into forgetting that most of the
fundamental questions concerning nuclear war are at the strategic level
and the answers to these are sensitive to assumptions concerning pay-off

functions.

7.2. First and Second Strike Analysis: Two Person Sequential Zero Sum

Ganes
Sections 2 to 4 have concentrated on zero-sum models., Zero-sum situ-
ations may arise naturally in games such as chess or two-person Poker; or
they may provide a reasonable approximation to the fundamental opposition
found in a duel or many other tactical situations., A completely different
reason for modeling a game as zero-sum is the belief that the other side
will attempt to maximize the damage done to you regardless of cost., This
is a2 '"worst case'" analysis. A third reason for modeling a situation as a
zero-sum game is when a damage exchange rate is deemed to be a useful meas-
ure, If the actual pay-off functions are given by Pl(sl, 52) and
Pzﬁsl, 52) (where S5 and P

tively) then we may form a zero-sum game by considering a new pay-off to

are strategies of Players 1 and 2 respec-

Player 1 of the form

Hl = Pl(sl’ 52J - Pz[sl, 52) ; and Hz = -Hl .

In general nuclear war models do not fit the zero-sum scenarios.
The only possible exceptions are where the modeler believ;s that a worst
case analysis may provide useful benchmark and an easy place from which to
start a sensitivity analysis. It is with this in mind that we have begun

with a zero-sum analysis.

An example of a question that this type of analysis can help to
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clarify and possibly answer is how important is retargeting for a second
strike once the damage assessment from the first strike is known. Of par-
ticular inierest is how sensitive the answer may be to the amount of error
in the system. If weapons are inaccurate and information is poor then some
of the finer combinatorics that may appear in game theoretic strategies
could be washed out and z reasoned case might be made for fairly simple

strategies.

7.3. First and Second Strike Analysis: Two Person Sequential Non Zero

Sum Games

A basic feature of strategic analysis is that it invariably involves
situations best modeled as nonconstant sum games. The concerns of the citi-
zens of the Soviet Union and the United States are by no means reflected
in a model of pure opposition., Unfortunately in even a model as simple as
a two-person nonconstant sum game new basic phenomena which are not present
in the two person zero sum game appear. In particular threats, ploys,
counterploys, hot lines and the mixture of gamesmanship and game theory
noted by Schelling (1960), Rapoport (1960) and others become relevant.

Language and contract have no role to play in the two person zeroc
sum game, The actions speak for themselves and are the only items that
matter. In nonconstant sum games there is usually room for bargaining,
contract and threat.

As we go from two-person zero sum game formulations to the noncon-
stant sum versions we do not merely change mathematical techniques but
mindsets as well. There is virtually a cultural and psychological change
from two-person zero sum to nonconstant sum thinking.

Two-person zero sum game analysis is best suited to tactical prob-

lems, to worst case analysis and is oriented towards weapons evaluationm,
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search or dueling problems., It is congenial with the mindsets of engineer-
ing "hard science' oriented operations research and a view that humans can
be adeguately accounted for by regarding them as imperfect machines. For
rmany problems including much of tactical C3I the assumptions of two-person
zero sum game analysis are probably adeguate.

Nonzero sum game analysis applied to nuclear war and to diplomacy
is and has to be "squishy" for a host of reasons. Not the least of which
are the human assessment problems of what is "wvictory'" worth; how do we
evaluate megadeaths and how are talk and promises weighed against deeds?

Strategic analysis cannot ignore the soft science component. Where
the politicians, diplomats and bureaucrats fit into the command and control
system can be ignored for much of the necessary systems design associated
with tactical problems, But for an analysis of strategic nuclear war the
C.E.P. estimates, launch errors, explosive force estimates are only a small
part of the basic formulation. Herman Kahn coined the phrase "thinking
the unthinkable™ (1962). We suggest that this could be rephrased as forc-
ing ourselves to "assess the meaning and value of the poorly quantifiable.”
A menu of hardware, probable deaths and destroyed cities does not provide
e simple guide to the force of deterrence. The role of formal game theory
analysis here is to force ourselves to join the technology of command,
control, communications and information with the behavioral, bureaucratic
and political soft factors which co-determine along with technology the
basic structure of the nonconstant sum game.

Although threat solutions and noncooperative equilibria have been
.suggested as "solutions" to a noncooperative game there is as yet no clear
consensus as to what constitutes an adequate solution concept beyond the

paranoia of worst case analysis. Fred Ik1é (1973) in a perceptive discussion
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on can nuclear deterrence last out the century? provides a balanced critique
of how easy it is to throw the problem away by a premature mindset as to
what constitutes a solution,

We suggest that the methodolegy of game theory directed towards models
of nuclear warfare viewed as a two-person nonconstant sum game has much to
offer in providing us a way to reconcile the many different mindsets which

characterize the approaches to assessing nuclear warfare and its control.

8. CONCLUDING REMARKS

Jomini classified warfare into tactics, strategy and grand strategy.
We suggest that the missile and atomic weapons have introduced a new cate-
gory of grand tactics.

The scope of grand tactics is as broad as that of grand strategy;
the stakes are as large or iarger. But the time scale varies from a few
minutes to a few days; a scale less than or equal to many tactical engage-
ments. The implications of this new category are enormous. In particular
the combination of brevity of time span together with the size of the stakes
creates CSI problems where the hard and soft factors must be considered
together,

To some of us the miracle is not how bad matters appear to be; but
how good they are in the sense that it is forty years since the advent of
the atomic bomb and we have not yet blown ourselves to pieces. Hopefully
in the next few years we can start to understand why and to improve the

probabilities that no nuclear war is started,



APPENDIX

Summary of Calculations in Sections 2-4

Basic Assumptions

a) Two super players having n (resp. m ) missile sites with one
single missile.

b) There is perfect control and communication of the missile sites,

¢) The values vt(iJ of missile site t being in state i =1,2,3,4
satisfy:

1) v (1) > v (2) > v, (3) > v, (4) vt

ii) vs(s) - vs(n) 5-Vt(1) - vt(2) , S, t=Xx,v, 2
iii) va(lj - va(2) <  ‘max [vt(lj - vt(n)]
t=X,y,2
iv) va(2) - va(3) > min [vt(l) - vt(Z)] .
1=X,y,2

d) The utility functions for both players are additive, i.e.,

P, = v (i) .
Igtt

e) We only consider zero-sum games (i,e., antagonistic game).

f) The accuracy of the weapons p is the same for all missiles and both

players.
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I, The Simultaneous Game (zero sum)
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Where the pj depend on the values of missile sites and are monotonic in

vt(i) .
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I11. The Sequential Game (zero sum)

probability“
of war
1 4 war
peace g { - P
accuracy

of weapons

no warning system at all

— — — — imperfect warning system tells you only whether you are under
attack

------- (assessment) perfect warning system

Again the pj are depending on the values vt(i) of the sites and they

are monotone in the data.
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