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ABSTRACT

A property of estimators called stability is investigated in this
paper. The stability of an estimator is a measure of the magnitude of the
affect of any single observation in the sample on the realized value of
the estimator., High stability often is desirable for robustness against
misspecification and against highly variable observations.

Stabilities are determined and compared for a wide variety of es-
timators and econometric models. Estimators considered include: least
squares, maximum likelihood (including both LIML and FIML), instrumental
variables, M-, and multi-stage estiﬁators such as two and three stage least
squares, Zellner's feasible Aikten estimator of the multivariate regression
model, and Heckman's estimator of censored regression and self-selection
models. The general results of the paper apply to numerous additional es-
timators of various and sundry models,

The stability of an estimator is found to depénd on the number of
finite moments of its influence curve (evaluated at a random observation
in the sample}. An esfimator's stability increases strictly and continu-
ously from zero to one as the number of finite moments of its influence
curve increases from one to infinity. The more moments, the higher the
stability. Since it often is possible to construct estimators with a spe-
cified influence function, estimators with different stabilities can be
conStructed. For example, one can attain the maximum stability possible
by formulating a bounded influence estimator, since they have an infinite

number of finite moments.



1. Introduction and Conclusion

This paper investigates a property of estimators called stability.
The stability of an estimator is a measure of the magnitude of the affect
of any singie observation in the sample on the realized value of the esti-
mator. ~ A number of reasons related to robustness suggest that often it
is desirable for an estimator to be relatively insensitive to any particu-
lar observation in the sample, i.e., to have high stability. But, whether
or not high stability is desirable for a given situation, it is useful for
diagnostic purposes to have knowledge of the stabilities of different esti-
mators in order to know which estimators are likely to rely more heavily
on some single observation.

In words, the stability bf an estimator is the greatest normaliza-
tion factor such that the normalized deviation of the estimator, due to the
deletion of a single observétion, converges to zero with probability one
as the sample size pgoes to infinity,'for any sequence of deletions. That

is, the stability of an estimator 6n of an Rq-valued parameter 6, is

defined as

~

. 5 = . B8 - T+
(1.1) A(Bn, Pao) =sup{fE €ER :n (en en’kn) — 0 a.s. [PBOJ,V{kn}} ,

where 6n x  is the estimator applied to the sample of size n with the
»
n

th

kn observation deleted, 0 is a J-vector of zeros, a.s. abbreviates al-

most surely, 'Pe is the underlying probability distribution generating
0

the data, and {kn} = {kn : kn <n,n=1,2,...} is a sequence of indices

of deleted observations, one for each sample size. Thus, the stability of

an estimator is an asymptotic measure of the sensitivity of the estimator

to observations actually in the sample (rather than to non-random hypothetical



observations, as is measured by the influence curve, see Hampel (1974)).
Under fairly general conditions, stability values lie between zero and one,
with the extremes being attained by certain estimators, The results of this
paper concern the determination of the stability of estimators in a fairly
broad class, and for an extensive array of different econometric models,
Models for which the results apply include among others: location (univariate
and multivariate), location and scale, linear and nonlinear regression {with
fixed or random regressors), linear and nonlinear simultaneous equations,
panel data, and limited dependent variable (such as logit, probit, trun-
cated and censored regression, and self-selectiomn).

The class of estimators considered in this paper is defined to in-
clude all estimators which can be written as solutions (for © ) to a sys-

tem of equations:

n
(1.2) DENCH N
i=l

where ri(-,-) is a specified function which defines the estimator, and

Zi is a random vector of observed variables comprising the ith observa-
tion, Note, Zi may include variables in Zk for £ <i . For example,
in time series regression and simultaneous equations models, Zi may include
lagged variables. The number of estimators which can be written in the form
(1.2) is quite large. For example, the following estimators are included:
least squares, maximum likelihood (including full-information (fIML) and
limited information (LIML) estimators of simultaneous equations models),
instrumental variables, M-, and various multi-stage estimators such as

Zellner's (1962) seemingly unrelated regression estimator, Heckman's (1979)

estimator of censored regression and self-selection models, two stage



(2]

least squares (25LS), and three stage least squares (35LS). These examples
are discussed below in Section 3,

Under suitable regularity conditions (outlined below), it is possible
to write estimators in the class defined above in a linearized form:

A -1
(1.3) 6§ =8 1 Ar (24, 8p)

1

=
o
=
=N )
"1

i

where 8, is the true parameter vector, In is a JxJ random matrix

equal to the identity matrix plus a matrix of small order one as n + « a.s.,
and A is a JxJ non-random non-singular matrix. If ri(-,-) is inde-
pendent of i for 1 sufficiently large, then A'lr(z, 90) is the influence
curve of én evaluated at z , as defined by Hampel (1974). It is shown
that the stability of an is directly :elated to the number of moments of

T. (2

1 (240 90) »i1i=1,2,... . 1In particular, if Ty and T, are stochastically

greater than or equal to, and less than or equal to ri(zi, 60) for all
i=1,2,... , respectively, then the stability of 6n lies in the interval
[1-1/p, 1-1/q] , where r, and T have p and q finite moments, respec-
tively., If p equals q, the stability of 6n is established. Otherwise,
the stability of 6n is given by a more complicated expression involving
the tail probabilities of the random vectors ri(zi, eo) s 1=1,2, 4. .
Thus, the qualitative result is obtained that %he stability of an estimator
depends on the number of moments of its linearized form (or influence curve)
--the greater the number of moments, the greater the stability. Further,
there is no upper bound beyond which additional m;ments no longer increase
the stability of the estimator., Since ri(-,-) is chosen by the investigator,
it is often straightforward to obtain estimators with specified linearized
form. Hence, estimators with different stabilities can be constructed.

It should be noted that stability results depend on the number of



finite moments of the linearized estimator, not on the number of finite
moments of the estimator itself. The latter has received considerable at-
tention in the econometric literature, e.g., see Kinal (1980), since common
estimators of simultaneous equations models have fewer than all moments
finite even with normal errors. These results have no clear implications
for stability since they deal with moments of the estimator rather than of
the linearized form.

The examples of Section 3 provide a variety of models, estimators,
and stability characteristics of different estimators., We briefly summarize the
results here: In the linear regression model with fixed regressors, the
least squares (LS) estimator has stability which depends on the number of
finite moments of the errors. On the other hand, Huber (1973} M-estimators
have the maximum stability of one in this model, regardless of the distribu-
tion of the errors. In the linear regression model with random regressors,
the LS estimator has stability which depends on the number of finite moments
of the errors and the regressors, whichever is smaller. In contrast,
Krasker and Welsch's (1982) bounded influence regression estimator has sta-
bility equal to one for all error and regressor distributions. Results
for the LS estimator and M-estimators in the nonlinear regression model
parallel those in the linear model, except the dependence on the number of
finite moments of the regressors, when applicable, is replaced by that of
the derivative of the regression function (with respect to the parameter
vector) ‘evaluated at the true parameter,

The instrumental variable (IV) estimator of a single equation from
a system of linear equations has stability which depends on the number of
finite moments of the errors and the instruments. In comparison, Krasker

and Welsch's (1983) weighted instrumental variable (WIV) estimator for this



model has a bounded influence function, and hence, has stability equal to
one--the maximum--regardless of the distribution of the errors and instru-
ments.

The stability of maximum likelihood (ML) and pseudo-ML estimators
depends on the number of finite moments of their score functions. In logit
and probit models, this corresponds to the number of finite moments of the
regressors, In the censored regression model, it corresponds to the number
of finite moments of the errors and regressors, Heckman's (1979) two-stage
estimator of this model has the same stability properties as the ML esti-
‘mator. Similarly, the ML estimator and Zellner's (1962) feasible Aitken
estimator for the seemingly unrelated (i.e., multivariate) nonlinear regres-
sion model have the same stability properties. Their stability depends on
the number of finite moments of the errors and the derivatives of the re-
gression functions (with respect to the parameter vector) evaluated at the
true parameter, Following the examples of Section 3, the calculation of
stabilities of other estimators in other models is straightforward.

Clearly, if ri(Zi, 80) , i=1, 2, .,. are uniformly bounded, then
all of their moments exist and the maximum stability is attained. Bounded
influence estimators, referred to above, are characterized by this property.
In contrast, other estimators have stability which depends on the true
underlying probability distribution, since the true distribution determines
the number of finite moments of ri(zi, BO} , i=1,2, ... . This is
illustrated by the examples of Section 3.

As mentioned above, several reasons related to robustness suggest
that high stability is often a desirable property for estimators. We now
discuss these reasons. First, economic data are rarely so "clean" that it

is prudent to put great weight on a single observation. For example,



the imprecisions of economic data are manifested by the continuous re-
visions made to macroeconomic time series, and the subjective nature of

some microeconomic survey data. Several factors contribute to this impre-
cision: There is pure measurement error at the data collection stage. The
correspondence bgtween observed or ''constructed" variables and the variables
which are relevant from the perspective of economic theory is usually im-
perfect, and sometimes considerably so. The precise definitions of vari-
ables may be problematic even from a theoretical perspective, as exempli-
fied by the money supply and 2 market share (in a nebulous market). Finally,
recording errors made in stages of data collection, transmission, and anal-
ysis are inevitable, Such errors are often beyond the control of the econo-
metrician who may have no input into the collection and transmission stages.
In fact, the econometrician may have only scant knowledge of the degree of
imprecision of the data. In such cases, it is unwise to let any single ob-
servation have great weight in determining an estimator's value.

The imprecision of econometric models themselves also adds to the
desirability of high stability. Economic theory cannot yield complete model
specifications, so even in the presence of a simple true model, a specified
model is likely to be just an approximation. Moreover, the existence of
simple true models is questionable. To be tractable and useful, econometric
models must be simple. However, in most cases such models are at best ap-
proximations of a much more complicated socio-economic phenomena. An ob-
servation which appears to be highly informative may be so onlx because
of a spuriously precise specification of(the model. For example, in a linea:
regression model an observation which is an outlier in the space of regresso:
variables can be highly informative. That is, it can greatly reduce esti-

mator variances, However, if it is recognized that the extension of the



regression function to the outlying observation may be nonlinear with un-
known functional form, then the informative content of the observation is
drastically reduced. In such a case, the effect of the observation on the
computed variance of an estimator with low stability is spurious and decep-
tive. Such an observation 2lso can cause a significant bias for an esti-
mator with low stability. An estimator with higher stability is more robust
to such specification difficulties because no single observation is given
excessive weight.

A third reason for interest in high stability is that, in some models,
estimators which are highly sensitive to a single observation perform quite
poorly even if the model is specified correctly and the variables are meas-
ured without error. This arises when the observations are highly variable.
In this case, any single observation is potentially a randomly generated
outlier with little informative content, and hence, should not be given
disproportionate weight. For example, in a regression model or simultaneous
equations model with fat-tailed errors, the least squares (LS) estimator
has low stability because an outlying error realization can dramatically
alter the value of the estimator. As expected, the relative efficiency
of the LS estimator is quite poor in this situation, On the other hand,
various robust procedures have high stability, and consequently, perform
quite well even with highly variable observations. The statistical litera-
ture on robustness has analyzed problems of this sort in some detail, see
Huber (1981).

The above arguments for high stability are not always applicable, of
course, and so, estimators with high stability are not always preferable.
However, for diagnostic purposes it still may be useful to know which esti-
mation procedures are more likely to weight some single observation heavily.

Hence, even in this case, estimator stability is of interest. Note, stability



comparisons can be made between different estimators for the same model or
between estimators of different models. If an econometrician is more fami-
lair with one model than another, stability comparisons of the latter sort
may yield useful qualitative information about the second estimator's sensi-
tivity to single observations in the sample based on knowledge of the first
estimator's sensitivity.

The stability measure is based on the deviations §_ - én,k ,
k=1, ..., n . In the literature these deviations have Been found useful
for other related purposes. In analyzing the behavior of the least squares
estimator in the linear regression model, Cook (1977, 1979) and Belesley,
Kuh, and Welsch (1980) use these deviations to help detect influential ob-
servations. Also, these deviations are proportional to the deviations of
an estimator from its jackknifed pseudo-values. Tukey (1958) has suggested
a nonparametric estimator of the variance of the original estimator én s
based on the latter deviations (see also Miller {1974)). The relationship
between stability and the influence curve, a very important tool of robust
statistics, has been mentioned above. A finite sample analogue of the in-
fluence curve suggested by Tukey (1970), viz., the sensitivity curve, is
also related to stability. If we denote the sensitivity curve of §n formed
using 811 n observations except the kth by SCn,k(z)‘, then SCn,k(z)
evaluated at the deleted observation ) is proportional to the deviation
6n - 6n,k . That is, Tukey's finite sample sensitivity curve (constructed
with an observation deleted) evaluated at ?oints in the actual sample is,
the basis of the stability measure, Finally, a different approach to some
issues related to stability is given by O'brien's (1975) analysis of the

sensitivity of the least squares estimator in the linear regression model

to random perturbations in the data.



This paper is organized as follows: Section 1 introduces the basic
jdea contained in the paper, attempts to motivate it, and summarizes the
results in an informal manner. Section 2 presents definitions, assumptions,
and the general results. For purposes of illustration, the linear regres-
sion model with the least squares estimator is used as a running example
throughout this section. Section 3 discusses numerous additional applica-
tions of the general results, Section 4 contains proofs of the results

given in Section 2,

2. General Results

2,1, Model and Estimator Assumptions

The general model considered in this section is described by an in-

finite sequence {Zi} = {Zi :i=1, 2, ... } of random vectors of arbi-

trary dimensions. A sampie of size n corresponds to the observation of
the first n terms in this sequence. For increased generality, the ith
tern Zi is allowed to include elements of the random vectors Z2 , for
2 <i . Thus, Zi may include lagged variables. The distribution of the
sequence {Zi} , denoted Peo , depends on an Rq-valued parameter 8, .
All probabilistic statements below are made for {Zi} distributed accord-

ing to Pe . Thus, "almost surely" means "almost surely under Pe M
0 0

The sequence {Zi} is assumed to be weakly dependent over time. That is,

" the dependence between random vectors dies out as the difference in sub-
scripts of.the variaﬂles becomes infinitely iﬁrge? (For the case of Cross=-
sectional data, the observations are often independent and this requirement

is satisfied.) More precisely, {Zi} is assumed to be strong mixing.

This is a realistic assumption for many economic time-series (and
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cross-section) situations. It is considerably weaker than other assumptions,
such as independence, m-dependence, or auto-regressive moving average {ARMA)
structure (see Chanda (1974), but cf. Andrews (1984b)), which are often used
in econometric models. Moreover, strong mixing does not imply stationarity
or any assumption related to identical distributions.

Strong mixing is defined as follows: Let {Qi t1i=1,2,...} bea
sequenc; of random vectors. Let "Bi2 denote the o-fiel& generated by
Q»Q 7 +e»Qy for 1<i<p<w= . That is, ‘BiR.
events determined by Q;, Q15 ees Q . {Qi} is strong mixing if a(n) + 0

is the collection of all

as n-+= , where a(n) are the strong mixing numbers of {Qi} defined by

(2.1) a(n) = sup sup |P(ARB) -P(A)P(BY] .

221 AEB, ,,BEB

Note, if {Qi} are independent, then a(n) = 0, ¥n>1; if {Qi} are
m-dependent, then o(n}) =0, Vn>m; and if {Qi} have ARMA structure
with absolutely continuous innovations, then o(n)} declines to zero at an
exponential rate as n + = (see Chanda (1974))., We assume:

Al) {Zi} are strong mixing with strong mixing numbers e(n) which satisfy

-a/(a-1),

a(n) = o(n as n—+«, for some a>1 (where a =1 re-

quires af(n) = 0 for n sufficiently large).

We now turn to two simple examples which we carry through this sec-
tion to illustrate the more general model and results, Section 3 discusses
other applications of the results of this section. The first example con-

sidered here is the classical linear regression (CLR) model,

(2.2) y; = x{eo *u, i=1,2, ..., n,

where Y is the observed dependent variable, Xy is the observed RJ-vector
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of fixed regressors, u, is an independent, identically distributed (i.i.d.),
mean zero, unobserved error, and 60 is an Rq~va1ued unknown parameter vec-

tor. In this case, Zi = (yi, xi)' . We suppose that the regressors are

n
uniformly bounded, and that 1lim 1 ) x;x! = H,
n+e i=]

for some non-singular
J=xJ matrix H ., The second example we consider is the random regressor
linear regression (RRLR) model. This model is identical to the CLR model
except the regressors are assumed to be random, not fixed. We assume the
regressors are i.i.d. and independent of the erfors, and ExiXi =H is non-
singular. Clearly, Al is satisfied in both of these models with o =1,
Note, the rather restrictive assumptions placed on these models are for
purposes of exposition; the general results given below allow them to be
relaxed considerably.

The class of estimators considered for the general model includes
all estimators which c¢an be wfitten as (measurable) solutions for 8 to
a system of equations of the form

(2.3) ri(Zi’ g} = 2, s

1

H e~

i

for some RJ-valued (measurable) functions ri(-,-) , 1=1,2, ..., which

are defined on some neighborhood of the true parameter %).
th

For notational
convenience we abbreviate ri(Zi, 8) by ri(e) . The j element of
ri(a) is denoted rij(e) . Sectiop 3 shows that many wel%-known estimators
of econometric models can be written as such. Fo; the two examples of this
section, we consider the least squares (LS) estimator. For this estimator,

(2.4) r; (25, 8) = (y; - x}8)x; = r?s(e) .
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Results concerning the stability of an estimator B, are of inter-
est only if the estimator satisfies certain minimal conditions regarding
its performance. Hence, the following assumption is not particularly re-

strictive:

Bla) {ri(e)} is sufficiently well-defined that a (measurable) solution

én to (2.3) exists (though is not necessarily unique) for n suf-

n

ficiently large a.s., and én-4:3 B, 2.s.

§ L

b} Further, Ak — 60 a.s., for any sequence of positive integers
] N

n
{kn} with k <n, vn .

~

Conditions which imply strong consistency of the estimator 6

usually also imply strong consistency of 6n the estimator which

ko

ignores the (k )th

n observation. Most estimators considered in econometrics

satisfy these conditions under certain assumptions on the underlying model.l’2
Such assumptions can be found in the literature., In particular, the LS

estimator for the CLR and RRLR models satisfy Bl, see Lai, Robbins, and Wei

(1978), Anderson and Tayleor (1979), and White (1980).

One of the assumptions usually needed for consistency of an estimator
defined as a solution to (2.3) is that the expectation of the defining equa-
tions is zero or approaches zero as the sample size increases. We shall

make this assumption explicit:

n . .
B2) n°! 7§ Eri(6)) 230, Yo <1-1/@2al/),
i=1

where " A" is the minimum operator. In the CLR and RRLS models
Er‘i‘s(eo) =0, soB2is satisfied.
We now state several definitions used below, A random variable (rv)

X is said to have g finite moments if
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(2.5) E|x|8* n femell ge0
= forall & >0 .

1f E|X|® == (<=) forall &§>0, X is said to have 0 (=) finite
moments. Thus, every rv has a unique number g of finite moments and
g € [0,o] . For examples, a normal rv has « finite moments, and 2 t
rv with d degrees of freedom has d finite moments. The number of finite
moments of a random vector or matrix is defined to be the smallest number
of finite moments of any of its elements.

For a random vector or matrix X , let |X| denote X with all
of its elements replaced by their absolute values, and |{X]| denote the
Euclidean norm of X .

A rv X is said to be stochastically less {(greater) than or equal

Ty, if 0 > R

toarv Y, and we write X %g Y (X

(Fx(x) f'FY(x)) , ¥x € R, vhere Fx and FY are the distribution func-
tions (df's) of X and Y , respectively. The same term is applied to
random vectors and matrices if the above condition is satisfied element by
element.,

Now we construct a random vector, Ty which is stochastically

greater than or equal to ri(eo) for all i . Let FU(w) be a J-vector

with jth element given by inf P(lrij(eo)] <w) , for j =1, ..., J
i»1

and w € R . Let rU be a random J-vector whose elements have univariate

df's given by the vector FU(w) . Denote the number of finite moments of
Ty by p . The following assumption requires that ri(ao) for i=1,2,...

2a+1

are stochastically dominated by an L random vector (where o is a

measure of the dependence of the sequence {Zi} , see Al):

B3) E|rul2m-1 <= , vwhere = is a J-vector of infinities. Equivalently,

p > 2u-1 .,
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(Note, B3 rules out the case where some element of r; is point mass at in-
finity.) In general, if B3 does not hold then either én is strongly consis-
tent but it is somewhat more difficult to prove (e.g., see Hannan and Kanter
(1877)), or §n is not strongly consistent (as exemplified by the LS esti-
mator when the errors in the CLR or RRLR model have infinite mean}). In
consequence, B3, or conditions which imply B3, is a common assumption in

the literature (e.g., see assumptions 3 and 5 of Burguete, Gallant, and

Souza (1982, pp. 162 and 167)). The LS estimator in the CLR and RRLR models
satisfies B3 since r;s %g lujlsup|x;{ where Elu | <« in the CLR model,
i»1

LS §

and 1 3] lujsx;| where Elujex; | <= in the RRLR model. Note, since

p is not necessarily greater than or equal to 2, en is not necessarily

asymptotically normal.

Next we construct a random matrix, Dr , which is stochastically

greater than or equalito

8 .
3§Ti(90) for all i . Let FDr(w) , WER,

be a JxJ matrix with (1?.,j)th element inf P '~2—r..(e )
i>1 aen ij>°o

5_w) , for

£, =1, «.., J . let Dr be a JxJ random matrix whose elements have
univariate df's given by the matrix FDr(wJ . Dr is used to state a uni-

form smoothness condition on ri(e) at 90 . We assume:

n

B4a) A = lim l-f Ejlr.(a J exists and is non-singular.

n, @@ 170
e i=1

b) Ellpr{® <=, for some n satisfying n > 2 and n ¥a.

(Note, the assumption n > 2 can be reié&ed in the results that follow.)
Assumption B4a is common in the literature (e.g., see assumption 6 of
Burguete, Gallant, and Souza (1982, p. 169)) because it is usually necessary

for asymptotic normality (with a non-singular covariance matrix). The



15

estimators considered here are not necessarily asymptotically normal, but
this particular assumption is still used, For the LS estimator in the CLR

and RRLR models, Bda corresponds to the assumptions above that

n
lim %}: xixi and Exixi exist and are non-singular, respectively. B4b
ne  i=l

holds in the CLR model since the X, are uniformly bounded, and in the

RRLR model if E[_X'x

)
n
The result 1}: -32- A

Ty . . »
XA a.s. is commonly used in the liter-

ature when showing asymptotic normality of an estimator én . We also use

this result, and impose the following additional smoothness condition on

ri(e) to ensure that it holds:3
o +d .
B5a) sup EW,.” <= , for some 6§ >0, for j=1, ..., J, where
i>l 2
wij s sup ]3938'(r . (8) _rij(eo))” » 9y 1is some neighbourhood of
B€p
0
BO s and
1 B g2
b) ;izl ‘WU(BO)” =0(1) as n—+*, a,s., ¥i=1, ..., J.

For the LS estimator in the 'CLR and RRLR models B5 is automatically satis-

2
. . ] - . .
fied, since Wri(a) ] ‘g » Where 2, is a matrix of zeros.

2.2, Stability Results

First,we present a result which gives a linearized form of the estimator
: 9;1 ., It also shows that 'the smoothness conditions on ri(e) are sufficient

to yield strong consistency of én and én x a2 faster rate of conver-
L]
n

gence than no .
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Theorem 1. Under assumptions Al and Bl-B5,

() 6_=8, - %-Z Al 1(8g) » where I isa JxJ random matrix
=]

equal to the identity matrix plus a matrix of small order ome as n + «
a.s,, and
(v) for all sequences of positive integers {k } with k <n,

lim nv(én X -BO) =0 a.s., W< 1-1/(2A(p/e)) o
T+ .

AT r (e .
1

highlights the importance of the rv's ri(eo) , i=1, ..., n, in de-

Comments: 1. The linearized form of én , Vviz., 60

5!%‘.
LUK e =]

i

termining the stochastic properties of the estimator én . In particular,
the linearized form suggests that the stability of én may be related to
the tail behévior of ri(GO) , 1i=1, ..., n. It is shown below that
this is the case,

2, 1If ri(-,- is independent of 1 for 1 sufficiently large,
as is often the case, then the influence curve of én is Ahlr(z, 90) .
Thus the linearized form of §n is determined by its influence curve.

3. Part b of the Theorem shows that the rate of convergence of §n
to 6, depends on the number of moments of ri(eo) , i=1, ..., n (as
measured by the number p of finite moments of the stochastically dominat-
ing random vector Ty J. In addition, there is a tradeoff between the number
of moments of Ty and the degree of dependence over time (as iﬁdexed by
¢ , see Al), Note, the dependence of the rate of convergence, v , oOn
‘the number of moments of Ty» P, and the degree of dependence, ¢ ,
only exists below a cut off point, If p > 20, then the maximal rate of
convergence is obtained, and additional moments are of no consequence,

This contrasts with the results obtained below for the stability of én .

In the latter case no such cut off point exists,



4, In the CLR and RRLR models, the linearized form of the LS esti-

T
mator is 6, - %-Z H'luixi , o equals one, and p equals the number of
i=1

finite moments of u, and U X s respectively, In both models, if u,
has two or more moments, the maximal rate of convergence is obtained, 1i.e.
the upper bound on v 1is omne-half.

5. The proof (see Section 4) makes use of McLeish's (1975) three
series theorem for strong mixing rv's, and a result of Loeve (1955).

We now establish two lower bounds on the stability of an estimator

&Iy
.

Theorem 2. Let Al and B1-B5 hold, Then,

(a) A6, Pao) >1-1/p, and
() A, P, ) >sup{le ER: ¥ [l—F*.(nl-E)] <e, Vi=1,...,J} (>21-1/p},
n 8 - nj -
0 - n=1
* - . ' .
where Fnj(x) Z min Fij(x) , 4and Fij(-) is the df of rij(eo) .

i<n

Comments: 1. The lower bound of part a is more readily interpretable than
that of part b, but part b is a stronger result. That is, the lower bound
of part b is greater than or equal to that of part a.

2. The lower bound of part a is a linear function of the reciprocal
of the number p of finite moments of 1}, . The lower bound increases
strictly and continuously from 0 to 1 as p increases from 1
to e ., This result differs from rate of convergence results for strong
consistency (see Theorem 1). The latter exhibit # cut off point beyond
which additional moments do not increase the rate of convergence.

3. For the LS estimator in the CLR model, p equals the number of
finite moments of the error u, . For example, if wu, has t-distribution

with d degrees of freedom, then the lower bound given by part a is
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1+1/d, and it ranges continuously from 0 for the Cauchy (d =1) to

1 for the normal (d = =) . With regard to part b of Theorem 2,

P! = B (a8 (max|x

ni -:1}) in this case, where Fy {(+} 1is the df

1 - 1<n 1 1
of u, . Note, J [1-F (nl'g/(maxlx..l))] <« , Vj, if and only
1 = u - 13
n=l 1 i<n

n
if ]
1=

[1-F, "% <= . And,
1 1

2.6) ¥ [1-Ful(n1'5)] - }:IP(IuIII/(I-E) >n) € [E|u
n=

l/(l-E)’ Elul‘l/(l-ﬁ) +1]
n=1

! [

1|

using Loeve's (1955, p. 242) moments inequality., Thus, in this case, the lower
bound of part b reduces tec I - 1/p , as in part a,
4, In the RRLR model, p equals the number of finite moments of

LIRSS 1f Xy has as many or more moments than u then the situation

1 »
is exactly as above in‘the CLR model. However, if X; has fewer moments
than u, , then the variébility of the regressors determines the value of
p and the lower bound 1 -~ 1/p is less than in the CLR model (with the

*

same error distribution). For the RRLR model, F

1-8, 1-E
nj(n ) = Fﬂj(n ) ]

Vj , and an argument similar to that of comment 3 shows that the lower bound
of part b reduces to 1 - 1/p .

5. The condition n > 2 in assumption B4b can be relaxed in this
Theorem. Specifically, (a) under the assumptions of Theorem 2 except that
of n>2, for any §'€ (20-1, p} , if n>2A (B?u) s, then

A(ﬁn, Pa y>1- 1/ , and (b) under the assumptions of Theorem 2 except
0
those of n > 2 and p > 2a-1 (see B3), foréany P>0, if n 2_2 A (B/a)

and p>1, then A(én, Py ) > sup{g € R : 1 {1- F;j(nl'g)] < = and
0 n=1
£ <2(1-1/(2a®@/e))}
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o
6. The proof makes use of a Taylor expansion of ) ri(én) , the
i=1

first Borel-Cantelli Lemma, a moment inequality of Loeve (1955), and Theorem

1b (to show various terms are o(l1) as n + * a.s.).

The next result provides an upper bound on the stability of an es-
timator én in terms related to the number of moments of r,(8j) ,
i=1, ..., n . Further, it shows that the stability of én actually equals
the lower bound of Theorem 2 part b, This result requires a stronger con-
dition on the asymptotic weak dependence of the process {Zi} than strong
mixing, because the second Borel-Cantelli Lemma is used in its proof. This
Lemma is usually stated for independent sequences, but it also holds
for @w-mixing processes (defined below), see Iosefescu and Theodorescu (1969,
Lemma 1.1.2'). However, it has not been shown to hold, and may not hold, for
strong mixing processes. (On the other hand, strong mixing processes do satisfy a
related result, viz., Kolmogorov's zero-one law, see Andrews (1984a).)

A sequence of random vectors {Qi} is w-mixing if o(n) + 0 as

n -+ = , where (n) are the w-mixing numbers of {Qi} defined by

(2.7) @n) = sup sup |P(ANB) - P(AYP(B) |/P(A)
2>1 ,tus‘sl,ﬁ:p(.oo>o;:.=.e‘rz.hn’m
= sup sup |p(B|A) -P(B) | ,
2>1 AE‘BI,Q:P(A)a-O;BE‘B“n'm
where Bi,m is the o-field generated by {Qi’ Qi+1’ ..:,Qz} . Sequences

of independent and m-dependent rv's are clearly -mixing. Billingsley (1968)
provides additional examples., However, the ¢-mixing condition is consider-
ably stronger than the strong mixing condition. For example, stationary
Gaussian sequences of rv's are @-mixing if and only if they are m-dependent,

see Ibragimov and Linnik (1971), whereas they are strong mixing under the
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weak condition that they possess a continuous, positive spectral density,
.see Kolmogorov and Rozonov (1960), Thus, the tp-mixing assumption may be
stronger than is reasonable for some economic applications, but it is dif-
ficult to avoid at present,

For the next result we assume:
Al') {Zi} are -mixing with strong mixing numbers as in Al.

For the upper bound on the stability of §n given below, we need

to construct a random vector, T which is stochastically less than or

th

‘L »

equal to Iri(eo)] for all i . Let F;(w) be the J-vector whose j

element is sup P(lrij(eo)l <w) for j =1, «v., J and w€ R, and
i»l

let T be a random J~vector whose elements have univariate df's given

by the vector FL(w) . Let q denote the number of finite moments of r .

Note, the number of finite moments of Ty s P o is necessarily less than

or equal to q .

Theorem 3. Let Al' and Bl-BS5 hold. Then,

(a) A(ﬁn, Pe ) <1-1/q , provided p > 2uq/(q+l) , and

inf{fg €ER: ] [1- F*.(nl'g)] = w, for some integer j in {1,...qW}3

) A,
n 0 n=1 nj

-

h ]
S
n

suple € R : [ 1-EL@!™Hl <= vi=1, .., 3},
n=1 J
where F;j is as in Theorem 2.

Comments: 1. Part a holds for all q <« , If q== , part a is shown

to hold (see Section 4) provided Ty is not identic;ily 9 . In consequence,

the right-hand-side in part b is less than or equal to one provided Ty

is not identically 0 .
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2. 1In some cases (e.g., when the observations are identically distri-
buted), P equals q , and the stability of an estimator is given by the
mumber of finite moments of the linearized form of the estimator — the more
moments, the greater the stability. In particular, there is no cut off be-
yond which the existence of more moments is of no consequence. If p is
less than q , then the stability of én 1ies in an interval determined by
p and q , and its exact value is given by the somewhat complicated expres-
sion given in part b .

|§I

3, For the LS estimator in the RRLR model, r —-|u *X Ty s and so,

q = p and the stability of 6n is 1-1/p . In the CLR model,

.
L=

ple, then'_ﬁ is less than or equal to the number of finite moments of |u1| ,

|u1[-min|xll . If the regression function has a constant term, for exam-
- > N

which is p . Hence, q=p and the stability of @n is 1-1/p . For
example, if the errors have t-distribution with d degrees of freedom, then
the stability of 8 is 1-1/d in the CLR model. The stability of the usual

2

estimator lJ Z (y’ - X, 'BLS) of the error variance, 02 , is 1-1/(2p) 1in

i=1
the CLR model. Thus, the variance estimator is less stable than the LS esti-
mator of the regression parameters., This corroborates results found in the
literature comparing the robustness of these two estimators.

4. The condition n > 2 of assumption B4b can be relaxed in this
Theorem. Specifically, (a) the assumptions n > 2 and p > 20q/(gq+l)} can
be replaced in Theorem 3 part aby n> 2a(p/a) for some PE(20q/ (gq+1), p]
and (b) under the assumptions of Theorem 3 exce;t.those of n>2 and
p>2a-1, if n> 2A(§7a) for some p > 0, then A(Gn, PBO) <inf C,

where C = {E€ER: f [1-F;j(n1-5)] = o for some j , and

E < 2(1-1/(2a(p/@)))} . (Note, the infimum of a null set is defined to be

infinity.)



3. Examples

This section contains a number of examples where the general results
of Section 2 apply. The models and estimators are described as briefly as
possible. In consequence, sufficient conditions for strong consistency
(assumption B1) are not always given in their entirety. Such conditions
can be found in the references cited. In all cases, the defining functions
of the estimators, viz., ri(e) , i=1, ..., n, are assumed to be chosen
to satisfy the conditions B2-B5.

It is possible to include some two and three stage estimators
in the class considered in Section 2, e,g., Heckman's (1979) two stage esti-
mator of the Tobit model--example 7, Zellner's (1962) feasible Aitken esti-
mator for the seemingly unrelated nonlinear regression model--example 8,
25LS,and 3SLS. Proceed as follows: Suppose part of the parameter veﬁtor

BD s call the part 10 s ‘iskestimated in a first stage via the solution to
n

E rli(A) =0, and'(a not necessarily disjoint) part, call it Bo s, 1is
i=1

n
estimated in a second stage via the solution to Z rZi(ln' B) =0 , where

*n is the first stage estimator., In place of %o consider an alternative

A

parameter vector eo (l s 86)'. Now, a single stage estimator, en 3

of the desired form can be defined by taking

~ rli(:\) - A
(3.1) ri(a) = , for © = .
T, (2,8) B

’

'This estimator satisfiés Al or Al', and B1-B5, if the separate stage esti-
mators do. (The matrix E—= ar (60) in B4a is triangular, and hence, is
non-singular if the diagonal blocks are non-singular.) Thus, the results

of Section 2 apply. The extension for three stage estimators is straightforward



In the examples that follow we assume independence of the observa-
tions because this is the usual assumption made in the references cited.
In most cases, this assumption can be relaxed by replacing it with an as-
sumption of strong mixing. Strong consistency is proved, then, using the

strong law of large numbers for strong mixing rv's (see McLeish (1975)).

1. Classical linear regression (CLR) model--Classical M-estimators (ref-

erences: Huber (1973), Yohai and Maronna (1979)). The model is the CLR

model described in Section 2. We adopt slightly different notation:

(3.2) y; = xiBy * u; i=1,..0,n, I (yi, x3', 8y = (86, oy) "

The estimator én is defined by

v((y,; - x!B)/o)x,
(3.3) rice)=(2 o 1), for e=[3],
vy, - xil/o) - ¢

where ¢ is a given constant, ¢ is a bounded, smooth, odd function, and

-~

the true parameter o, solves sz(iuillco) = ¢ . The estimator & has
the maximum stability, one, whether or not the errors ug have any moments.

This contrasts sharply with the LS estimator, see Section 2.

2. Random regressor linear regression (RRLR) model--General M-estimators

(references: Maronna and Yohai (1981), Krasker and Welsch (1982)). The
model is the RRLR model described in Section 2 with the notation of example 1.

The estimator ﬁn is defined by

Tix., (y.-x!B)/o)x.
(3.4) T, (8) = ( ot 1) ,
x(ly; - x}8l/0)
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~ . . *
where, for each Xs s w{xi, -] is bounded, odd, and non-negative on R ,

x(+) 1is nondecreasing and bounded, Elxi]suplﬁkxi, u)| <=, and the true
u

parameter o, solves Ex(luil/co) = 0 . The stability of §n depends on
the number of finite moments of Efxi, ui/co)xi . If E'.is taken such

that this is bounded uniformly for Xy and u; {as in Krasker and Welsch
(1982), for example), then the general M-estimator is a bounded influence

estimator, and has stability equal to one--the maximum.

3. Linear, limited information simultaneous equations model--Instrumental

variable (IV) estimator (references: Sargan (1959), Heiler (1981}). The
model is the same as the RRLR model but the regressors and errors are not

necessarily independent:

= 1 i = = t 13t
(3.5} y; = xj8g 4w, i=1,...,n, Zy = (g, x, W',

where wo is a random vector of instrumental variables which is indepen-

dent of the error u, but not of the regressor X; - The estimator §n

is defined by

{3.6) ri(e) = (yi- xie)wi .

The stability results for the IV estimator 6n are the same as for the
LS estimator in the RRLR model with the number of finite moments of the
instruments replacing those of the regressors. In particular, if the in-

struments or the errors have fewer than &11 moments finite, the IV esti-

mator has stability Iess than one,



4, Linear, limited information simultaneous equations model--Weighted in-

strumental variables (WIV) estimator (reference: Krasker and Welsch (1983)).

The model is as in example 3 with a slight change in notation:

— 2 - = 1
(3.7 y; = x{8y+u, , i=1,...,n, Z; = (yyr X1, W]) , 8p= (B, og)' .

The estimator én is defined by

1/2
min{1, c/[|(y.-x!B)/U]-{w!B'lw.) 13- (y. - x!R)w.
(3.8) x,(0) = i 7 ) -11 i i TiTTi
- 8 vec[y(c /w{B wi)'wiwi' B]

where ¢ and o given constants, the parameter vector o = S vec B, S

is a known {[J(J+1)/2] xJ2 selection matrix such that S vec B is the vec-
tor obtained by vectorizing the lower triangle of the symmetric J=xJ matrix
B, v(t) =E min(nz,'t) for n ~ N(0,1) , and the true parameter vector

ag = S vec B0 solves B0 = EY(cz/wiBalwi)wiwi « (Note, o «can be esti-
mated by adding it to the parameter vector 6 and adding an element to

ri(e) «) As defined, ri(a) does not satisfy our conditions for smooth-
ness in 6 . However, a version of ri(e) which is smoothed at the corners
satisfies our conditions, yet differs very little from r.(6) . It can be

seent that ri(eo) is a bounded random vector. Hence, §n and the WIV

estimator of BO » given by the sub-vector En ,» have stability one.

5. Nonlinear regression model--Least squares estimator (references: Jenn-

rich (1969), Malinvaud (1970), Bierens (1981), Wu .(1981), Domowitz and White
(1982)). The model is

(3.9) y; = £x;, Bp) +u, , i=1,....'n , Z; = by X', 8y = By,
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where the errors u, are strong mixing, mean zero rv's, the regressors
x; may be fixed or random but must satisfy conditions for "proper" behavior
as n » = (see references), and the regression function f(+,+}) is smooth.

The LS estimator 8 is defined by the function
92
(3.10) r, (8) = (yy - £(x;, 0))55f(x,, 83 -

3
u; 5pflxg. &)

the manner described in Theorem 3. For examples, if the regressors are

The stability of §n depends on the random vectors in

j.i.d. random vectors or are fixed and uniformly bounded, then its stability

js 1 -~ 1/p , where p is the number of finite moments of

2
ul —a'-e—f (Xl, 30)

6. Nonlinear regression model--Classical M-estimators (references: Bierens

(1981), Burguete, Gallant, and Souza (1982), Andrews (1983)). The model is
as in example 5, excepf 8y = (8gs 9g)° and the assumption of mean zero
errors is replaced by the assumption that Ew(ui/uo) =0, for ¢y and

g given b_elow.4 The estimator én = (ﬁﬁ, Gn)' is defined by the func-

tion

W0y - £0x;5 8))/0) +25E(X;, B)

(3.11) ri(e) = >
\U ((yl“f(xi: B))/G) -y

, for © = (8f, o)*% ,

where vy is a (known) constant given by y = jwz{s)dﬁ(s) for ¢{¢) tha
standard normal df, o, is an unknown scale parameter defined by

_ . _ . '

sz(ui/oo) =y, and ¢ is a bounded function as in example I, Since

v is bounded, the stabilities of én and én depend on the vectors

g%f(xi, eo)l . If the regressors are i.,i.d. random vectors, their stability

is 1 - 1/p , where p is the number of finite moments of g%f(xl, BO)

.

1f the regressors are fixed and uniformly bounded, their stability is one.

PR
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7. Censored regression (or Tobit} model--Heckman's two stage estimator

(reference: Heckman (1979)). The model

(3'12) yi = (XI!LBO+ui) vo, i=1, «.., n, zi = (yi’ X:{)'_ »

where " v " is the maximm operator, the regressors x, are i,i.d. random
vectors, the errors u. are independent, normal(o0, cg) rv's, and

60 = (86, 00)‘ . Heckman's two stage procédure uses an estimator of the
form (2.3) at each stage:

ISt stage: The estimator in is a maximum likelihood (ML) probit estimator

of Ao E 80/00 . Its defining function is

1[yi>O] - ¢(xil)

(3.13) i = TEmyas ¢(xix))¢(xi*)xi ’

where ¢{-) and ¢(+) are the standard normal density and distribution
function, respectively, and 1[.] denotes the indicator function,

nd . : P . . . )

2~ stage: The estimator (Bn, on) is the LS estimator of (BO, oo) given

Xn , using only the uncensored observatiomns. Its defining function is

~ - - ] - 4 o i .
(3.14) r, (R, 8, 0) = (y; - x|8 (¢i/°i)°)(a_/ai) l[yi>0] ’

L) = ' o~ -~ = ‘ ~ .
where ¢i ¢i (xiAn) and ¢i @i(xiln)

This two stage estimator can be written as _a single stage estimator
of form (2.3) by considering the estimator ﬁ; = (X!, éﬁ, 5n)' of

Eb E (86/50, 86,{00)' defined by the function

T..(2)
(3.15) @<= U }
rzi(A,B,c)
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Since the errors have all moments finite in this example, the stability of

A’ . .
6 ~under P, depends on the number p of finite monents of the regressors
0

X; In particular, the stability of 'gn and of (ér'l, Gn)' is 1-1/p .

8. Seemingly unrelated nonlinear regression--Zellner's feasible Aitken

estimator (references: Zellner (1962), Gallant (1975))}. The model consists

of M equations:

(3.16) Yim = fm(xim’ Bom) U, m=1, ...,M, i=1, ...,n;

= ]
Zi (yil’ oo Vi xil,..., xiM) .

Under Gallant's (1975) assumptions, the error vectors u, = (uil’ ...,uiM}'
satisfy Eu.1 =0, Euiu:!L =ZIg and Euiui = .Q‘ for 1 # 2 ; the variables

X0 are fixed; and the regression functioms fm(xim’ BOnP are smooth, have

bounded first derivaﬁives, and behave like i.i.d. rv's for n 1large. Let

8y (8], al)' , where B, = (B}, ..;,BBM}' , @y ESvec I, , and §
is known 'M(M+1]/2:<M2 selection matrix such that % is the vector ob-
tained by vectorizing the lower triangle of the symmetric matrix 20 .
The feasible Aitken estimator has three stages, each of which yields an

estimator which is the solution to a system of equatioms.

15t stage: The estimator Xn is an equation by equation LS estimator of

Bo . Its defining function is

9
Op1 - £y 00 B))gg %3 (e By By
(3.17) rli(B) ={ 3 ; , for B={.1.
3 B
O~ a8 e i B M
an stage: The estimator &n of &g is based on the first-stage residuals.

Its defining function is
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(3.18) rZi(in’ a) = 8 vec(z -4l ,

- - N -~ ’ - ~ ' .
where u, = (yil fl(xil’ lln)’ cees Viy fM(xiM’ AMM)) , L 1is an MxM
matrix defined by vec I = Do, and D 1is the known MzacM(M+1)/2 dupli-
cation matrix defined such that I is symmetric and o is the vectoriza-

tion of the lower triangle of [ .

~

rd . X X . . .
stage: The es ator -
3 ge timat: Bn is a2 multi-equation weighted LS estimator

of Bo . Its defining function is

-1 @

(3.19) 1y (3, 8) = (v - £5(8))'E " £, (8)

~

where vec En = Dun s Y3 = (yil, ";’yiM v, and fi(B) = (fi(xil, 81),

¥
LE N Y fM(xiM, BM)) -
We write this multi-stage estimator in the single stage form of (2.3)

by taking

(3.20) 1, (8) = (73 ()Y, 15 (M@, g (aB))T

to yield an estimator 3; = (iﬁ’ aﬁ, 35)' of the parameter vector

3b ES (86, ué, Bﬁ)' . In this example, the stability of the estimators 3;

and (En, En) is 1-2/p , wvwhere p is the number of finite moments of

the errors u; -

9. Maximm likelihood (ML) and pseudo-maximum likelihood estimators (ref-

erences: Wald (1949), Huber (1967), Hoadley (19712, Akaike {1973), Crowder
(1976), White (1982)). ML and pseudo-ML estimators (both defined as solu-
tions to likelihood equations) can be written in the form (2.3) for all
econometric models, provided the log-likelihood (or pseudo-log-likelihood)

function is based on the assumption of independent observations, and is
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differentiable in its parameter © . ML estimators are defined by the score

function
d
{3.21) ri(e} = ssiog p(zi, 8) ,

where p(zi, ) is the density of Zi with respect to some measure u .,
Pseudo-ML estimators are defined identically, except p(zi, 8] 1is some spe-
cified density which is not necessarily assumed to be the true density of
Zi . In addition, an estimator defined by (3.21) is called a pseudo-ML

estimator if the observations are not independent, since in this case

_Ellog p(zi, g) is not the log-likelihood of the sample. For the results

ji=

of Section 2 to hold, all that is needed is that the observations are strong
mixing or ¢-mixing, and the score function satisfies the conditions B1-B5

on r,(6) . Under quite general conditions, ML and pseudo-ML estimators

have been shown to be strongly consistent, so Bl is not a problem. Further,
assumptions B2-B5 are easy to verify and are satisfied in most econometric
mbdels. The stability of ML and pseudo-ML estimators depends on the number
of moments (and perhaps tail behavior) of their score functions as established

in Section 2., Examples include:

{i) Bipary logit model: The rv Y takes values 0 or 1. The prob-

ability that Y3 equals 1 is Pi(e) = exp(xie)/(l +exp(x{e)) , where
Xs is a fixed or random explanatory variable. The ML estimator is defined

by
(3.22) T, (8] = [yi - exp(xie)/(l + e:1cp(xi’EJ))]xi .

The first multiplicand of ri(e) lies in (-1,1) , so the stability of

én depends on the explanatory variables Xg » 1=1, «uv, n, If the
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X5 are fixed and uniformly bounded, the stability of §n is one. If the
x; are i.i.d. with p finite moments, the stability is 1-1/p . (Note,
the extension to the multinomial logit model is straightforward.

(ii) Binary probit model: The model is the same as the logit model,

except Pi(e) = &(xie) , where &(+) 1is the standard normal df., The ML

probit estimator én is defined by

Yi - Q(xia)
(3.23) ri(e) = ¢(x{9][1 - ¢(x£e]]*(xie)xi .

It is easy to see that the stability properties of the ML probit estimator
are the same as those of the ML logit estimator.

(iii) Censored regression (Tobit) model (see Amemiya (1973)): The

N ~

model is the same as in example 7, The ML estimator Bn = (éﬁ, on)' is

defined by

b5 (8 %4 1 ,
T-6, Iy;=0] © ;ZVi~ X8 %31y >0]
(3.24) ,(08) =

$5(O0xP 1 (Vi"‘is)z N

where ¢i(e) g ¢(xi8/o) and ¢i(e) = ¢(xi3/c) . The form of ri(e) shows
that the ML estimator has the same stability properties as Heckman's two

stage estimator (see example 7).

(iv) Seeming}y unrelated nonlinear regression model: The model is

the same as in example 8 where BO = (36, aé)' . The pseudo-ML estimator

of 6, formed using the multivariate normal{0,Z} distribution for the
errors u, = (uil’ ...,uiM)‘ is defined by
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-1 3
vy - £ (827 ot (B) -
(3.25) 7;(0) = P o , for 8= (8", "),
S vec[I - (y; - £; (8)) (v - £; () "]

where a = S vec I and S is defined in example 8. The pseudo-ML esti-
mator is very similar to the feasible Aitken estimator of example 8. They
both have the same stability properties.

For brevity we have not included the 25LS, 3SLS, LIML, and FIML es-
timators of linear simultaneous equations models in the examples given above,
2SLS and 3SLS can be written in the form (2.3) via the method of examples
7 and 8 (using Theil's (1953) interpretation of 2SLS). LIML can be so
written using its interpretation as the FIML estimator of an incomplete
system of equations (see Godrey and Wickens (1977), and Phillips and Wickens
(15978, pp. 276, 351))., Finally, FIML is trivially of the form (2.3) under

the assumption of independent errors.

4, Proofs
The proofs of Theorem 1 and other results below use the following

lemma:

Lemma 1. Let {Yi} be a sequence of mean zero, strong mixing rv's with

strong mixing numbers which satisfy Al. Assume sup E|Y

lc-é
i>1 i

<o , for

some ¢ >1 and all & arbitrarily small and positive. Then, for any se-

quence of positive integers {kn} with k <n,

_n‘?n « 20 a.s., VL <1 -1/(Za(c/a)) ,
2
n
—— 1 n
where Yn,k = m. I Yi .

n 1=1,1#kn



Ll

Proof of Theorem 1. Let Z denote a summation over i from 1 to n with
i

i # kn . Using Z rij(en,kn) = 0 , a Tavlior expansion of n

_r..(é‘nk)

v-1%
T

about 60 yields

~ 2
(@1 0= 5800 Z 557735 (%0) * Gy =80 "garertis Opp ) [ B i - 80)
i n n n
ana so,
(4.2) 0= 0(1) + (ag+oUn (B 4 -8g) a.s., W <1-1/(2A (/)

n

for j =1, ..., J, vwhere 8"

n.k is a random vector on the line segment
L4 .

n

. s 2 . .th .
joining Bn k and 60 ’ aj is the 3] row of A, and o((l) is a

*n

random vector of appropriate dimension which is of small order one as n = =
a.s. (4.2) follows from (4.1) using (i) Lemma 1 and B3 to show

-1% .. .
n’ Z[rij(eo)-ﬁrij(eo)] =o0(l1) as n -+« a.s., (ii) the assumption B2 that

rﬁkﬂ ZErij(eo) = 0(1) as n-+e , [(iii)} Lemma 1 and B4 to show
i

15[ 9 _ . i
;;g [sgrij(eo) - Ez3 13(90)] =o0(l) as n->e« a,s,, and (iv) equation (4.5)
2

=RE

below and the strong consistency of 6n x o give
»
n

= 0(l) as n-+e« a,s, Stacking equations (4.2) for j =1, ..., J to form
a system of equations yields part b of the Theorem, since A 1is non-singular.
Part a follows in a similar fashion from (4.1) and (4.2) taking v = 0 and

k ‘='n-1 .

It remains to show (4.5). By Lemma 1 and B5a,

(4.3)

=N
d]w

T(W..-EW, ) 30 a.s.,
{1l ij

Lo d ~ a
g(en,kn"eo) aeaa'x1g(en k )

Z 5 =0(1) as n+®, Vi=1,...,J.
1
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L ~ el Lo .
Now, for any sequence of rv's {en} such that 8, == 8y, 2.s., Bn is

in eo for n sufficiently large a.s. (where 9 is some neighborhood

of & see B53), and so, for n sufficiently large,

O ]

)2 2
aeae'rljfe ) - 35367745

@.4) 1Y
1

1~
1;2 =0(1) as n->= a.s.,
h

by {4.3). Hence, using BSb,

(4"5') Beaalrij[en) = o(l) as n -+ e > 3.5., Vi = 1, sy J * o

=R
[ e 1

Proof of Lemma 1, First we show that under the assumptions of the Lemma

(4.6) nCYn o 0 a.s., Vo < 1~1/(2A(c/a))

We apply McLeish's (1975) Lemma 2,9 to the rv's xn

nr

Yn/nl—c » where using

his notation we set dn =1, ¥n, gn(x) les( ) for s(é) {c-8) A 20 ,

and X, =X I{IX < 1 - Since nzlEI/“gn(\xni) <w , provided ¢ < 1-ga/s(8),

we have E (xn-Exn) converges a.s. by his Lemma 2.9. Now, by the proof

of Loeve's (1955) Theorem 16.4.A {p. 241),

w0

(4.7) ) (EXn-—E')-(-) <w , provided {s(8)| > 1.
n=1 n -

Thus, provided (c=8) A 2o > 1 (which requires ¢ > 1 and 3§ arbitrarily

small and positive), we have ): X, converges a.s. Applying Kronecker's
n=1

Lemma gives (4.6) for ¢ <1 - a/s(8) . Since & is arbitrarily small,

(4.6) holds for all [ <1 -~ ofs(0) , as desired.



|2
th

. . = - 1 1+
Now, simple algebra gives Yn Yok ﬁyk - ﬁyn,k , and so,
n n n
(4.8) n°y 1-3) = 0% - a% Yy
* n,k n n kK °
n n
Using (4.6) we have
r-1 R rfn-1\- -+
{(4.9) n Yn = N Yn - n (—5—)Yn_1-—~+ ¢ a.s.

Thus, for any subsequence {kn} of {n} with ky<n, vn ,

T

(4.10) n® v, | < k5, [ B0 as., Vo< 1-1/(2a(c/a)) .
n n

Combining (4.6), (4.8), and (4.10) gives the desired result. o
The proof of Theorem 2 uses the following Lemma:

Lemma 2. Let {Y¥,} be as in lLemma 1 and assume Y, 1 %g Y, Vi, for
some rv Y which satisfies EIY]‘:"S <w® for some ¢ >a and all & arbi-

trarily small and positive., If

o0

(4.113 E [1- G;(nl-r)] <w , for some t <1,
n=1

where G;(x) £ min G;(x) and G;(x) is the df of Y; , then for all
l<i<n

sequences of positive integers {kn} with k <mn,
k]

) =0 a,s., Y <7T,
n

. Lo o
lim n (Yn"Yn,k
N

where Y. is as in Lemma 1.
n,kn
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Proof of Theorem 2, We prove the results of comment 5 following Theorem 2.

These results imply those of the Theorem. We prove comment 5 part b first,

It suffices to show: if
(4.12) 7§ [1-1=;j(n1'5)] <o, Vj=1,...,d, and £ < 2(1-1/(2A B/2))) ,
n=1

then for all sequences of positive integers {kn} with kn <n , we have

. Lia _a =
(4.13) dim n* |8 bk | =0 a.s., Vp<g.
1o T

- 1 B - 1 v 12,
Let 7= o) 1(80) , T sy lmey) s AL =] gpTi(g) , and
1=]1 n i i=1
1 § 3
An,kn vy s 3}_: 3873 (90) . Using (4.1}, (4.2), and Theorem 1 part b, we have
s - A a -2v
(4.14) g = T, rn.kn + An(en-eo} - An,kn(an,kn' eo) + o(n “7) a.s.,

for v <1 -1/(2A(p/a)) . By definition of v and ¢ we can take

v such that 2v > ¢ . This, plus manipulation of (4.14), gives

- _ C ~ _ ~ . ; _1 —_ --_ c _1 -
(4.15) -n (en en’kn) n An (:L'n rn,kn) + nTA (An-An,kn) (en,kn—GO) + of1) a.s|

where A;l exists for n sufficiently large a.s., since A is non-singular
and A 2 A a.s. by Leima 1 and B4,

For all "¢, j=1,2, ..., J, 'and = 1~d/n,

(4.16) ZP(I——r (8

n'” ) Z peiorly S o m < Epry/ (Y ey <
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where the first inequality uses the definition of Dr , the second inequal-
ity follows by Loeve (1955, Moments Inequality, p. 242}, and the third in-
equality follows by B4b for all n satisfying n_iIZf\(SYG) and n > a .
Lemma 2 applied element by element now gives

8 | Nbeo -
(4.17) n (An"An,kn) —ﬁe-gs a.s., V6 <t (21-1/n) ,

where 0 is a JxJ matrix of zeros. Thus, using Theorem 1 part b,

L,-1 4 -
(4.18) n An (An— An,kn) (en,kn- 90) = 0(1) 48 n =+ m. a.s.,

provided y-6-v <0 . Algebraic manipulation verifies this inequality.

For ¢ < £ where ) [1- F;j(nl'g)] <w , Vj=1, ..., J, Lemma
n=1

2 gives

(4.19) nc(?n'?n,kn) 29 a.s,
. -1 noe -1
Equations (4.15), (4.18), and (4.19), and the result Ah — A a.s.

yield (4.13), as desired.
Now we show that comment 5 part b implies comment 5 part a. For
all j=1, ..., J, @and all £ <1-1/p,

e 1-E T pepe 2 1/(1-0) 1/(1-8) .4 ¢ w
(4.20) nzlu Fos (@ )linzll’(cruj) >1n) < Blry,) l<w,

where the third inequality holds for all £ < 1-1/p since Ty has p
finite moments, the second inequality follows by Loeve (1955, Moments
Inequality, p. 242), and the first inequality holds by definition of =T, .
For p € (20-1, p] (which requires p > 20-1) and £ <1 - 1/p, we

can show £ < 2(1-1/(2A (P/2))). This and (4.20) give part a of comment 5, O
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Proof of Lemma 2. Simple algebra gives,

JE - . P
(4.21) n;(yn"Yn,kn) = n® lYkn - a7y .

By assumption,

(4.22) Ire™ iy o< Jn-goi™Ml<=,
n=1 n n=1

so the first Borel-Cantelli Lemma gives P(nt'llYk | 21 i.0.) =0, where
n

i.o. abbreviates "infinitely often." Thus, Vi <1t ,

(4.23) n*y, | 20 as.
n

Lemma 1 and the assumption c > a give

(4.24) Y 1 B0 aus,
*“n

since ¢-1 < 0 . Equations (4.21), (4.23), and (4.24) combine to give the

desired result. O
The proof of Theorem 3 uses the following Lemma:

Lemma 3. Let {Yi} be as in Lemma 2 with the further assumption that
{v;} is @-mixing., ¥f
! 1
) [1-G;(n "™y} =, for some t <1,
n=1
where G;(-) is as in Lemma 2, then for some sequence of positive integers

{kn} with kn <n,
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. 1o v - =
lim sup n”|Y_ Yok | = a.s., Yz >r1,
N n

where Yn X

3

is as in Lemma 1.
n .

Proof of Theorem 3. We prove the results of comment 4 following Theorem 3.

These results (and Theorem 2) imply those of Theorem 3. Consider comment
4 part b first. The result is trivial if C is null, so assume C is
non-empty. It suffices to show that for £ € C, any ¢ larger than but

arbitrarily close to E , and some sequence {kn} with kn <n,

. c ”~ —A -
(4.25) lim n*[8 -8 , | =0 a.s.
N n

&

does not hold. For E, t, and {kn} as above, (4.15) and (4.18) yield

(4.26) nclen-en’kn| = n.CIAn (rn"rn,kn)l + o(1) a.s.,

since 1 < 2(1- l/(21\(§7a))), and provided g-6-v <0 for some § <1-1/n,

where A;l exists for n sufficiently large a.s. Given the former condi-

tion on ¢ , the latter condition holds if n > 2 A(B?u), as is assumed.
Using a proof by contradiction we show that for some sequence {kn}

. Lia=l/— = _ ml
(4.27) lim sup n |An (rn"rn,k J| == a.s.,
o n

where :} denotes a J-vector with at least one element equal to « , Let

w denote a realization of the process {Zi} . If (4.27) does not hold,

then for all o in a set with positive probability we have

-1
(4.28) Rl @ - ) e, =1, 2, 00,
’
n
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for some scalar M’ <= , where e 1is a vector of ones and the superscript
w indicates the particular realization w . For such w and n suffi-

ciently large,
- = el — e 2
(4.29) n°|T_- rn,knl =ntla AT - rn’kn) | <MefA +e < M-{A+vege'l g < =

where the superscript o has been omitted in (4,29) for notational conven-
ience, 32 denotes a J-vector of infinities, the first inequality holds
by simple algebra, and the second inequality holds for n sufficiently
large given e > 0 since Ah 3 A a.s. But, Lemma 3 implies

. L=
lim sup n°|r_-7T [
n P n n,kn

31 a,.s. for some sequence {kn} . This contradicts

(4.29) and implies (4.27) is true. (4.25) and (4.27) combine to give the
result of comment 4 part b.

Next we show comment 4 part b implies comment 4 part a. For q <= ,°
it suffices to show § =1 - 1/(q+e) is in C for ¢ arbitrarily small
and positive. For this ¢ , E[rLj1q+s = » for some integer j in

{1, ...,J} . 'Thus,

L o

* o 1-Z . 1/{qg+¢€) q+e _ . _

(4.30) )_j -F, (7] 2 E [1-F )] g_Eirle 1=
n=1 n=1

where the second inequality follows by Loeve (1955, Moments Inequality,

p. 242). 1In addition, algebraic manipulation shows that §'€ (2aq/(q+1), pl

and n > 2 I\(;/u.) implies £ < 2(1-1/(2A (p/w))), for e sufficiently
small, Hence, £ € C .

For the case q = = , part a says A(ﬁn, Pe } <1 . The latter is

0

true whether or not q = = , if T 2 0. To see this, consider £ = l+¢

for e arbitrarily small and positive., For this £ ,



a1

- e * l-g - -E - =
(4.31) ng__lu-r-nj(n )] ;ng 1-F D] ==,

unless FLj(O) =1 ., Since rLj >0, Vj, {(4.31) holds for all € > 0

n

and all j unless T Q0 . Thus, part a holds for q = «» , and more

generally, AB, P,) <1, provided r, 20 . o
n 90 L ~

Proof of Lemma 3. It suffices to show the result for ¢ € (r,1] . Using

(4.21), we have

Y Ly z-1 z-1)%
(4.32) n”|¥_-Y | > n “iJ -n H“*nl'

Let {kn} be a sequence such that Gy (nl-T) = G;(nl'T) » ¥n . Then,
n

(4.33) TPy, >0 = JD-cal™]=-,
n=1 n n=1 n

The second Borel-Cantelli Lemma, which holds not only for independent events
but for events determined by ¢@-mixing rv's as well, see Iosifescu and
Theodorescu (1969, Lemma 1.1.2'), now gives P(n' '|Y, | > 1i.0.) =1 .
Thus, "

(4.38) lim sup n°7 1|y

T+

b== as., voE (5,11,
n

Also, since ¢ <1 , nc-l|"1T |
-_ n,kn

by Lemma 1 and the assumption ¢ » o . Thus, (4.34) and :(4.32) combine to

converges to Zero as n -+ « 4,5,

give the desired result. O
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FOOTNOTES

1Assumption Bl is actually weaker than strong consistency because Bl re-

quires 6n = N a.s.[Pe] only for 6 = 8y rather than for 21l 6 in

some parameter space © ,

zln models which are misspecified (i.e., a parametric family {P

9:66{3}
is specified, but the true distribution P of {Zi} is not in the family),
~ the definition or identification of the estimand 8, is sometimes prob-

lematical. One solution, which is more or less satisfactory depending upon
the situation, is to take the estimand BD to be the a.s. limit of the es-

timator under P (e.g., see Bickel and Lehmann (1975), Maronna and Yohai

(1581}, Huber {1973), and White (1980, 1982).) For example, 8y may be
: n
defined as the unique solution to lim %—Z EPri(e) = 0 . Using this ap-

Teee izl
proach, Bla is satisfied under any form of misspecification (i.e., any P ),
provided the estimator 8, has an a.s. (non-random) limit under P .

3Assumption B5 requires that ri(e] is twice differentiable in some neigh-
borhood of 8y » This is not needed for asymptotic normality in general,
but is needed for the stability results (see equation (4.14) of the proof
of Theorem 2).

“This altering of the assumption of mean zero errors only affects the de-
finition of the constant term, and hence, is relatively innocuous.
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