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1. Intreduction

The kinds of situations in which a group of people is called upon
to make a decisicn are numercus, One common setting involves a group of
individuals who all have access to the same data base, or tc the same
informational input for the decision, and who are faced with a dichotomous
choice. An example 1s a corporate investment committee to which a
presentation is made concerning a particular capital project_and whose task
is to decide whether or not to proceed with the project. Ancther is a
personnel committee (perhaps that of an academic department) which inter-
views a candidate for a position (or hears the candidate give a seminar)
and must decide whether or not to hire the individual. There are many
other similar decision settings. The prototype, however, is the criminal
Jury, and we will analyze the kind of group decision just described in
termg'of the criminal jury's decision process.

At the end of a trial each juror has his/her owWwn perspective on
what has transpired. Each one eoculd, on that basis, render a verdict in
the case. But under the jury system, as we know 1t, the jury must
deliberate before it--and not the members of the Jjury acting individually--
renders a verdict. An important claim made in favor of the jury system
(and similar decisionmaking procedures) is that during the deliberation
process, Jurors exchange points of view and assemble the evidence into a
coherent plcture that is more likely to be correct than is the view of amy
one juror., That is, one of the virtues claimed for a jury decision is that
it is based on more complete and better processing of the information

available than the verdict of any one juror deciding alone would be.



Given the central and valuable role attributed to the information
processing that jury deliberation is supposed to achieve, 1t is striking
that existing models of the jury decision process--including both abstract
pathematical formulations and simulation models--are inattentive to this
aspect ot the jury's work. Although these models depict how‘a Jury might
move to a verdict from the initial views of its members, they do not
provide any description or specification of how the Jurors' views are
combined or how their various observations and insights are assimilated.
Indeed, some of the more sophisticated mathematical models imply that if a
jury deliberates, it will be more likely to err--to convict an innocent
derendant and to acquit a guilty defendant--than if it simply decides the
case by a simple majority vote before any deliberation occurs!

The purpose of this paper is to explore, in thelcontext of a formal
model, the information processing function that jury deliberation and its
analogues perform. In particular, we investigate when a jury that
deliberates to a unanimous verdict can reach better decisions--ones with
lower probabilities of error--than a jury that bases its decision on the
view of the majority of its members immediately after the trial is
concluded. What is the gap between the quality of decisions reached using
a first-ballot, majority-rule procedure and the quality of those that would
be generated by a jury making optimal use of the information provided at
the trial?

It should be emphasized that we are not saying that juries that
deliberate actually process what they have seen and heard in an optimal
way. Indeed, in the complicated setting of an actual jury trial, it is not

even clear how one would characterize optimal processing of information,



our strategy, instead,.is to consider a simple model of juror observations,
tpough one that is richer than characterizations in the literature, for
which we can define precisely what an optimal jury decisjion rule would be,
of course, jurors do not read the books on statistical decision theory that
discuss this optimal procedure nor do actual juries aggregate information
according to this procedure. Hence, our inquiry is not aimed at measuring
the performance of actual Juries against that of first-ballot, majority-
rule juries. Rather our concern is to gauge, within the context of az
particular model, the improvement that deliberation gan yield and to
consider the circumstances that affect that possible gain, We will see
that deliberation ha=s the potential for generating substantial improvement
in the quality of decisions, and we will see how that potential arises,
especially the central role that heterogeneity among jurors--in terms of
what they see and hear, Qhat_they believe about the costs of erroneous
decisions, and what differencés there are in their information processing
capacities-~plays in determining how much improvement is possible,

We begin, in the next section, with a discussion of the
implications that existing models have for the value of jury deliberation.
Then in Section III, we present the model of juror observation that is
basic to our analysis. Section IV contains our comparison of the jury that
makes optimal use of trial information and the one that decides by first
ballot majority vote. Central to the analysis in Section IV is the
assumption that jurors may differ in what they see and hear at the trial.
But that discussion assumes that the jurors share the same view of the
relative cost of erronecus convictions and erroneous acquittals and that

they have the same individual abilities to process information. Sections V



and VI, respectively, consider models in which these assumptions are, each
in turn, relaxed. The last section contains some concluding remarks.

The analysis in Sections III-VI is technical and detailed. We
conclude this introduction with an informal discussion to convey a sense of
the nature of the models we examine and the results we obtain. Formal
justifications for the various rules mentioned here are, of course,
deferred to the detailed development,

To fix ideas, it is best to have a concrete (if unrealistic)
example in mind. Suppose that the Jury in a particular trial knows that
the defendant is guilty if he is more than six feet tall. The jury also
knows that the defendant's height is elther six feet or six feet one inch.
Thus, the inferential problem each juror faces is one of deciding whether
the accused is six feet tall and innocént or six feet one jinch tall and
guiity. Imagine that the trial provides an opportunity for each juror to
view the defendant and thus to try to guess his height, When the juror
views the defendant, he/she forms an estimate of his height, which we
denote as X, This estimate is a normal random variable with variance 02,
and its mean is six feet if the defendant is innocent and six feet one inch
if the defendant is guilty.

First consider the problem that a jury composed of a single
individual will have in deciding the case on the basis of his/her
information. The juror's decision rule is a simple ome: set a threshold Q
and conviet if the estimape xi is greater than Q. Thus the juror's problem
is to set Q. It is straightforward to calculate that Q is a function of
three things: the relative cost of the two kinds of errors (erroneous

convictions, erronecus acquittals) the juror can make, the variance 02, and



the average of the two alternative values of the mean. 1In fact,

(1) Q=6 172" + 0%k,

where k is the log of the ratio of the cost of conviceting the innocent to
the cost of acquitting the guilty. Notice that if k =z 0, so that the cost
of the two kinds of errors ia the same, 1t is not necessary to know 02
while if k # 0, then it is necessary to know 02. Consequently, the case

k = 0 is much simpler than the case k # 0.

Now suppose that the Jury is composed of several individuals whose
observations are independent. Each juror will make an estimate of the
defendant's height and the jury's problem is to make a decision on the
basis ot the obzervations of all its members X = (11, ceny Xn). If the
jury deliberates and uses this information to make an optimal decision, it
will base its verdict on the sample mean X = g xi, a sufficient statistic
for X. Once again the decision will be to coi:;ct if X is greater than
or equal to some threshold value Qn and to acquit if X is less than Qn'

Since ¥ is a normal random variable with variance Uz(i,n) = 02/n, the

optimal choice will be to set

(2) Q =6' 1/2" + (%, n)k.

Again if k = 0 the decision 1s simpler because the threshold value is
independent of 02, the variance of the individual observations,

Now consider a jury that decides the same case by voting without
deliberating, a first-ballot jury. Each juror decides on the basis of
his/her observation whether to vote to acquit or to convict., The simplest

Voting rule is majority voting and if jurors all apply the same standard,



Q, then the value of the median juror's estimate will determine the
derendant’'s fate. The problem then is what this standard should be.

If the cost of the two kinds of errors is the same (k = 0), then
considerations of symmetry make it clear that each juror should vote to
convict if and only if his/her estimate is greater than 6' 1/2", just as if
he/she were the only juror. The decision of the first-ballot jury will be
less efficient than that of the deliberating jury of the same size because
the median contains less information than the mean--the median is not a
sufficient statisie for X° But, when errors are equally costly, the
decision will be reascnable in the sense that the relative sizes of the two
error probabilities will be what the members of the jury would want them to
be-~namely, egqual.

If k # b, so that false convicticns and false acquittals are weighed
differently, it is very difficult to see how the first-~ballot jury can
achieve even this limited goal of desired pelative error sizes, For if
k £ 0, then the variability of the estimate must be taken into account when
a threshold is set. If this is not done, the relative costs of the two
kinds of errors cannot be properly balanced against one another. Whatever
threshold or standard used, it will c¢learly depend on 02. Hence, to apply
& reasonable rule when k £ 0, jurors must communicate what 02 is, How they
are to do this without deliberating is unclear.

To this point, we have assumed, unrealistically, that jurors make
independent observations. This seems thoroughly inoompqtible with the basic
fact that they have all observed the same trial. It also has an obvious and

implausible implication~-a jury of infinite size will never err. An



independent observations model essentielly assumes that the trial generates
enough informaticn to settle the question of whether the accused is guilty
or innocent., All that is necessary is that there be enough jurors to
extract all the information. As we show in Sections III.VI, the most
obvious changes in the direction of realism make it even harder for the
rirst-ballot jury, the one that does not deliberate, to reach a reascnable
dgecision. When the amount of information that the trial generates is
1imited, the tasks of assessing the variability of the sample median and
taking it into account when balancing the two kinds of errors become much
more difficult.

Suppose, as we do in our analysis, that the information the trial
generates is, at best, limited: an infinite number of jurors would only be
able to discern the limited information the trial reveals. In the concrete
example we have been discussing, imagine that all jurors view the defendant
through a foggy one-way mirrof. Each Jjuror's observation consists of two
parts: the commonly observed events in the trial, which are imperfectly
observed by all jurors, and an idiosyncratic error of observation, which is
due to independent varliations in eyesight, quality of lighting, and the
like. The individual errors, which have mean zero, are independent of each
other and of the common information in the trial. Again, all random
variables are normally distributed.

Consider the problem of the deliberating jury. We show, once
. again, that the optimal decision will be basgd on the sample mean of the
jurors' observations and that the problem is where to set the threshold. If
k = 0, the problem is easy; in our example, the threshold is 6' 1/2". 1If

¥ ¥ 0, since X is again a normal random variable with a variance equal to



Léf(i,n) and mean conditional on the innocence or guilt of the defendant,
we cen again use formula (2) to set the threshold Q .« Im this case,
powever, ca(i,n) is a more complicated function than in the independent
errors case discussed above. 1In particular, to compute Oz(i.n) in this
case, each juror must partition the error in what he/she observes into two
parts-=-an idiosy neratic error and a common error, Thi=s shows the value of
deliberation. Unless jurors get together and talk, it is hard to see how
they can correctly make this partition. Deliberation allows jurors to
compare observations so that they can correctly aggregate the information
they have separately cobserved, 1In our example, discussion would bring out
the fact that all jurors' vision was distorted by the same foggy mirror.
Thus, jurors would know that their errors of observation were not
independent.

As for the first-ballot jury, if k = 0, then the correct standard
is the symmetric one: convict, if the median observation is greater than
6' 1/2". But if k £ 0, the first-ballot jury's problem is very difficult
because the median juror must somehow estimate the variance of the median
This is very difficult to do for a correct estimate depends on partiticning
the error variance intc common and independent components., We do not see
how this can be done if jurors deo not talk to one another. We note in
Section III that if jurors knew the model generating the observations they
make, they could devise rules which, if followed, would lead toc decisions
which were both asymptotically reasonable and as good as those which an
optimally deliberating jury could reach. Those decision rules are

complicated and they depend on the parameters of the model which will vary



from case to case. We do not believe that juries or other groups in

similar decision situations are likely to use them.



1. e i ons of =34

One of the most sophisticated efforts at modeling jury verdicts is
that of Gelfand and Solomon. The characteristic that determines the value
of the deliberative process in their model is a common feature of models in
the literature. Hence, the implications that existing models have for the
value of jury deliberation are best introduced by considering Gelfand and
Soiomon's most recent contributions [Gelfand and Solomon {1977a and b)].

To consider Gelfand and Solomon's results, a brief review of their
approach is needed. They begin by partitioning a jury's decision process
into two stages. First, they model the determination of the first-ballot
g¢istribution of jurors! votes. For this stage, they use a mixed binomial
formation that they previously developed as an extension of Poisson's
models for jury verdicts [Gelfand and Solomon (1973), (1974)). Then, in
their second stage, they employ some social decision scheme models incor-
porating varying degrees of majority persuasion to explain how the jury
moves from its first<ballot position to its final decision. Following the
work ot Davis and his colleagues [see Davis (1973) and Davis, Bray, and
Holt (1977)}, the social decision schemes Gelfand and Solomon use are
comparative static, first-ballot/final-verdict models, which do not depict
any ot the dynamic features of the jury's deliberation process. A social
decision scheme is simply a transition matrix that represents the jury's
deiiberation as a stochastic process moving the jury from a first ballot
vote to a final position, .

To estimate the parameters of their model determining the
first-ballot distribution of jurors' votes, Gelfand and Solomon used a

unique data set gathered by Kalven and Zeisel as part of the Chicago Jury
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project [Kalven and Zeisel (196)]. These were data on 225 criminal cases
in Brooklyn and Chicago for which Kalven and Zeisel were able to use posi-
trial interviews to reconstruct the juries' first-ballot votes. These
were, in fact, the 225 cases that led Kalven and Zeisel to their ®"majority
persuasion® hypothesis that the final verdict is largely determined by the
position that the majority of jJurors take before ary deliberation occurs.lj
Appendix A& indicates how the Kalven and Zeisel data on these 225 cases can
be used to estimate the parameters in the first stage of the Gelfand and
Soromon model.

The second stage of the model specifies how the jury moves from its
first-ballot position to a final verdict. Gelfand and Solomon consider two
alternatives involving different degrees of majority persuasion. First,
they assume that the first ballot majority always prevails and that if the
jury is initially evenly split, then with probability 1/2 the finmal verdict
will be innocent and with probability 1/2 it will be guilty. They apply
this transi:tion model to both twelve-member and six-member juries.

But Geifand and Solomon regard this "first-ballot majority decides
the outcome” assumption as a crude approximation, and they go on to
consider a more refined social decision scheme. Their refined scheme for
the twelve-person jury is based on the one Davis (1973) suggested as a
result of his experience with a large number of mock jury trials.Z/ When
they turn to the six-person jury, Gelfand and Solomon provide no elaborate
Justification for the social decision scheme they present. :Rather, they
3imply assert that it is plausible to scale down the Davis scheme for
twelve-person juries and apply it to a six-person jury. That is, they

assume that the preobability of a transition to a particular six-person jury
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TABLE 1

ERROR PROBABILITIES OF JURY DECISIONS®

Conviction of an Acquittal of a
—Gujlty Defendant .
(1) (2) (3) (%)
First-Ballot Post-Deliberation First-Ballot Post~Deliberation
L) n
p=Person
Jury Q1LY .06 88 .0138 . 0639
12-Person
Jury . 0007 . 0469 _ . 0007 . 0266

#Calculatea from Gelfand and Solomon (1977a), Tables 4 and 7.

13



verdict if k out of 6 people initlally vote for conviction is the same as
the transition probability to that verdict that Davis specifies for a
twelve-person jury when 2k out of 12 people initially vote for conviction,

Gelfand and Solomon use their two-stage model of Jury decision-
paking to analyze the relative magnitudes of the errors six-person and
twelve-person juries would make, They conclude that a twelve-member jury
is to be preferred to a six-person jury. The basis for their conclusion
is shown in Table 1, the entries of which are calculated from the relevant
parts of Tables 4 and 7 in the Gelfand and Solomon paper. Columns (1} and
(3) are based on the model in which the transition from first-ballot vote
to final verdict is determined entirely by the first-ballot majority while
columns (2) and (4) use as the transition probabilities from first ballot
to final verdict the elements of Gelfand and Solomon's modification of
Davis' social decision scheme. The major observations Gelfand and Solomon
make are that a six-person jury is much more likely to conviet an innocent
person than is a twelve-person jury and that a six-person jury is much more
likely to acguit a guilty person than is its twelve-person counterpart.Bf

There is, however, ancther very important point to observe about
the numbers in Table 1, an observation that indicates the need for the kind
of further theoretical research on the jury decision process that we
present here. Instead of comparing the two rows in the table, as Gelfand
and Solomon do, consider each row separately and compare the entry in
column (1) in the row with that in column (2) and compare the entry in
column (3) in the row with that in column (4). The clear conclusion is
that allowing a jury of either size to deliberate until it reaches a

unanimous verdict results in a higher probability of convicting an innocent
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defendant and a higher probability of acquitting a guilty defendant than
one would have if the verdict were based instead on the outcome of é
predeliberation, first-ballot majority vote. In fact, according to Gelfand
and Solomon's results, a six-person jury deciding the case by a first.
Qallot majority vote would make much better decisions--lower error
probabilities for both kinds of errors--than would a twelve-person jury
deciding under a unanimity rule.gj

This interpretation of the Gelfand and Solomon results summarized in
Table 1 suggests that there is a problem, and there is one. The.fact that
deliberation increases the probabllity of error is a consequence of an
untested (and inexplicit) assumption of the Gelfand and Solomon model.
Specifically, they assume that the result of deliberation depends only on the
first-ballot vote and a stochastic process, and not on the guilt or innécence
of the accused, This means that all of the information about the defendant's
guilt or innocence is contained in the first ballot vote. Let q{k,N;G)
dencte the probability that a jury of N persons that begins with a
predeliberation vote of k for conviction eventually convicts a guilty
defendant, and let q{k,N;I) be the probability that a jury of N persons with
k initial-ballot votes for conviction eventually convicts an innocent

defendant. Then Gelfand and Solomon essentially assume that:
a(k,N;G) = q(k,N;I) = q(k,N).

But this implies that the deliberation process adds noise to the first-
ballot vote, which by assumption in the Gelfand and Solomon model is an

estimate of the guilt or innocence of the accused. Thus, the deliberative
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process can only produce decisions that are worse than those resulting from
a predeliberation majority vote.

A rather simple formal argument will clarify this point. To
facilitate the analysis, assume N is odd. (The same line of reasoning
can be foilowed if N is even, but one must keep careful account of
tied votes.) Then, under the first-ballot majority-rule standard, an
imtial vote of more than N/2 for conviction will result in a conviction
while an initial vote of less than N/2 for convietion will result in an

acquittat. Let

f(k,N;G) = probability that on the first ballot k of N
Jurors vote to convict a guilty defendant;

f(k,N;I) = probability that on the first ballot k of N
Jjurora vote to convict an innocent defendant.
Then, the probability that an N-person Jury operating under the first-
baitlot majority-rule standard will convict an innocent defendant is:
L f(k,N;I).
k>N/2
The probability that the same error will be made by a Jjury that reaches a
verdict only when the jurors are unanimous in their position is
N
L f(k,N;I)q(k,N).
k=0
Hence, the result that the deliberative process increases the probability
of an erronecus conviction--that is, the probability of a guilty verdict
When the defendant is truly innocent--which appears in the Gelfand and

Solomon estimates in Table 1, can be expressed as:
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N
(1} I f{k,N;I)q(k,N) > I f£(k,N;I).
k=0 k>N/2
We will now present two assumptions that, taken together, imply
that (1) is true if the jury necessarily reaches a verdict--that is, if the
stochastic process describing the jury's movement from its first ballot

position does pot permit hung juries. The first is essentially a symmetry

assumption:
- (2) q(k,N) + q(N-k,N) = 1.

This can be interpreted more easily if it is written as:
(2') . q(k,N) = 1 = q(N-k,N).

The left~hand side of (2') is the probability that an N-person unanimity-
ruie jury eveﬁtually convicts a defendant (whether he/she is innocent or
Zuilty) when there are initially k votes for conviction. The right-hand
side of (2'; is the probability that an N-person unanimity-rule jury
eventually acquits a defendant when there are initially k votes for
acqusttal. (Since q(N-k,N) is the probability that a jury eventually
convicts given that N~k initially vote to convicet and since we assume here
that the jury eventually acquits or eventually convicts the defendant,
1-q{N-k,N) is obviously the probability that the jury with N-k initially
voting to convict--and hence k initially voting to acquit--eventually
acquits, )

The second assumption, which is satisfied by the Gelfand and
Soiomon model, is that it is more likely that on the first ballot a

najority of the jurors will vote correctly and a minority will err than it
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is that the predeliberation majority wiil be in error. In terms of our

notation, the assumption is that:

f(k,N;I) > F(N-k,N;I) for k < N/2
(3) and

£(k,N;I) < £(N-k,N;I) for k > N/2.

To see that the conditions in (3) conform to the preceding verbal state-
ment, consider the case of k < N/2. Then (3) says that the probability
that on the first ballot k Jjurors vote to convict an innocent defendant is
greater than the probability that N-k jurors vote to convict where N~k > k
since k < N/2. The second haif of (3), for the case where k > N/2, can be
similarly interpreted.

The proposition suggested by the Gelfand~Solomon results--that
deliberation produces decisions that are worse than those yielded by a

predeliberation majority-rule vote-—can be proved as follows.,

Proposition: Under conditions (2) and (3) above, it follows that:

N
(1 I flk,N;I)q(k,N) > I £(k,N;I)
k=0 KON/ 2
Proof;
N
£ f(k,N;I)q(k,N) = I [f(k,N;I)q(k,N) + £(N-k,N;I)q(N-k,N)]
k=0 koN/2

> I g£(k,N;I)[a(k,N) + q(N-k,N)] by (3).
k>»N/2

But, by (2), q(k,N) + g(N-k,N) = 1, and we have

17



g f(k,N;I)aq(k,N) > I f£(k,N;I). Q. E. D,

k=0 koN/2

This Proposition concerns the probability of an erroneocus
conviction. But it is easily shown that assumptions (2) and (3) also yield
the analogous result for the probability of an erroneous acquittal.

Namely, the probability of such an error is higher if the jury deliberates
subject to a unanimity rule than if it simply follows the dictates of its
first-ballot majority.

The argument leading to the Proposition above applies to a model in
which there are no hung juries. Hence it cannot directly explain the
results in Table 1 since the Gelfand and Solomon model of the jury
deliberating subject to a unanimity rule includes the possibility that such
a jury can fail to reach a verdict. At a minimum, introducing the
possibility that the jury might fail to reach a verdict requires that the
symmetry assumption in (2) and (2') be re-stated because (2) and (2') are
based on the assumption that conviction and acquittal are the only
outcomes., Let r(k,N) denote the probability that a jury of N persons with
k first-ballot votes for acquittal eventually acquits the defendant, and
let 2(k,N) be the probability that a jury of N persons that begins with a
Predeliberation ballot of k votes for conviction eventually fails to reach
a verdict. Then, the corresponding symmetry assumption when juries can
hang is;

a(k,N) = r(N-k,N)

{am) and
2(k,R) = fR(N-k,N).

18



This symmetry assumption is satisfied in the Gelfand and Solomon model
ﬁxﬁgﬂi for a jury that is evenly split on the first ballot. That is, when
the twelve-person jury has six people voting for conviction and six voting
for acquittal on the first ballot, Gelfand and Solomon specify that the
pfobability of eventual conviection is 1/2, the probability of seventual
acquittal is 1/4, and the probability of a hung jury is 1/4.

When hung juries are possible, there is also some question about
how to measure a jury's accuracy, or -alternatively how to define a jury
error, even given that one begins by conditioning on the true state of
pature--the defendant's guilt or innocence. One possibility is to measure
accuracy by the probability that a jury convicts a guilty defendant and the
probability that it acquits an innocent defendant. In this case, the jury
errs (1) when the defendant is innocent and the jury fails to acquit--that
is, it votes to conviet or fails to reach a verdict, and (2} when the
defendant is guilty and the Jury fails to convict--that is, it acquits or
it hangs. Under this definition of jury error and the symmetry condition
(2"), the exact analogue to the Proposition obtains--deliberation produces
decisions that are worse than those yielded by a predeliberation majority-
rule vote,

A second possible approach to defining jury error when hung juries
are possible is to retain the definition used when a decision was assured:
the jury errs when it conviets an innocent defendant or acquits a guilty
ohe, Under this secopd definition, a jury that fails to reach a verdict is
not regarded as having made an error. With thls definition and with

symmetry condition (2") replacing condition (2), we can conclude that the
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errors of the deliberating unanimity-rule jury exceed those of the first-
pallot majority-rule jury if but omly {f "hung juries do not occur too
often,™ in a sense that can be made precise. The need for such a proviso
shduld be clear, and it can be made obvious by considering an extreme
example: Suppose deliberating juries never reach a verdict--they always
hang. Then under this second definition of jury error, a deliberating jury
never makes a mistake, while first-ballot majority~rule juries would,

The critical assumption underlying the proposition, its analogues
when hung juries are possible, and the manifestation of these results in
Table 1, with higher error probabilities for juries that deliberate than
for those that do not, is that q(k,N;I) = q{k,N;G). This assumption is
quite common in the literature on juries, including in the reverse
Ehrenfeat model of the jury decision process, which two of us previously
analyzed.y But the assumption is generally implicit rather than explicit

and has obviously not been tested.
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111, odel of Juror ns

It is certainly no surprise that a first-ballot majority vote
results in lower error probabilities than does a unanimous, post-
deliberation verdict when deliberation is unrelated to the truth. But
how does the cutcome of the first-ballot majority-rule procedure compare
with the post-deliberation outcome when the jury's deliberation effectively
uses the information provided at trial? How do the two decision procedures
compare when the jury's discussion provides the opportunity for the jurors
to share the various observations they have made during the trial, for the
strength of different jurors' views to be considered, and for the jurors to
discuss the standards to be applied in reaching a verdict? To answer these
questions, we need to develop a character;zation of juror observation and
jury deliberation that is richer than those in existing models.

We assume that n jurors observe the trial. They may see different
things in the same set of in-court proceedings, and they may process what
they have seen in different ways. Consequently, each juror enters the jury
room not only with a view about whether the defendant is innocent or guilty
but also with an idea about how strongly he/she holds that view. The
following model of correlated normal observations captures this structure.

Assume that the ith juror cobserves

Y, + a¥

(1) X, = 21/2,0$_a$w
]

[1+a

where Yo, Y1, eney Yn are independent normal observations with unit

variance; and for i = 0, ..., I
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~ 0 if guilty

(2) EYi =
-8B if innocent,

~

The observation §0 represents what all the jurors saw, while Yi is what
only the ith Juror observed. The parameter a indicates the common weight
all the jurors place on the common "signal™ they extracted from the trial
relative to the weight each attaches to his/her individual observation.
Finelly, B > 0 measures the informaticn content ¢f the signal provided by
each observation. If B is large, it is relatively easy to tell the
innocent from the guilty. IfB is small, it is very difficult to do so.
It is important, from both a conceptual and an analytical point of
view, to recognize that this model of juror observation is egquivalent to
one in which each juror receives the same information from the trial but
different Jjurors make independent errors of observation. In the latter
model, except for thg different errors they make, all the jurors are viewed
as having the same information. To see the equivalence between the two
models, rewrite Xi as followas:
(;1 - E"I\ji-a- a[i\o + %}

i 1/2 *
{1+ az)

LetYi=Yi-EYif°ri=1’ LI L nandz=¥0

EYi is the same for all i so that Z does not depend on 1. Then the ith

+ (Etila), and recall that

Juror's observation is:

Y, + &
(3) xz"‘"i"‘“—"‘
i i/2
2
(1 + a™)

22



where

(u) Yi!\" N(0,1) fOI‘ i - 1, ey n;

Z~ N(0O,1)  if guilty

(5)
Z~n N(-D,1)} if innocent;

the ¥,'s are independent (1 = 1, 2, ..., n ) of each other and of Z; and

i
D= liﬂ'B. It is clear that D i= the bound on the ability of the jury to

distinguish between the innocent and the guilty.

In the formulation given by {3)=(5), Z is the information conveyed

by the trial, Y, is the observation error the 1th Jjuror makes, and X, is a

i i

measure of the 1th jurort's perception of the defendant's guilt, The
jurors' errors of observation are independent, identically distributed

normal random variables. Letting

Da__

/2 *
2)

(6) T

(1 + a

X. v N(0,1) if guilty
%) 1
X, v N(-T,1) if innocent.

The correlation between the Xi's, which we denote p, is:

2.
(8) p= —2—

1+ a°

S0 that T = Dvp. As (7) shows, T i8 a measure of the individual Jjuror's

ability to make a correct decision. Hence, for example, the larger p is,
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the larger is T, and the easier it is for a juror to distinguish between
guilt and innocence in the case of the particular defendant.

Before we examine the ways in which an n-person jury might use the
observations it has--the values of the n xi variables--let us consider the
wwadmﬁhmﬂwwwhmﬂewumluethiMwmumcmmwdw

the trial, Z. Define the random variable W as follows:

aZ

(1 + a°)

(9) w

/72 ¢

Its distribution is

N(O,p) if guilty
(10) WA

N(-T,p) if innocent,
and it should be clear that W, as a transform of Z, contains all the
information in the trial. Society will surely want the process that uses
this trial information, in deciding the defendant's guilt or innocence, to
reflect the society's tradeoff between the two possible kinds of errors

that can be made--namely, convicting an innocent defendant and acquitting a

guilty defendant. Assume the terms of that tradeoff are given by:

-7
(K= TnTie)
where
O = the prior probability that the defendant is guilty, and
P(i|J) = the cost associated with declaring state i when state 3 is

the true state.
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Suppose that W is observed. Then, given the distribution in (10)
and the fact that K specifies the relative magnitudes of the a priori
expected costs of errors of misclassification, the optimal rule if society
wants to minimize the expected costs of such errors is to declare the

defendant guilty if and only if

2
(12) BT +3 Gk

where k = log K. That is, the optimal decision is:

Conviet if W > E% - %‘T

(13) {

Aoquit 1fw<1~‘%--;-T.

Contrast the optimal social decision rule in (13) with what the

ith Jjuror would do if he/she adopted the sccial tradeoff K as his/her own.

Given the distribution of xi in (7), the optimal decision for the i th

juror acting alone is to conviet if and only if

1.2
XiT + 5 T 2k

That is, the ith Juror would

R k 1
Conviet if Xi g T2 T
(18)
. .,k 1
Acquit if xi<T-2'r.

The crucial difference between the optimal decision based on all the

information in the trial and the optimal decision based solely on the ith
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juror's observation is that the former takes into account the correlation

petween the ™non-noisy"™ components of what the jurors see,
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..iY- The Optimal Use of Trial Information and the Fipst Ballot- Majoritv
' Yote

If the model of juror observation in Section III appiles to the
gembers of an n-person jury, what is the optimal way for that jury to reach
a verdict? How can the jury make the best use of the information available
to it and, in particular, take account not only of the initial views of
each of its members but also of the varying strength of those views? And,
how does the performance of such a jury compare with that of a jury
following the first-ballot majority rule?

The answer is that if the model presented in Section I1II applies,
the jury faces a problem in discriminant analysis. The jury must
mrelassify"™ the defendant as guilty or innocent on the basis of the
tpeasurements®--cone per juror--it has on the defendant and the knowledge

that the jury observes
(1) X~ N(O,Zn) if the defendant is guilty and
(2) X v N(-Te,I ) if the defendant is innocent,

where X' = (X1, Xo0 eens xn), e' = (1, 1, «vey 1) and Zn is the
variance-covariance matrix of X. From IIX(7) and III(8), we know that
each diagonal element of Zn is 1 and each off-diagonal element is p.

The solution to the p;oblem of classifying an observation into one
of two known multivariate normal populations with equal covariance matrices
is given by Anderson (1958)., Following Anderson's approach, the jury makes

optimal use of the information it has by forming the stavistic

(3) U = xv):r1
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It can be shown that

N(%ﬂ,u) if guilty

(1) u o
N(- ';_'u,u) {f innocent -

where

(5)

2
o = Tze.z:“ﬁnu_»e.u 0

naz + 1 (n-1)p+1

Then, i1f K is, as defined in Secticon III, the ratic of the a priori
expectea cost of convicting an innocent defendant to the a priori expected
cost of acquitting a guilty one, and k = log K, the optimal rule for the n-

person jury we have modelled is:

Comvict 1f U 2 k
(6)

Acquit if U < k

For the variance-covariance matrix n of the jury's observations as we have

modelled them, the test in (6) reduces to:

n

_
Convict if ¥ > & L‘lﬂ-)-p-Ll] -1

(7

n

hoquit 1 I, < K m:m_t_l]_.le

e

where ¥ = +
n n

n g

xi is the mean of the n jurors' observations.

i=1
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The error probabilities of the optimally deliberating jury, which

are calculated using the distribution of Un in (4) and the decision rule in

(5), are:
k - la
Pr(Acquit/Guilty) = ¢ —2-
va
(8)
1
k + <a
Pr(Convict/Innocent) = ¢ |- 'j?:jL' .
Q.

vwhere ¢ is the cumulative distribution function of the standard normal
variate S
S - s

$ (S) = ~
- Y27

e ds.

In our analysis, we shall be particularly interested in what
happens to jury performance as the jury increases in size. Note first

that, from (5):

2 P 2
(9) lim = 'I"'(J“"‘;—ﬁ")'zl' .
Il 0 a P

Hence, there is a limit to the quality of the decisions that the optimally
deliberating jury--or ary Jury that uses the information generated by the
trial--will make, and this limit is independent of the size of the jury.
Second, and most important, as n + « the decision rule in (7)
approaches the optimal decision rule in III(13), the decision rule that

optimally uses all the information in the trial. To see this, observe
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{hat as n > ®, the term [(n-1)p + 1]/n in (7) approaches p, and the
-éritical value on the right-hand side of (7) approaches L% - ';' T, which is

‘tpe right-hand side of III(13). Furthermore,

ln

n nz_Yi+az ¥ + a2

5 X = i=1 - .

= 1/2 !

o
=
e

i 72 where ?n =

1 (1 + 22) (1 + a2) 1

1

But by the strong law of large mumbers, it follows from the fact that

2y1/2 _ 4

E(Yi) = 0 that in + 0 asn~+ o, Hence, as n=> =, in-* aZ/(1+a
as defined in IJI(9). But then as the size of the jury increases,

Xn-’ W so that a decision based on in is based on all the information
contained in the trial,and the left-hand side of (7) approaches the left-
hand-side of ITI(13)}.

Finally. we can use (9) above to calculate the asymptotic error

probabilities under optimal use of trial information., Denoted with an

]
|

One special case of the jury that makes optimal use of the

asterisk, they are:

)
N o
Stk

Pr#(Acquit/Guilty) = ¢ [k

(10)

s
N o
Sihs

Pr¥#(Convict/Innocent) = ¢[—k

inrormation at trial is worthy of note. It is the case in which the jury
attaches equal weight to the a priori expected costs of the two kinds of
errors it can make. For such a jury, K = 1, hence k = log K = 0, and the

Jury optimizes by equating the probabilities of making the two kinds of
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errors. Setting k = 0 in (7), (8), and (10), we see that such a jury

forlows the decisicn rule:

T
Convict if fn 2 -3
(7')

_I -
Acquit if Zn< 5 3

the probability it errs is:

(8") Pr(Acquit/Guilty) = Pr{(Convict/Innocent) = ¢[-
and the asymptotic value of this error probability is:

{10") Pr#(Acquit/Guilty} = Pr¥#(Convict/Innocent) = ¢ [—% —I]

We will return to this special case in a moment.

Now consider the performance of a jury that renders a verdict based

a]

P

on a simple majority vote of the jurors before any deliberation has

occurred., Each juror observes a normal random variable xi with the

distribution given by III{7). Then, given the tradeoff K between the two

kinds or errors, the ith Juror follows the decision rule in III(14), which

we repeat here:

k 1
Convict if xi g T "2 T
{(11)

k_1
Aequit if X, <@ -3 T

Under the first-ballot majority-rule procedure, the jury will convict the
defendant if and only if the number of guilty votes is greater than n/2.

Thus, the probability that the jury will render a guilty verdict is the

31



probability that more than n/2 of the xi's are greater than or equal to

k_21lr7 g that
T 2

Pr(Conviection) = Pr [x

1
=
[}
UM o
-3
e d

med, n 2
(12)

- k_1 ]
Pr(Acquittal) = Pr[xmed,n < T2 T

where X is the median observation in a jury of size n.

med, n
Hence, as one would expect, the performance of the jury acting
under the first-ballot majority-rule procedure depends on the median

observation xme d,n
his/her vote, Let Ym

and how the juror who makes that observation decides on

ed. nn be the median of the juror errors of observation
] .

Y1, YZ, ceey Yn‘ Then, from III(3), we have:

Y + azZ

_ —ped.n
(13) xmed,n - > 172 *
{1+ a™)
As n + », the variance of Ymed n approaches zero and since Yi ~ N(0Q,1) for
. sn°

all i, Y itself approaches zero., But then, as n » o,

med, n

X > aZ/(1 + )2 oy,

med, n

Consequently, since, as we have seen, lim }-(n = W, tests based on the median
gould be asymptotically as good as tesg:o based on the mean. That is, as

the size of the jury increases, the medjian observation approaches W, which
contains all the information in the ftrisl, just as the geapn of the observa-

tions approaches W.

32



Thus, a large jury that decides its verdict by a first-ballot
majorivy vote has the information to perform as well as it would if it
foilowed the rule for optimal deliberation., But if the median voter
forlows the decision rule in (11) above, applying society's error tradeoff
K to his/her own observation, the large jury deciding by first-ballot
pajority rule will not--except for one special case--perform as well as it
would under the optimal deliberation rule in (7). Following the decision

rute in (11), the large jury's median voter will vote to conviet if and

only if xmed,n £T 2

T so that the large jury appiying a firat-ballot
majorivy rule is essentially applying the coriterion: conviet if and only

if W 2 %‘- %‘T. The optimal decision criterion, which we have seen the

optimally deliberating Jury approaches as it increases in size, indicates

instead [see III(13)] that a guilty verdict should be rendered if and only

ifw? %9 - %'T. Hence, the large jury deciding cases on the basis of

first-ballot majority rule would achieve asymptotice oﬁtimality if its
median voter applied the rule: convict if and only if xmed,n g K% - %‘T,
which differs from what the rule in (11) dictates.

It is conceptually clear why the first-ballot rule generally fails
to produce an asymptotically optimal result. The median voter in the large
Jury makes an observation in which the noise factor approaches zero,

He/she should take this iﬁto account and, when formulating his/her decision
rure, recognize that his/her observation has a lower varlance than an

observation chosen at random. If the median juror does not take this into‘
account, his/her vote will lead the jury to a nonoptimal decision.ﬁj

This can be made more precise. Suppose that a decisionmaker who is

to declare the defendant guilty or innocent observes V where
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Vo N(O,g2)  if guilty

(14)
v~ N(-T,02) if innocent.

Suppose, too, that the decisionmaker's tradeoff between the a priori
expected costs of errors is K, with k = log K. Then the decisionmaker's

optimal rule is to conviet if and only if

2
(19 v> oI

(This follows, for example, from applying the rule in (6) given the
information in (13).) Thus, in the optimal decision eriterion, the variance
weights the term k/T, which reflects the decisionmaker's tradeoff between
the two types of érrors. Overestimating the variance has the same effect
as using a larger absoclute value of k.

Thus,.suppose that a large jury decides the case on the basis of a
first-ballot simple majority vote and that each juror--including the one
with the median cobservation--follows the decision rule in (11). Then if
the jury regards the expected cost of convicting the innocent as higher
than that of acquitting the guilty, so that k > 0, it will tend to acquit
too many truly guilty defendants. That is, if k > 0, then the asymptotic

error probabilities satisfy the following inequality:
(15) Pri(alc) > Pri(aia) > PrE(ciI) > Pri(ciD) ,

where F denotes the first-ballot simple majority rule procedure, D optimal
deliberation, A acquittal, and C convietion. If k < 0, then the

inequalities in (15) are reversed.
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The result in (15) is illustrated in Figure 1, which depicts the
efficiency frontier for the jury's decision problem. For amny given level
of one of the error probabilitiesa, the corresponding point on the frontier
gives the minimum attainable level of the other error probability--that is,
the level that an optimally deliberating jury would achieve. The frontier
can be generated by varylng k in the expressions for the error
probabilities given in (10) above. It can be verified that the frontier is
negatively sloped and, if each of the error probabilities is less than one
half, convex. In terms of the figure, the inequalities in (15) show that a
large jury applying a first-ballot majority rule when, for example,

k =k, >0 will, in fact, attain a point like k2 on the frontier where

1
k2 > k1. The jury will reach a point on the efficiency frontier but one
where the probability of false acguittals is higher than desired.

How far from its target on the efficiency frontier does a jury
stray when it reaches a verdict on the basis of a first-ballot, simple
majority vote? Alternatively, if such a jury were to deliberate in an
optimal way, by how much could it reduce the expected loss due to its
misclassification of defendants? Of course, the answer depends on the
values of the various parameters. But to get some sense of the disparity
between the jury's desired combination of error probabilities and the
combination it attains, consider a very special case of the social tradeoff
between the two types of errors a jury can commit (K). Specifically,
5quose that_T(GII) = T'(I|G), s0 that the cost of a false conviction is
equal to the cost of a false acquittal, In this case, minimizing the
expected loss due to errors of misclassification is equivalent to

minimizing the (unconditional) probability of an error:
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FIGURE 1

Efficiency Frontier

Pr*(C|I)

Probability of
Convicting an
Innocent
Defendant

Pr*(a|G)

Probability of Acquitting
a Guilty Defendant
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(1-8)Pr{(CiI) + OPr(AlG).

“rpe social tradeoff K then equals 132, or the prior probability that the
defendant is innocent divided by the prior probability that he/she is
guilty, so that K equals the prior odds that the defendant is innocent.
For this specification of K, Table 2 compares the unconditional
error probability for infinitely large juries that decide on the basis of
g first=ballot, majority vote with the unconditional error probability for
similarly sized, but optimally deliberating Juriea.zj The comparison is
made for different values of K and p for two cases, one in which the
asymptotic probability of error of an optimally deliberating jury with
E=1%1is .3 and the other in which that probability is .1. We see that in
both cases, when K = 1 (so that k = 1ln K = 0), the asymptotic error
probability of the first-ballot, majority rule jury is the same as that of
the optimally deliberating Jjury. As we shall demonstrate in a moment, this
result is completely general. If K = 1, a large jury will do equally well
applying a first-ballot majority rule or engaging in optimal deliberation,
For K = 2 and X = 4, however, the difference in performance that results
from optimal deliberation is considerable, As one would expect, the
differences are greater for the smaller values of P because the smaller
p is, the larger is the correction that the median juror should make
in his/her decision rule., In the worst instance--Case ii with K = 2,
p = .1==the absolute difference between the asymptotic error probabilities
is .22 and the first-ballot majority rule jury is nearly 3 1/2 timés more
likely to err than is its optimally deliberating counterpart. Thus, if a

Jury chooses to decide on a verdict on the basis of the outcome of a first
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TABLE 2

ASYMPTOTIC PROBABILITY OF ERROR

8¢t

Case 1 Case i1
K 1. 2 L] 1 2 4

D 0.3 0.2620 0.1645 0.1 0.0890 0.0582

= .1 F 0.3 0.3333 0.2000 0.1 0.3100 0,2000
A 0.0 0.0713 0.0355 0.0 g.2211 0.1418

D 0.3 0.2620 0.1645 0.1 0.0890 0.0582

= .5 F 0.3 0.2841 0.1972 0.1 0.1022 0.0939
A 0.0 0.0221 0.0328 0.0 0.0133 0.0357

D 0.3 0.2620 0.1645 0.1 0.0890 0.0582

8 F 0.3 0.2652 0.1859 0.1 0.0954 0.0767

A 0.0 0.0032 ¢.0214 ¢.0 0.0064 0.0185

agymptotic probability of error for optimally deliberating jury
asymptotic probability of error for first-ballot majority rule jury

absolute difference between the asymptotic error probabilities of the two kinds of juries



pallot majority vote, with each juror following the decision rule in (11)
above, rather than to engage in optimal deliberation, then the jury can
have a considerably higher chance of making an error.
The preceding discussion points us to the one special case in which

the large jury performs as well under first-ballot simple majority rule

as it does under the optimal deliberation rule in (7). It is the special
case we considered earlier in which the jury attaches equal weight to the
two kinds of errors it can make so that: K =1 and k = 0. In this case,

the median voter applying the rule in (11) votes to convict if and only if
- l T-

+
xmed,n 2 > We have observed that as n + =, xmed,n'+ W. Hence, for
large juries, the median voter's criterion and, consequently, the jury's
decision rule, 1s equivalent to: convict if and only if W 2-';' T. As can

be seen from III(13), this is the optimal decision rule for the case in
which k = 0, Hence, when k = 0, the decision criteria of the first-ballot
simple majority jury and the optimally deliberating jury converge
asymptotically to the same rule. Consequently, for kX = 0, the asymptotic
error probabllities of the two kinds of juries are the same, and they are
given in (10'). 1In terms of Figure 1, this means that when k = 0, the
large jury that decides the case by a simple majority on the first ballot
attains the frontier point, ko’ for which it aims.

For this special case in which the jury attaches equal weight to
the twq kinds of errors, there is a particularly simple relationship
between the size of a large jury that decides by firs:t-ballot majority
ruie and the size of the optimally deliberating jury that achieves the

Same degree of accuracy. Namely, if the large jury that deliberates
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optimally--that is, follows the rule in (7')--is of size n, then a
first-balleot, majority rule jury will have to be of size gn s Or approxi-
pately 57 percent larger, if it 1s to achieve the same error probabilities,
that is, the ones given in (8'). The reason for this is as follows. For
large n, the median of a set of independent, identically distributed normal

variables with mean {and median) p and variance oawill be approximately

o2
normally distributed with mean u and variance'j;} & Applying this
result to approximate the distribution of Ymed ' we can use
L
T (1P
(13) to calculate the variance of xmed,n’ which is 3 ( n )-+ p. But

then the error probabilities of the large jury that decides the case by
first-ballot majority rule can be computed using the expressions in (12).
One finds that for large n, with k = 0, the probability of error for a jury

that uses the first ballot majority rule procedure is approximately equal
to:

j n (10
(16) @—T/Z‘/z(n)i»p .

Equating the probability in (8') to that in (16) and solving for the n in

(16) a= a function of the jury size in (8'), it is straightforward to show
that if the optimally deliberating jury is of size n, the first ballot jury
mist be of size %n if the two are to be of equal efficiency.

Before leaving the special case in which k = 0, let us consider
some evidence about how quickly the error probabilities of the optimally
deliberating and first-bailot majority-rule juriés converge and how large
the discrepancy between the errors is for small n. Table 3 contalns a
comparison of the error probabilities of the two kinds of juries as jury

size varies., The illustrative comparisons are made for two values of the
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TABLE 3

PROBABILITY (F ERRCR
COMPARISCN (F FIRST BALLOT AND OPTIMALLY DELIBERATING JURIES

WHEN k¥ = 0
= 1 5 9 11 15 o) 3H x
¥ = .3
D 0.4341  0.3770 0.3554 0.3487 0.33% 0.3265 0.3200 0.3
p = .1 F 0-"’3"“ 0.3% 00%% 0-%28 0-3% . 0-571 0-3287 003
A 0.0000 0.0136 0.0144 0.0141 0.0131 0.0106 0.0087 0.0
D 0.3554 0.3161 0.3094 0.3078 0.3058 0.3036 0.302%6 0.3
p=.5 F 0.3554 0.3219 0.3136 0.3174 0.3087 0.3054 0.3039 0.3
A 0.0000 0.0058 0.0042 0.003 0.0029 0.0018 0.0013 0.0
D 0.31%5 0.3044 0,305 0.3020 0.3015 0.3009 0.3006 0.3
p=.B F 0.21%5 0.3062 0.3037 0.3031 0.3023 0.3014 0.3010 0.3
A 0.0000 0.0018 0.0012 0.0011 0.0008 0.0005 0.0004 0.0
= .1
D 0.326 0.2219 0.1824 0.1709 0.15%55 0.1359 0.1265 0.1
p=.1 F 0.3426 0.2u88 0.2084 0.195 0777 0.1%21  0.1393 0.1
A 0.0000 0.0269 0.0260 0.028% 0.0216 0.0162 0.0128 0.0
D 0.184% 0.1210 0.1120 0.1099 0.1073 0.1084 0.1032 0.1
A 0.0000 0.0083 0.0057 0.0048 0.0037 0.0024 0,0017 0.0
D 0.1258 0.1055 0.103%1 0.1025 0.1019 0.1011 0.1008 0.1
p= .8 F 0.158 0.1079 0.1046 0.1038 0.1028 0.1017 0.1012 0.1
A 0.0000 0.0024 00,0015 0.0013 0.0009 0.0008 0.0004 0.0

D = probability of era far optimally deliberating jury

F = probabdlity of ergr for first-ballot majarity rule jury

A = sbsolute difference between the errar probabilities of the two kdmnds of Jurdes
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asymptotic error probabilities--.3 and . 1=-and for a range of values of p,
the correlation between the jurors' observations. (In the table, we do not
distinguish between the error probabilities for false convictions and those
for false acquittals since the jury acts to equate those probabilities when
k= 0.)

Several features of the comparison are noteworthy. First, the
differences between the error probabilities of the two kinds of juries are
gquite small, even for small n. The largest difference in the table is
,0269, and it occurs for p= .1, Pr®* = .1, n= 5. Thus, when k = 0 and the
jury's asymptotic error probability is .1 or .3, the first~ballot majority-
rule Jury does not seem to be at a great disadvantage relative to one that
engages in optimal deljiberation even when n is small. Second, the rate of
confergence between the two Jjurlies! error probabilities is moderate.
Th;rd, convergence is not monotonie¢. For example, for p = .1, Pr¥ = .3,
the largest absolute difference between the two error probabjilities is
for n = 9. One's intuition might suggest that the smaller the jury, the
greater the disadvantage of the first-ballot majority-rule procedure, The
nonmonotonicity of convergence shows that intuition is not correct, and
another moment's thought suggests the flaw in that intuition. We know that
the error probabilitigs under the two decision methods must be the same for
a2 single-person jury (n=1) since one person does not engage in
deliberation. And we have alsc shown that the error probabilities are
equal for n * «, Consequently, the convergence between th? two error
Probabilities cannot be monotonic.

Finally, if a large jury attaches different expected costs to the

two kinds of errors --so that X # 1 and k # 0--but it still wants to
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decide on the basis of a predeliberation vote, there are two ways it can
pake an optimal decision. First, individual jurors can take account of
the correlation between their observations and alter the cutoff in the
individual decision rule in (11) to E% —'% T. Then a decision based on
a gimple majority vote would converge to the optimal decision as n + «,
Mternatively, the individual Jjurors can be instructed to vote as if the
two kinds of errors do have equal weight--that is, as if k = 0==but the

jury as & whole would agree to convict the defendant only if a fraction

2
_ —a.___ Kk
(1+a”)

voted to convicet. It is straightforward to show that as k varies, a
first-ballot jury following this rule asymptotically traces out the same
efficient tradeoffs between the two kinds of error probabilities as the

optimally deliberating jury does.
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Y. he Effects of ference urors' Standards

To this point, we have implicitly assumed that the social tradeoff
between the two types of errors that a jury can commit, K, is universally
shared or at least that each juror puts aside perscnal views and applies
the social tradeoff in casting his/her vote. Suppose, on the contrary,
that different jurors have different views about the appropriate tradeoff'
between the expected costs of erroneous convictions and erroneous
acquittals, and suppose that they do not simply adopt the social tradeoff
when they become jurors. In particular, assume that individual standards
ki = log Ki are normally distributed among the population with mean k* and
variance v2. We will also assume’that the distribution of standards is
indepehdent of the distribution of observations made by Jjurors. What
implications does the existence of this distribution have for the
comparative performance of first-ballet, majority-rule juries and optimally
deliberating juries? |

To focus attention on the new issues introduced by the dispe;sion
of standards in the population, let us assume that a jury adopting the
first-ballot majority-rule procedure does so in a "sophisticated" way.
Specifically, assume that each individual juror takes account of the
correlation between his/her observation and the others'! and alters the
cutoff in his/her decision rule to reflect that correlation, Hence, if

Juror i applies the standard k,, that juror's decision rule is:

i
k.p
Convict if X >—'L'-1T
i= T 2
(1)
k. p
< 1
Acguilt if Xi< T -2T.
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As we observed at the end of Section IV, a decision based on a simple
majority vote of jurors who apply (1) to determine their individual
positions will converge to the optimal decision as n + «» if each juror
uses the social standard k for ki’

Consider the decision process of a first-ballot, majority-rule jury
;n which juror i votes according to the decision rule in (1) with ki
representing that juror's pepsonal view of the tradeoff between false
convictions and false acquittals., Since the jury 1is deciding its verdict
on the basis of a first-ballot, simple-majority vote, the outcome for the

detendant depends on which inequality in (1) holds for more than'g Jurors,

k.p
that is, whether the median value of xi - ‘%T‘is greater than, equal to, or

less than = % T.

Define
Y kP
L U
i > 1/2 T
(1+a")
i
s0 that, from the definitions of xi and W in Section III, xi -7 = Ri + W,
Then the jury's decision rule can be expressed as:
!
(2) Convict if W + Rmed,n g > T
1
Acguit if W + Rmed,n € - > T,
Yi kip
where Rmed,n is the median value of R 1/2 = T in a jury of
(1+a™)

size n. From the definition of Ri' we can determine its distribution:

22
k* 1 ¥y =
(3) Ri'\aN(-— = ,1 >+ 2 ).
+a
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It follows from the distribution of Ri in (3) that as n+ =, R

med, n
k0
T

the defendant is conviceted by a jury following the first-ballot, majority-

k*0 1
T 227

approaches - and 1ts variance goes to zero. Thus, asymptotically

rule procedure if and only if W - This large Jury follows

the deciszion rule:
(4) Convict if and only if W > E%E - %‘T.

Comparing (4) with the optimal decision rule in III(13), we see
that the large first-ballot, majority-rule jury in whicp Jurors correct for
the correlation of thelr observations but apply their personal viewzs of the
error tradeoff will reach a point on the efficiency frontier. Whether it
reaches the socially optimal point depends on the relationship between the
social standard k and the mean k® of the distribution of the ki's. Ir
k = k%, then as n > W! the sophisticated first-ballot, majority-rule jury
will approach the soccially optimal decision rule. Otherwise, it reaches a
point on the efficiency frontier, but not the socially optimal point.

It should be emphasized that in this section we have compared the
§erdicts of a "sophisticated" first-ballot, majority-rule jury with the
results of following‘a decision rule that makes use of all the information
in the trial and applies the society's tradeoff between the two kinds of
erroneous verdicts. We have not identified the latter with the results of
a particular way of processing the contributions of n jurors, an
identification we were able to make in the prEGIQus section. There the

optimal way to proceed was to apply discriminant analysis to the jurors!

observations. The problem with making any such identification in the
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current setting is that there iS no way to specify how the individual
jurors’ ki's ought to be aggregated to arrive at the social standard k.
It is also not possible to compare the performance of the
first-ballot, majority-rule jury with that of a jury that first combines
its members' standards and then applies discriminant analysis using that
composite standard, unless one specifies how that aggregation occurs.
Consider a specific aggregation method: namely, suppose the jury simply
averages the n jurorst ki-values, and denote that average k. If the jury
then optimally processes its trial observations, using discriminant
analysis, we know from the analysis in Sectior; IVe~specifically from

W(7)=-that the jury will

(5)  Convict 1f and only if X ‘E— [L”-'J)-%—*-l] -1,

As such a jury grows large, _E‘will approach k¥, and it follows from the
argument in the previous section that the criterion in (5) will converge to
that in (4) above. In short, given the specification in this section, a
first-ballot, majority-rule jury that is "sophisticated™ in correcting for
correlated observations will attain the same error probabilities as a large
Jury that first averages its members' standards and then applies
diseriminant analysis to their observations with that averaged standard.
One last observation can be made about the case in which k=k%,
that is, in which soclety's standard is equal to the mean of the
distribution of individual standards. A possible interpretation of this
situation is that all members of the population actuélly share the same

standard k, but when a particular individual, say the ith, applies that
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atandard, some "noise" enters and he/she actually uses the individual
standard ki‘ An interesting question is whether a jury that decides by
ngophisticated" first-ballot, majority rule should agree on a common
standard, call it ko, before casting individual votes or whether each juror
should vote based only on his/her individual standard ki‘ For the case in
which k = k%, intuition suggests that if the aggregation procedure is’
unbiased, so that E(kU) = k, then the jury should agree on a single
standard before voting if the variance of the agreement procedure is less
than the variance of the individual ki's, namely, less than v2. It can

be demonstrated that this is, in fact, a sufficient condition for
preballoting aggregation of standards to be desirable, though we omit the
details here. An example of an aggregation procedure that satisfies this
sufficient condition is averaging the jurors? ki-values. One that fails

to meet the condition is adopting the view of the most extreme juror.
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V1. he Effects of erence s! ties ec

In the previous analysis, we have assumed that all jurors were
equally able to follow the testimony and arguments they saw and heard and
the instructions they received at the trial. 0f course, though, jurors
are likely to differ in their abllities to process the information produced
by a trial, In this section, we examine the effect of one kind of
difference in jurors' abilities: differences in the variances cof the
Jurors' measures of the defendant's guilt or innoccence. To focus attention
on these differences among jurors in the context of a tractable model, we
simplify ocur earlier formulation by assuming that the jurors' observations
are uncorrelated,

Specifically, we suppose that juror i observes Xi where

(a) X, v N(O,ci) if the defendant is guilty
(1)

(b) Xi N N(—1,cf) if the defendant is innocent ,

and the xi's are uncerrelated. The crucial difference between this
specification and our previous one is that 02, the variance of the juror's
measure of the defendant's guilt, can now vary across jurors. We will
assume that the precision of a juror's observation, (of)'1, is the same

no matter whether the defendant is innocent or guilty, and we will assume
that this precision is distributed according to a gamma distribution with
parameters m/2 and (2y)'1. The mean and variance of the precision‘of the
Juror's observation are:

(2) E[%]:Ym
9%
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and

(3)  Var [—‘5] = 2y°n.

Oy
The analysis that follows is facilitated by the observation that if H
satisfies

() —1

02 = YH,
i

then H is distributed as chi-square with m degrees of freedom.

th juror considers the expected costs of the two kinds

Suppose the i
of errors he/she can make to be equal so that K = 1 and k = 0 for this
juror. Consequently, he/she adopts a decision rule that equates the
probabilities of making the two kinds of errors. Then, given the
specification in (1), this juror will vote to conviet if his/her
observation exceeds - %‘aﬁd to acquit if that observation is less than - %;
The probability that this juror votes incorrectly when the defendant is

guilty is

- 1 2
(5) p = Pr [Xi < - 2| Xi ~ N(O,C )] .

Since k = 0 for this juror, the probability in (5) is also the probability

that he/she errs when the defendant is innocent,

This error probability is easily calculated. To evaluate it, we

must remember that Uf is a random variable with density g(Uf),_caleulate

the probability of an incorrect decision conditional on a given value of

cf, and then integrate over ci. Thus, the probability that the ith Juror

reaches an incorrect decision is:

S0



' X
f Pr [xi< -Jé]|021 g03)ae? = f I}r [;f; < --ngz]lozi g(02)do’
X

i i

where xiru N(O.ci). Letting S be a standard normal variate and using s,

we see that this probability is:

- 1 _ — i1 —1. 1
(6) D-Pr|:S<-2MWi:,-Pr[/ﬁ//E<-zvym]-PrEm<-2/Y_mjl

where tm is distributed as a t distribution with m degrees of freedom.

From (6) it is clear that the probability that an incorrect
decision is made by a juror who attaches equal weight to the expected costs
of the two kinds of errors is a function of the two parameters y and m. 1In
our analysis of the efféets of differences in jurors' abilities, we will
want this error probability to remain constant. This is achieved by
defining Y as a function of m, which we will denote u(m). The properties
of u(ﬁ) are important because they establish m as a measure of the
dispersion of jurors' abilities. Specifically, with the error probability p
in (6) held constant, the parameter m measures, inversely, the variability
of individual jurors' abilities to process trial information.g/ Ifm=1,
Jurors' abilities are quite variable;lg/ while as m -+ =, the variability in
ability of individual jurors vanishes, and the model éomrerges to the model
of éection IV where jurors did not vary in ability. (To see this

rigorously, note that t —+ S asm > o, }
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The fact that jurors vary in ability has no effect on the
probability of error when the jury decides on the basis of first ballot
votes. The errors made by the jury are simply determined by the

probability that the individual juror errs, which is given by (6) above as:
p(y,m) = Pr|t <-1fﬁi.
! n 2

The probability that an n member jury errs in its decision is then:

(" z (’;) ply,m (1 - p(y,m) "
r>n/2
Moving on to the deliberating jury, consider an n member jury
that makes optimal use of its observations of the n random variables
X = (X,,.0.,X), which are independently distributed with X, ~ N(o,of) if the
defendant is guilty and Xi N N(-1,c§) if he/she is innocent. The jury will
form the statistic Un defined in IV(3) and vote for conviction if and only
if Un 2 k. Here we will consider only the case where the jury treats the
expected costs of the two kinds of errors as equal so that k=0 and its
decision rule is to convict if and only if Un 2 0. Given the structure
of the jurors' observations in the present model, this decision rule is

equivalent to finding the defendant guilty if and only if
7 1
(8) X,2-%

W

where XW is the weighted mean of the X,'s:

(9)

Lad]
[]]
Lol
Q
Py} L_H
~

P
l-'-QNLl
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Now Iw is distributed as:

Xw v N(0,1/a)  if guilty
(10)

iw v N(-1,1/G) if innocent

where o= £(1/05). For fixed (cf, cg, .evs 92), the probabllity that the

i
jury errs is:

1
(11} d [-2/&'].

Since o = E(T/Gi), the assumptions about the distribution of ci
imply o ~ T[nm/2, (27)'1]. If we let o = YL, then L ~ xim. We can then
calculate the optimally deliberating jury's error probability by
integrating over a. Letting y(a) denote the density of & and using S as

the standard normal variate, we have:

Error probability = f{@E 32-\/&'] | a} y(a)dy = Pr| S < - -;- ./i«‘l,]
(12) = Pr|s/(/L/¥ymm) < - -;-/ﬁ] =Prjt < - -;-/ﬁ]

where tnm is distributed as a t distribution with nm degrees of freedom.
How should we expect the error probability of the optimally
deliberating jury to change with m? Idtuitively, one would think that the
more variable the abilities of the jurors, the lower the probability of
error. The optimal deliberation process pays the most attention to those

individuals with high abjlities (small 0?), and it discounts the views of
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those with low abilities (large 0-). The optimal jury will always do at
least as well as the most able juror and usually considerably better. Thus,
as the variance in ability increases, the jury would be more likely to get
a very high ability Jjuror and that would ensure a low probability of error.

Although we do not have an analytic proof that this intuition is
correct, we do have some numerical results that support the following
conjecture for the jury whose members'! observations were modelled in this
section: If the probability of a single juror being in error is held
constant, then the greater the variance in ability (the smaller is m), the
lower is the probability that the optimally deliberating jury will err.
The numerical results appear in Table 4. That table presents the
probability of error for optimally deliberating juries with different
variances in ability and the probability of error for the first balliot
jury. As we noted before, differences in ability do not affect the first
ballot jury's performance. But, as Table 4 does show, differences in
ability do affect the probability of error of the optimally deliberating
Jury.

The upshot is that a jury basing its decision on a first ballot
majority vote will be at a greater disadvantage compared with one that uses
information optimally the greater is the variance in abilities of the

Jurors.
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TABLE &4

PROBABILITIES CF ERRCR WHEN THERE ARE DIFFERENCES IN ABILITY

= 1 ] 9 11 15 5 3
m=1 40000 25004 JTIST 15213 11374 05840 L03137
m=2 .40000 26657 19854 L7438 13621 L7758 04605
m=h 40000 27588 21102 8707 14931 .083u6 05575
m=10 40000 28166 21866 19503 15761 09724 06232
B= 40000 28553 2361 .20038 .16324 .10262 .066%
First

Baliot . 40000 31T 26657 24650 .21310 15377 L1131
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VII. Concluding Remarks

In this paper, we have focused attention on the processing of
information by juries. This is an aspect of the jury system_that i=
central to almost all policy discussions but that has been neglected in the
development of models that are intended to inform such discussions.
Indeed, as we have shown, some of the more sophisticated models in the
literature imply that the deliberative process can only yield decisions
that are inferior to those produced by majority votes taken before any
discussion among the jurors. The models we have presented here enable us
to evajuate the role that can be played by Jjurors' sharing of their
observations. Deliberation is important precisely because it enables
differences in the strengths of Jjurors' views, differences in their
decision Standards, and differences in their abllities all to be taken into
account in reaching a verdict. These are factors that a first-ballot,
majority-rule decision cannot weigh and that previcus models of the jury
decision process have not encompassed,

There are, of coufse, other aspects of jury deliberation and its
analogues that we have not captured in our model--for example, the
possibllity that different jurors see different kinds of information and
the possibility (surely a reality) that jurors attach varying weights to
the impertance of different peers' views. In closing, we should reiterate
a point we made very early in the paper: Ours is not a descriptive
analysis of the value of actual jury deliberations; it is, instead, an

effort to illustrate what deliberation can, in theory, achieve,
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APPENDIX A

To see how the Kalven and Zeisel data can be used to estimate the
parameters in the first stage of the Gelfand and Sclomon model, let us
introduce the following notation, where the concepts are those used by

Gelfand and Solomon:

f(k,N;G) = probability that on the first ballot k of N
Jurors vote to conviet a guilty defendant;
f(k,N;I) = probability that on the first ballot k of N

Jurors vote to convict an innoccent defendant;

U = probability that on the first ballot an
individual juror will vote for the correct
verdiot;

6 = probability before the trial that the accused is
guilty;
h(k) fraction of juries that register k votes for
convietion on the first ballot.

The parameters in the first stage of the Gelfand-Solomon model are

8 and p. But note that
h(k} = 0f(k,N;G) + (1-8)f(k,N;I).

If jurors vote independently on the first ballot, as Gelfand and Solomon

assume they do, then

N .
( )ukﬁ-u)n'k
x
N
( )(1-u)kuu'k-
K
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Hence,

h(k) = 6 ( N)u“u-u)"'k + c1-e)(N )( 1=K,
k k
Assuming that 6 and u are both greater than .5, data on h(k) can be used to
obtain unique estimates of & and u. And, it is exactly observations on
h{k) that the Kalven-Zeisel data provide, although in a grouped form with k
taking on only five possible first-ballot values instead of the full
thirteen that it can actually assume in a 12-person jury. Using the
Kalven-Zeisel data, Gelfand and Solomon estimate 6% .7, U=.9.

Gelfand and Solomon also consider an alternative model in which
they distinguish between u1= the probability that on the first ballot an
individual juror will vote to convict a guilty defendant and u2 = the
probability that on the first ballot an individual juror will vote to
acquit an innocent defendanﬁa But their estimates lead them to believe

that there is little difference between U, and u,. Hence, they base their

1 2
analysis on the two-parameter |, 6 model rather than on the three-parameter

U1, u2, 8 Mdel-
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1.

2.

3.

Wnen Kaiven and Zelsel compared the first-ballot votes of these 225
Juries with their final verdicts, they found that "in the instances
where there is an initial majority either for conviction or for
acquittal, the jury in roughly nine out of ten cases decides in the
direction of the initial majority. Only with extreme infrequency does
the minori.y succeed in persuading the majority to change its mind
during the deliberation... [Wlith very few exceptions the first ballot
decides the outcome of the verdict... The upshot is a radical hunch
about the function of the deliberation process. Perhaps it does not so
much decide the case as bring about the consensus, the outcome of which
has been made highly likely by the distribution of first ballot votes. "
Kalven and Zeisel (1966), pp. 488-1489. '

Gelfand and Solomon modify the Davis scheme for two reasons, First,
they want the resulting social deciszon scheme to fit reasonably well
the transitions from first-ballot vote to final verdict that were
actually found by Kalven and Zeisel in the 225 cases mentioned earlier,
Second, when the resulting social decision scheme is taken together
with their estimated values of 8% .7 and U= .9 {(see Appendix A),
Geifand and Solomon want it to yield an overall frequency distribution
of convietions, acquittals, and hung juries that fits the empirical
distribution found by Kalven and Zeisel in their overall study.

Alchough Gelfand and Solomon state their results in terms of the
probability or convieting an innocent persoen and the probability of
acquitting a guilty one, these are not the probabilities that they
calculate and present in their paper. Instead, to measure jury errors,
they compute, and their tables display, the conditional probability
that a defendant is innocent given that he/she is convicted and the
conditional probability that a defendant is guilty given that he/she is
acquitted. Both sets of conditicnal probabilities--those which
conditicn on the true state of nature (guilt or innocence) and those
which condition on the Jury's verdict--are of interest in a discussion
of the accuracy of the jury decision process. But the error
probabilities that condition on the true state of nature are the
relevant ones for a decision-thecoretic analysis of jury structure and
Jury decisions rules. It is this set of error probabilities that we
display in Table 3, and we indicate that they are calculated from
inrormation in the Geifand and Solomon article because the latter did
not directly provide these numbers. The qualitative comparisons that
Gelfand and Solcomon draw and the ones that we draw for their results
are invariant with respect to which set of error probabilities one
uses.
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5.

This implication of the Gelfand and Solomonh results was obzerved
independently by Grofman (1979, pp. 24-25; July 1980, pp. 298-299),
though his discussion is based solely on the error probabilities that
Gelfand and Solomon present. He uses the implication as part of his
"case for majority verdicts,®™ but he does not suggest any explanation
of the observed phenomenon. In addition, he does not provide a formal
argument about conditions, beyond those in the Gelfand and Solomon
study, in which one could expect to observe predeliberation, first-
bailot majority verdicts that are superior to full deliberation,
unanimous verdicts,

Penrcd and Hastie (1979, pp. 480-483) cbserve a similar phenomenon in
their illustrative calculations comparing the performance of twelve-
person juries operating under unanimous and nonmunanimous (two-thirds
majority rule) decision rules. In these calculations, they use an
imtial vote distribution that produces a good fit to the Chicago Jury
Project data on the 225 eriminal cases mentioned earlier, and they use
a pair of social decision schemes that are roughly comparable to the
cones Geifand and Solomon use, Penrod and Hastie's calculations yield
error rates for nonunanimous juries that are lower than those in the
corresponding unanimous juries, They interpret this outcome by
examiuning what happens when the jury's predeliberation vote would
exactly meet the two-thirds majority requirement of the nonunanimous
jury, though of course their interpretaticn applies as well when the
predeliberation vote exceeds the nonunanimous decision criterion,
Hence, the situations for which they interpret their result are exactly
analogous to those in which (a) there is a majority on the first
bailot and (b) one is comparing the simple majority decision rule with
the unanimity requirement. The explanation that Penrod and Hastie
offer is that the decision schemes they use "do not assume that
deliberation serves to correct the errors made in first ballot votes"
but rather "these decision schemes reflect relatively unfavorable views

~of the deliberation process insofar as they assume that both correct

and errorful initial majorities are equally likely to be reversed
during deliberation.™ (p. 481).

Let us look at the results in Table 1 in yet another way. Suppose we
accept the error probabilities based on Gelfand and Solomon's refined
estimates, those in columns (2) and (4), as the basis for choosing
between six-person and twelve-person juries when both kinds of juries
are subject to a unanimity rule. Then it appears that allowing
deliberation subject to a unanimity requirement introduces much larger
errors than does the change from twelve-person to six-perscon juries,
Using their estimates, Gelfand and Solomon would seem to have made a
stronger case for having juries decide by a majority vote without any
deliberation than they have made for having twelve-persen rather than
six-person juries.

Klevorick and Rothschild (1979).
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7.

10.

There is an analogy in the competitive bidding literature, more
specifically, in the phenomenon referred to as "the winner's curse. "
Potential bidders with private information should recognize that they
will win only if their observations are extreme. Hence, when
evaluating the information in their observations, they should condition
on the observations being extrenme,

An alternative 1nterpretation'of the entries in Table 2 is that
6=1-6 ='§ so that K = 116)" the relative social costs of the

two kinds of misclassification. In this case, the entries in Table 2
equal the expected losses due to misclassification multiplied by

-

r +1°
I G

Kendall and Stuart (1958), p. 329.

To establish this relationship between m and Var -% , 1et tw B be
c L

defined by Pr{tw < t"’ } = p; that is, tw, is simpiy the critical value

for tail probability p of a t distribution with w degrees of freedom.

But from the properties of the t distribution, it follows that for p < %}

as w increases, tw, increases--that is, Itw, | decreases. Hence, as n
increases, if the probability in (6) is to remain constant, we must have

YYm decrease. But then it follows that for p to stay fixed, y must decrease

more than proportionately to the increase in m so that uw'{m)} < - o
Substituting u(m) for y in the expression for Varr -%' in (3), differ-
o]

i_.
entiating with respect to m, and using this result about u'(m), yields the
desired result: as m increases, the variance of the individual jurors'
abilities decreases.

The upper bound, m = 1, is imposed only by our desire tozhave the
probability computed in (6} be a t distribution. If 1/01 is

distributed as a gamma distribution with parameters V and &, then the
same logic as was used to derive (6) shows that the probability that a
juror decides incorrectly is just Pr(y < §] where y is a standardized
normal variate divided by the square root of an independent gamma
distribution and 6 is a function of v and £. This is, in principle,
easy to calculate. It is not, as is the t distribution, extensively
tabulated.’

61



REFERENCES

Anderson, T.W.,
John Wiley and Sons, Inc., New York, 1958.

Davis, J.H , "Group Decision and Social Interaction: A Theory of Socilal
Decision Schemes," 80 Psycholosical Review 97 (1973).

Davis, J.H., R.M. Bray, and R.W. Holt, "The Empirical Study of Soccial
Decision Processes in Juries™ in J.L. Tapp and F.J. Levine, editors,

Perspectives, Holt, Rinehart, and Winston, Inc., New York, 1977.

Gelfand, A.E. and H. Solomon, "An Argument in Favor of 12-Member Juries,®
in S. Nagel, editor, Modeliine the Criminal Justice System, Volume 7
of Justice Systems Analvsis, Sage Publications, Beverly Hills,

1977(=2).

, "Analyzing the Decision-Making Process of the
American Jury,™ T0 Jourpal of the Aperican Statistical Assoclation 305
(1975).

, "Considerations in Building Jury Behavior
Modeiss and in Comparing Jury Schemes: An Argument in Favor of
Tweive-Member Juries,® 17 Jurimpetrics Journal 292, 1977(b).

, "™Modeling Jury Verdicts in the American Legal
System," 69 Journal of the American Statistical Association 21 (1974).

, ™A Study of Poisson's Models for Jury
Verdicts in Criminal and Civil Trials," 68 Journal of the American
Statistical Association 271 (1973).

Grofman, B., "The Case for Majority Verdicts,” I_BLAL Magazine 23, December
1979.

, "The Slippery Slope: Jury Size and Jury Verdict Requirements

--Legal and Social Science Approaches,™ 2 Law and Policy Quarterly 285
(1980).

Kalven, H, Jr. and H. Zeisel, The American Jury, Little, Brown, and Co.,
Boston, 1966,

Kendail, M. G. and A, Stuart, The Advanced Theorv of Statistics. Volume 1,
Charles Griffin and Company, Ltd., London, 1958.

Klevorick, A.K. and M. Rothschild, "A Model of the Jury Decision Process,"
8 Journal of Lesal Studies 141 (1979).

Penrod, S. and R. Hastie, "Models of Jury Decision Making: A Critical
Review," 86 Psychological Bulletin 462 (1979).

62



	Information Processing and Jury Decision making
	Recommended Citation

	tmp.1624124579.pdf.nVIbH

