Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

4-1-1982

Stochastic Games II: The Minmax Theorem

Curt Alfred Monash

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Monash, Curt Alfred, "Stochastic Games Il: The Minmax Theorem" (1982). Cowles Foundation Discussion
Papers. 860.

https://elischolar.library.yale.edu/cowles-discussion-paper-series/860

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F860&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F860&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/860?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F860&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO, 624

Note: Cowles Foundation Discussion Papers are preliminary
materials circulated to stimulate discussion and
critical comment., Requests for single copies of a
Paper will be filled by the Cowles Foundation within
the limits of the supply. References in publications
to Discussion Papers (other than mere acknowledgment
by a writer that he has access to such unpublished
material) should be cleared with the author to protect
the tentative character of these papers,

STOCHASTIC GAMES 1II: THE MINMAX THEOREM

by

Curt Alfred Monash

April 1982



STOCHASTIC GAMES II: THE MINMAX THEOREM

by

Curt Alfred Monash



1. INTRODUCTION

*

A two-person, zero-sum stochastic game consists of a (finite) set
§ of states; each state S 1s a (finite) matrix game. The entries of
these matrices consist of
1) a payoff (from the column-chooser, B , to the row~-chcoser,
A ) and
2) a lottery on S , determining which state will be played
next.,
Shapley [1953] introduced this concept, studying stochastic games which
terminate with probability 1 after finitely many steps; equivalently,
these games could be thought of as infinite in duration, but with a non-
zero discount rate. In this case the min-max theorem is straightforward
(Shapley (1953}, Monash [1979, 1981]). ¢€illette [1957] studied stochastic
games with zero stop probabilities, establishing the min-max thecorem in
a couple of special cases. In these cases, the optimal strategles are
stationary (i.e., dependent only upon the current state, rather than the

history); thus the game "should" go into a Markov chain. The payoff can

N
be defined either as the Cesard limit lim§ ) d or the Abel limit
N =]

lim r } <:li(l-r)i'-l , where d, = the payoff on the ith play, since,
r-0 i=l

with best play, these limits exist and are equal (compare Rovden [1963]).

In The Big Match, Blackwell and Ferguson [1968] considered a more

difficult example. Although this game still has a value, it cannot be
guaranteed by stationary strategies; furthermore, no strategy is better
than e-optimal. Extending these methods, Bewley and Kohlberg [1976]
showed that the Cesard limit of the values of the N-stage games exists,

and equals the Abel limit of the values of the r-discounted games;



furthermore, no strategy for either player can guarantee an average pay-
off (in any sense) better than this number v_ . Thus v_ 1s the only
candidate for min-max value. Finally, the min-max theorem for stochastic
games was proved by Monash [1979] and independently by Mertens and Neyman

[1980]. This paper is a revision of Monash [1979],

2. DEFINITIONS
Without loss of generality, a stochastic game can be described

by finite sets S, A, B, C and measurable functions

d: SxBxBxC ~+ [-—ﬁ, 1’\\{] ’
s : SxAxBx(C =8, and

q: IO:]'] + C

such that:
1) S is the state space;
2) Player A (resp. B ) chooses a move from his choice set
A (resp. B )3
3) s, composed with ¢ , reproduces the lottery in each entry
of each state matrix; and

4) d 4is the payoff function.

A state s* € § is absorbing if 4(s*, a, b, ¢) = s* for all a, b,
¢ and d(s*, a, b, ¢) = v(s*) , a constant. $* €S 1is the set of
absorbing states S_ =8 - 8% .

A play of the game is just a sequence 800 21° bl’ C1» Sy 8y

b2’ Cos Bgs oes where &y = 5(51_1, a;, bi’ ci) , for all 1 : let

th

a; = d(s a5, by ci) , the payoff on the i turn. Writing

i-1* 71
t; = (Si-l’ ag, bi’ ci) € T=8SxAxBxC , we denote a play by



L= (tl, tyy tqy ...} 3 thus

T = SXAXBXCXSXAXBXCXSX,.,

= {all possible plays) .

The subsequence (tl, ...,tn) is denoted bv f{n) ; we use this nota-
tion even if we are thinking of this subsequence as belonging to many
different possible plays.

Strategies for A will always be denoted by ¢ , and strategies

for B by 1 . These strategies will always be of the form

Prob(a € A (resp. b € B) on turn k) = function(tl, ...,tk_l)

Thus, by the Kolmogorov Extension Theorem (see Kolmogorov [1950] or Monash
[1981]), a pair (ou,T) determines a probability measure u(o,t) on

T° . Unless otherwise noted, all expectations below are with respect

to this measure. Let

T = {(t€ T : s; € s$* for some i} ,

and T the complement. In the next section we write Pix) = u(T*) .

Following Bewley and Kohlberg [1976] or Monash {1981}, recall that
for all se S, for all r € (0,1) , Vs(r) = the value of the r-discount
game, ‘starting in s , satisfies

V_(r) = val(exp(d(s,a,b,c)+ (1-r)_] P(s)V=(r)) , (2.1s)
s — s
c seS

where P(8) = the probability that 4(s,a,b,c}) =8, and val is the

ordinary mip-max value. For some >0 , all the Vs(r) are algebraic,

"\,
as are the optimal strategies in the games (2.1s). Thus, on (0,x) .



L
V() =V (s)rT + (O Tl
-n -n+l
=V (s)ru " + ()u + oeen
where u = rl/n . Let O j_&.i ¥l/n ;. on (0,3) , we write ws(u) = Vs(un) .

so that lim unws(u) = lim er(r) =V _(s)
w07 >0t

In Sections 4 through 6, we assume vw(s) =0 for all s€S_ .

In that case we have 1lim up-lws(u) <= for all s ; thus, writing
u+0+
W(u) = max st(u)], we have 1im u

SF.Sm u+0+

2-lg) < , also.

3. STATEMENT OF THEOREM

Our main result is

Theorem I: TFor any starting state 54 € 8§, forany e > 0, there

exists a strategy o for A such that, for any strategy 1 for B ,

N
1
lim inf expiz ) d. | > v (s8) - ¢ .
Ni=l i ©

N-roo
Theorem I clearly follows from the following two preopositions:

Proposition 3.1: Suppose, for all s & S* , v_(s) =0 . Then the con-

clusion of Theorem I holds.

Proposition 3.2: Proposition 3,1 => Theorem I,

In this section, we prove Proposition 3.2; the remainder of the paper
is devoted to Proposition 3.1.

The proof of Proposition 3.2 depends upon



Lemma 3.3: Let G be a stochastic game, with state set S . Let H
be another stochastic game, identical to G except for the following
modification: Replace a single state x € § by an absorbing state ¥y

such that v(y) = v_(x) . Then, for all s €S,

Vm,H(S) = Vm,G(S) ,

where v_ G(s) (resp. v_ H(s) ) is simply v_(s) 1in the game G
¥ 3

(resp. H ).

Proof: Let VG’S(r) {resp. VH,S(r) ) dbe vs(r) in the game (resp.

H ). Define

?(r) r-l-vm(x) - VG x(r)

?

V()

nin (V, () -V, (r))
seS-{x} fl,s G,s

Then, for any s € § - {x} , (2.1s) gives

Vy o(r) = val(Exp(d(s,a,b,e))) +(1-r)_ ]  P(8):Vy ()
fl,s g seS-{y} s

+ L. (1-0)YP(y)-v(y))

| v

val(Exp(d(s,a,b,c))*-(l-r)_z P(g)-VG-g(r))
C seS ’

+ (1-r) min ((1-P)-V(r) + pV(r) ,
Pel0,1]

where P corresponds te P(x:a,b,s) ,
= Vg (1) + (1-0) ((1-P%)T(x) + px-V(0))

for some P* ¢ [0,1]

Picking S now so that



VH’;(r) - VG,g(r) = V(r) in some interval [0,%) ,

V(r) = VH"Sb(r) - VG,?:'(I)

(1-x) ((1 = P*)-V(r) + P*-V(r))

{ v

r7(r) > (1-r) 2%« (¥(r) -V(r)) .
So either V(r) >0, or %(r) - V(r) <0 . In either case,

min (v 4(s) - v_ ~(s))
seS-{x} M 0

= min 1im (rVH’s(r) - rVG’s(r))

seS-{x} ot

= 1lim r min (VH,s(r)-VG,s(r))

€£9-

o7 S S-{x}

= lim rV(r)
r+0+

0 or > lim r?f(r) =0 .

r—>0+

| v

So, for all s €& S-{x}, v_ H(s) - v G(s) > 0 ; that is,

Vm’H(S) > Veo,G(S) .

But, by symmetry (i.e., intefchanging the names A and B ),
Vg y(8) 2 v, g(s) .

Hence v, .(s) = v, g(s) , for all sé€ s -{x}.

Since Lemma 3.3 is clearly true for state x , we are done,

1



Proof of Proposition 3.2:

We now proceed by induction on lsml » the number of non-absorbing

states.

[S.| = 0. Trivially true.

So assume for |S_|-1, and prove for Is_| .

To every state s , associate a number a{s) such that

: N
v,(s) - u(s) = sup inf lim inf £ ] exp(d,)
g T Nwee i=1

By the Bewley-Kohlberg result, o(s) >0 for all s € S .

Want to show: a(s) = 0 for all s . If so, done.

So suppose otherwise.

Definition: We will call a strategy o , starting in state s ,

e-optimal (for s ) if

N

inf lim inf-% z exp(di) z_vw(s) - € .
T e i=1

Case 1: There exist states s

1° 59 such that a(sl) > a(sz) >0.

Let ¢ = %{a(sl)-a(sz))

Consider the modified game H , where s, is replaced by an ab-
sorbing state y such that v(y) = vw(sz) . Then H , by induction,
has an e-optimal strategy, for any initial state.

Consider, then, the following strategy, for the game (G starting

in state s; : Play the e-optimal strategy for #H , until "absorbed"

in "y" ; this is meaningful because G and #H are identical outside



of state $, » Once in s, , play an (3(52)4—5)-0ptima1 strategy, which

exists by the definition of a(sz) . Then this strategy is clearly

(a(sz)~+2€)*optimal for s, .

But

a(sz) + 2e = %a(sl) + %u(sz) < a(sl) s

contradicting the definition of a(sl)

Hence the only possibility is:
Case 2: There exists o > 0 such that, for all s €S_, o(s) =3 .

Now, let Vg = min v_(s)
SES

il

Let S0 Cs,6 be {s€esS_: vm(s) vo} ;3 let ¢ be the complement.

Case Za: & is non-empty. Then let v, = min (vm(s)) ;v >V Let
s

V17V

- 1
8= 2w+ <2

By repeated applications of Lemma 3.3, replace the states in g

by absorbing states with the same v, Then the states in § still

0

have value vy - Assuming Proposition 3.1, this new game has an g-optimal

strategy, where

v, =V —

1 "0 Ba

£ min[ raamt 4}

Play this strategy until “absorbed," and an (ot+e)-optimal strategy there-
after (unless the "absorption" is genuine). Fixing (any) T , we have

two cases:



Case 1: Expected value if "absorbed" > 02 1 or P(x) =0 . Then
1 N v0+v1 _
lim inf % 7 exp(d,) > P(%) = (ate)} + (1 =-P()) (v, ~€)
, i’ - 2 0
N i=1
_ V1=V ) _
= vy - o+ P(%) 5——¢| + (1-P(%)) (c-¢)

since T was arbitrary, this contradicts the definition of a .

v0+vl
Case 2: Expected value if "absorbed™ <« — and P(x} > 0 .
Let vy = prob(genuine absorption) . Then
P(%)
VotV
> Expected value if "absorbed"”
>yt + A-evy 5 e,
v, -V
1 0
V=g vy - Y(v1+ﬁ)
) (vl-VOl .
¥ 2(v1+}f) )
Hence
1y —~
lim inf < ] exp(d,) > v, = € = P(*)(1-Y) (a+e)
N i’ =70
Noes i=1
2 vy =€ - (1-8) (a+e)
> vy - o + (Bu-2¢) ;
since ¢ :%? , this is a contradiction.
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Case 2b: g = ¢ .

Deducting 0 from all payoffs, this is exactly the case of Pro-

position 3.1. Hence there exists an-%-—optimal strategy, for our final

contradiction.
So a(s) =0 for all s € §* .,

But this is exactly what we wanted to prove.

4. PRELIMINARY COMPUTATIONS

For the rest of this paper, we will assume v_(s) =0 for all
s €5 . We will always choose A's strategy ¢ to be Prob(a) = f(a,s,u)
= the optimal (stationary) strategy in the v -discount game, for some u ,
in the current state s . Without loss of generality (see Monash [1979]
or (1981]), B's strategy T is pure: bk = function(t(k-1))
Let us now focus on one move of the game. Fix s €S_, u e.(O,g) ,
and b € B, with A playing strategy {f(a,s,u)} . Let P (u)
= Prob(4(s,a,b,c) £ S*) , given the probability distributions £(a,s,u)
on A and q on C . In Sections 5 and 6, if a play 1 1is understood

along with a sequence of u's , we will let

th .
P,(u) on the i turn, if si_1_€ Sy

i € §%
0 s 1if $5.1 5

P, (1) =

Meanwhile, let s = 4(s,a,b,c)
We distinguish three cases:
1) Py(w) 20 on (0,u) ;

2) %Yot 1, and
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lim exp(v_(s) : s €5%) = 0 ;

u+0+

3) Not 1 or 2,

We further distinguish between:
A. Either Case 1, or order(®,(u)) > n ;
B. Not Case 1, and order(P,(u)) <n-1 .
Observe that P,(u) 1s a rational function of u , and thus has
finicely many zerces; without loss of generality, none of them occur on
(O,&) + Define &(u) as follows {(where we suppress the dependence upon

s and b ):

If Case A, then
§(u) = wexp(vm(E) i s € S*)-P*(u)-u-n :
if Case B, then

8(u) = —exp(v(s) : 5 €8%)P,(u) + (1- (1-u")(1-Py(w)IW_(w)eu"" .

The point of this definition may be found in the following propositions

(where we write exp(d : S ) for exp(d : s £5.) , and so forth):

Proposition 4.1: exp(d : S )(1-P,(u)) > &(u) ~ exp(WEH-WS(u) 1 S ) (1-P,{(u))

+n(u) , for u € (0,0) , where 1lim n(u) =0 .

u—>0+

and
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Proposition 4.2:

i. 1If Case 1 (above), then &{u) = 0 and P*(u)-exp(v&(g) v §%) = 0 ;

2. If Case 2, then
lexp(v_(s) : 5%)| < o(uo)

and

§(u) ru®

0
P, (w) <g(u) .

3. 1If Case 3,

—P*(u)-exp(vm(E) :S*)-u-n

0
) =1 4+0Cu) .

From Equation (2.1s), we have

Wo(w) < (1-Py(w)e(exp(d 2 8) + (1-u")exp(Wz(u) : 5))

+ P, (u) ~exo(v (&) : $¥)u”" . (4.3)

Proof of Proposition 4.1:

Rearranging (4.3), we have

(1-P,(@)exp(d: 5} > (1= (1= B () (1~u" W (W)
- (1-P(w)(L-uMexp(¥-(u) -W_(u) : 5)
- P (u)exp(v_(s) : S¥) (4.4)
1f Case A holds, then (4.4) = 8(u) - (l-P*(u))exp(Wg(u)-WS(U): 5.)
+(P*(u)-+uF-u“p*(u))ws(u)-+u“(1-P*(u))

-exp(Wg(u)-Ws(u) :8.) . (4.5)
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If Case B holds, then (4.4) equals
6(u) = (1~P,(u)) 'exp(Wg(u) -Ws(u) :8))
+ w7 (1= P (W) rexp(Wo(u) - W_(u) 1 S) . (4.6)
Let P > 0 be such that ]P*(u)l j_?hn whenever Case A holds. Writing
n(u) = =(P+4)u"W(u) ,

and observing that

(4.5} > 8(u) = (1 =P (W) exp(Wo-W (u) : 8,) + n(u) ,

(4.6) > 6(u) - (1-P*(u))-exp(wgu-ws(u) : S ) + n{u)
and lim n{u) =0 ,

u—>0+

we are done.

Proof of Proposition 4.2:

1. Suppose Case 1 holds: P,(u) =0 . Then so does Case A, and

&§¢u) -exp(vg(E) 18 € S"‘)--P*(u)-u-n

]

0 for all u,

and so done.
2. Suppose, then, Case 2 holds. Since exp(v_(s):S*) is a power series
in u, with limit 0 as u > 0, it is indeed O(uo) . Now, if Case A,

then
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5(u)-un

P, (u) = |'e¥P(Vm(§) 1 §%) |

G(uo) ;

A

while, if Case B, then

P, (u) W (u)-un
§(u) «u” * s
r—— e e = - . %
P, () exp(v_(s) : 8%) + ) + higher order terms

< O(uo) + |unws(u)| + higher order terms
< O(UO) .
3. Suppose Case 3 holds. If Case A, then

—P*(u)-exp(vm(g) : S%) y "

§(u)

1 , by definition,

So suppose Case B: order P (u) <n-1 . It is clearly enough to check

(P, (u) +u" - 6P, (u))W_(u) 0
<go{u) .

—P*(u)-exp(qw(g) : %)y~ "

Then order (P*(u)-+un-unP*(u)) = order (P, {(u))
order (expCVm(Eﬁ 18%)) =0,
and so the order of the left-hand-side is

> order (P, {(u)) + order(ws(u)) ~ order (P,(u)) - 0 - order (™
= grder (unws(u))

>1.

Hence done,
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5. THE ABSORBING CASE

Recall that a fixed strategy pair (0,7) induces a probability

measure u(o,1) on T » the space of all possible plays. 1If 80 € 5% |

Proposition 3.1 is trivial; thus it follows immediately from

Proposition 5.1: For any starting state s € §,6, for any e > 0, there

exists a strategy o for A such that

inf lim inf f -
T Moo T i

Z |~

il b1

d.du(o,1) > —(6M+3)e .
1 1

Proof of Proposition 5.1:

As remarked earlier, the strategy ¢ will be the form
Prob(a) = f(a,s,u) , the optimal strategy in the u"=discount game, for

u cleverly chosen. Specifically, writing uy for the u prevailing

v{N)

on the N+1St move, we set uy = uo(l —%t) s for wu_ sufficiently

0
small and v(N) a non-negative integer depending upon the history of
the first N-1 moves.

Write g =1 -'%t .- Recalling Proposition 4.2, choose R > ¢ and
i sufficiently small so that each O(uo) is < Ru . Assume € <1 ,
Then u, € (0,3) C (0,1) must satisfy the following four conditions:

1. For every u € (O,uo],n(O) > =g
~nt

2. For every u € (0,u],W(n)< %-u

3., Ru, <&
0 1/2
u

3 0
4, (l4eg) 7+ < g .
1 _q172

To define V(N) , we first define a set of benchmarks g on 1, 0,1, 2, ...

by:
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m(-1) = -
m(0) = 0
1
—Trh
(1) = BE-1) + et 2, for 1=1, 2, 3,

Next, define sequences 55, ai, E&, ... and J: = (20==0, 21, 12, S

St; increasing,in conjunction with the sequences Ugs Uys Ups ees and

v(0), v(1), v{(2), ... by:

1) my = 0

2) w(0) =0

3) u.=u V() for N=1, 2, 3
N Oq ’ ] ]

4) TE m o+ S(uy 1) > m(u(N-1)+1) , then v(¥) = w(N-1) +1
and NeX ; if my, + 8wy )) < W(V(N-1)-1) , then
w(N) = v(N-1) -1 and Ned ; otherwise v(N) = y(N-1)
and N€L .

5) 1f N¢L, then my=m , + Su(ug ;)

6) If N=g €L, then my=my + 8w ) +W  (u )

N''N-1 Sii-l
'ws (uN-l) *
L,
1
Fix o as above, and any {(pure) T . Proposition 5.1 follows

instantly (by redefining ¢ ) from:

N
Proposition 5.2: 1lim f -% E d.dy > -¢
{9 2

Noew T* “i=]1

and
1 N
Proposition 5.3: 1im inf f ﬁ'z didu > =€ .
N T "i=1

o

We now prove Proposition 5.2, deferring Proposition 5.3 to the next

section.
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Proof of Proposition 5.2:

= = *- * * R
Let T, = {£=(t;, ty, ...) € T":8(t,) 8" but 4(t, ,) € 59}

thus T* = Ty uUT, UTgu ...

L ¥
So lim [ %] ddu
N T* i=]

o l’f
=lim ) [ £} d,du
Moo ksl T, T4s1 T

1 B T i=l

by the Lebesgue Dominated Convergence Theorem (Rovden [1963]),

1 ¥
= 7 ] lim ﬁ'z d.du
k=1 T, Mo Ti=1

= 1 [ P(k)eexp(v (s : 1 €T )du . (5.4)

k=1 T

The following is a special case of Proposition 4.1 of Monash [1981]

(identifying Z: = 4'1(5*) for all i ).
Proposition 5.5: There exists a probability measure ﬁ on T such

that, for all N, for all fg : T' ' +R such that 4(ty ;) € Sk

implies fN(tl, .. Yy =0,

iyl

N-1 "
I (1-P,(1))du(D)
i=1

fmfN(:(N-l))diY(H) =/ _Ey (A1) -
T T
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Now, assume temporarily,

Proposition 5.6: For all N, for all £,

N k-1
L (Pe(k)exp(v (s,) : £ €T )+ T (1-P,(i))) > ¢
k=1 i=1

P, (k)-exp(v_(s) : & E.Tk) if A(tk_l) ¢ S*
Let fk(i(k-l)) =
0 1f () € 5% .

Then £, satisfies the hypothesis of Proposition 5.5. Thus, for all N

N
kZlP*(k%exP (Vo(s, ) : L € T

N
IoJ g (te-1))eu

k=l
N k-1 N
= ] [ £,k-1))¢ T (1-P*(A)d)
k=1 Tw i=1
N k-1 N
= 1 Py(k)eexp(v,(s,) : £ € T,)+ T (1-P*(1))du
ok=1 i=1

T

v

f (-E)d& , by Proposition 5.6,
o0
T

= —¢

¥

as these are the partial sums of equation (5.4), this establishes Propo-

sition 5.1.

S0 we pass to the
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Proof of Proposition 5.6:

Fix £ and N . Recalling Proposition 4.2, we make the simplify-

ing assumption that Cases 1 or 3 hold everywhere (for fullest detail see

Monash [1979]); thus, for k=1, ...., N,

either G(uk—l) = P*(k)'exp(vm(sk) :Tk) = 0

—P*(k)'exp(vm(sk) :Tk).uigl

or e {1-R , 1+R )
5(u,_) k-1 k-1
C (1-e, l+e) . (5.8
k-1
Writing Fk = P, (k) exp(vm(sk) :Tk)-ifl(l-—P*(i)), our task is to bound

N
) F(k) below, We spread out this sum as the integral of a step func-
k=1

tion by defining A{z) on [0O,N} : A(z) = F{[z]+1) , where [z] is

N N
the usual greatest integer function. Thus f A{z)dz = Z Fk .
¢] k=1
First, observe that, for Jz,j ed ,
m ~m ws (uﬂ ) - Ws (uE.)
S e Ly b 3
e =1+ T € (1-e, 14e) ,
jz+1 jz+1
8 (u, ) 8, (u, )
k=t +1 © %y k= 41 & %
b J
= € -n+%
since |WS£ (ul-) - WSR (ug-)] 5_2W(u£.) < T Uy ,
2'+l —n+%
while | :k Sk(uE )| % u, , by definition.
k=g +] 3 3

Thus we can define a function m{z) on [0,N] such that
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1) m is linear on [k, k+1] , for k = 0, 1, ..., N-1 ,

2) m(4.) =m, , for o, ed .
k! 2j h
m{k+l) - m(k)
€ (l-g, 1+e) , for k=0, 1,...,N-1. (5.9
S ()

3)

We now want a finite, increasing sequence J = {0==j0, 395 395 oens N},

containing every integer 0, 1, ., N3 J should be partitioned into

five sets, with the following properties:

1) For j,€ J. , m is constant on [j,, j 1.
1 1 i’ “i+l

2) For jl_é J2 or J3 s m 1s increasing on

[3gs Fi4q]
3) For ji € 14 or J5 , ™ is decreasing on [ji’ j1+1] .
4} There exists a bijection ¢ : 12 > J4 such that if ¢(jh) = ji ’
1} 1<t
20 m(3y) = m3yyy)
3wy, = oGy
5) For any jh’ jl € J3 with h < i, m(jh) < m(ji)
Let J, = U
Iy
6) The sets Ji cover [O,N)

[jh, jh+1) ] i = 1" 2! 3’ 4’ 5 .

Lemma 5.7. There exists such a sequence J .

Proof (See Figure 1):

We will prove this lemma by induction on the number H of maxima
attained by m on the interval [0,N] (this number is < N+1 , and
hence finite).

Clearly it will be enough to construct the sets Jl, T, J5 .

H=1: Then m is either monotonic non-increasing or monotonic

non-decreasing. In the first case, let J5 be the set on which m 1is
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strictly decreasing, and J1 the balance; in the second let J, be the

3

set where m 1is strictly increasing, and J the balance.

1

Inductive step: Assume true for H .

So suppose the maxima occur at Yy and the minima

e YEe o

at (xo), Xis Xps ooy X (xH+l) s, 8¢ that Xi] S¥q <Ey for

1

i=1, ..., B4l ( Xg OT X, may not exist). Apply induction to

[0, xH] (recall that m changes direction only at integral arguments),

and construct a tentative Jl, . J5 . Then, for every point 3} in

[xH, YH+1] , ¢ither there exists i € Jg C [o, xH5 such that m(i) > m(j) ,

or else not. In the first case, put j into J2 and move 1 into Jh 3
in the second, put j 1into J3 . Finally, put [yH+1, ¥} dnto J

It is clear that this is the desired partition.

5 -

1

Qur result is now clear (again redefining ¢ ) from the following

four lemmas:

Lemma 5.10a: f A(z)dz = 0 ,
J
1

Lemma 5.10b: [ A(z)dz > 0 .
J
5

Lemma 5.10c: [ A(z)dz > -¢ .

I3

Lemma 5.10d: | > —6Me .

JZUJ4

Lemma 5.10a is obvious, since A{z) E 0 on Jl by construction.

Similarly, A(z) is increasing on J5 , and so Lemma 5.10b holds,
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Proof of Lemma 5.10c:

[ A(z)dz = ] AC[3, D (5, -3,)
j3 51613 i i+l i
[3]

2 n
> =(+)° ] ur. (w3, ) -m(3))e T (1-PB, (1) ,
c ey [3;1771R 1700 0 *

by (5.8) and (5.9),
2 i [ n . n
> =(L+e) "= (1+e) ] (uyq™) (m(4+1) - oi(2))
2=0

o 1/2
= 4> T (ugah
20

1/2
u

= *(1+€)3 ——“9375
1-q

-1

Proof of 5.10d: Let v : 34 > J2 be 4

f Az = ] A DGy =i+ D A1 G -8
1,03, i{€7, I

13,
2
B DRI ELICRI R o CR NCOP

3489, 1! 1=1
- JEt
- jfgja(l-S) (m(Ji+l)-m(ji))au[ji] iEl(l--P*(i))
20 - . [3)
z j{z}ﬁ((l—e) ¥g,1 7 AW ) @) -m0) TG -P)
(5.11)

by the defining properties of ¢..
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A
= h =-1, 0, 1 (t
Now, u[Y(ji)] q u[ji] , where ) 1, 0, (to see this,

observe that if m(i) f-EN~l-i B(i+l) , w(¥) must =i or i+l ). Thus

(5.11)
[5,]
2  -n 2 n
> ((1=e)"=q (14e)D) - ] upy @Gyy) -m@). 1 2-P, ()
167, 1 1=1
m ) k-1
> =5¢ § M(1+e)“P (k) T (1-P, (1))
k=1 i=1

by the properties of m and the fact that lvm(s*)l 5_& for all s* ¢ 8% |

> —6ﬁ5 .

This completes the proof of Lemma 5.10d, hence of Proposition 5,6,

and hence of Proposition 5.2. [:1

6. THE NON-ABSORBING CASE

We now prove

Proposition 5.3:

1
T T N4=1

oo

N
lim inf [ =7 d.du > - .

Proof:
Lemma 6.1:

Let {eik}k*w converge uniformly.

N
Let E = lim inf &) (lime

)
Moo M=l kow 1K

1 N
Then E = lim inf —-z e
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Proof: Easy.

[

Identifying eik as [ didu ,» we observe that

C
(Tll}...LJTk)

if a,au-] dydu] <MY u(T,) +0 as k » =,
T_ 1 (T, U.. . UTC * k+1  ©

Thus Lemma 6.1 gives

1 ¥ 1 ¥
lim inf £ ) f d.du = lim inf s d;du .
N =1 T Mo 1=l (T UL UT,)C

Let mi(u) = ws (u) - Ws (u) . Then, by Proposition 4.1,
i i-1

d;du > | (8, (u, .)=w, (u, }+n(u, .))du
(CSRVERRRVE #O A . (Tyu.. - uTHS it7i-1 iti-1 i-1

> f c(Gi(ui_l)--wi(ui_l))du--e'u((Tlu...u Tc)c) .
(T{U. uT

0f course, also,

/ ddu > -Mu((T, UL UTOS)
(Ty 0. UTyEC

Thus, setting

max(-N, & (u_.) -« (u_)) if &(t, ) & S*
E (1(k-1)) = kYk-1 k-1 k-1

0 otherwise,

we see that



{ d,du > f £, (£(1-1))du - €

i

c T c
(Tlu...uTi) (Tlu...UTi)

= [ £(#E-1))du - e .
Too

Hence, to establish Propesition 5.3, it is

Encugh to show:

L N
1iminfﬁ_2-

[ £ (tG-1)du > 0.
N  k 0

1 g

Applying Proposition 5.5, for each N ,

k-1

N N
i Z £ (tk-1)dn = [ ] £ 1 (1-P, (1)) .

™ k=1 ™ k=1 i=1

Thus
k-1

N o ke i=1

25

(6.2)

N
R | 1
lin inf ﬁkzl / _fidu = lim dnf I % Zlfk' I (1-P.(i))dp

T

1 N k-1

N Vi1 Kisl

>[ lminfg ] £ T A-PA)dw,
Teo

by Fatou's Lemma (Royden [1963]).

So, if we establish

Lemma 6.3: For all f €T ,

1 N k-1
lim inf < ) £ (£(k-1))« I (1-P, (1)) > 0 ,
N k *
N0 k=1 i=1

weé are domne,



Proof: Suppose we know

N

k
lim inf £ ] € (£(k-1))+ T (1-P2,(1)) > 0 .
Now k=1 -

i=1

Then either there exists N such that k > N implies that
1-P,(k) > %-, in which case we are done immediately, or else

1 N k-1
lim inf <} £ (£(k=1))+ T (1-P,(i))
S *
Noe k=l i=1
NN k-l |
> limidnf|~< ) T {(1-P, (1)) =0 .

Noeo =] i=1

But we can in fact show the stronger

N k
lim inf $ ) £1(£G-1))- T (1-Plabs: £, i-1)) > 0,
Now k=1

26

(6.3")
i=1

where £

Letting Pi =P, (1) , for all i , we have

1§ k ? N
f'« T (1-P,) = £'e 1 (1-P,)
k=l © i=1 1 R aa 1

N-1 § 3
+ ) (%fin(l-PQ-%).

(6.4)
3=1 k=1 i=1
Lemma 6.5: There exists a number QO such that for all %, for all
No
N, forall N, , z f! < 0 dimplies that
0 k —
k=1
N N
fer 1 (1-P, (1)) > -0

0"



(In particular, this conclusion holds when N, = 0.)

%o
Proof: | £

< 0 dmplies that e = uy O uy . Write
k=1 0
N —
z f!' = M - 2W(u1) : assume
'N0+1
N N _
M > O0(else E £f'e 1 (1-—Pi) 3_-2w(u1)) .
k=N_+1 i=N_+1
C 0
j ) "
Then 8 < (3, ~w, ) + 2W(u,)
k=N +1 k- =N+ kk 1

= =M - iﬁ(ul) + iﬁ(ul)

= =M ,
Recalling Proposition 4.2, and noting that
{vm(s)l <M for all s€ S,

(6.6) implies that

hence

N-1 N-1
T O(Q-Pu(k) < T (1-P.(Kk))

k=NO+1 k=N0

+1
T
) Mul
< e 2'13,
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(6.6)



by a well~known inequality (which can be derived immediately from the

observation 1n(l-P) < «P for 0 < P <1 ). Thus

Mun
N N - —-g%—
g1 (1-B) > (HM-2)e 2
k=N0+1 i=N0+1

@® (=

- 2ﬁ(u1)

1
= IN
=R /=

So if we set Q4 = Bﬁuzn , we are done.

Returning now to the proof of (6.3"),we distinguish two cases:

N k

1
lim inf = | £ o 1 (1 ~P,)
Moo Nga1 B ogal i

1 N-1
> lim inf S(-Q, + ) (-04)*P. .) .
Now N0 4o 00 T3H

by (6.4) and Lemma 6.5,
Q
lim infl)- ?? .
Neeo

Case 2: ) P = .

| v

k=2




Case 2a: There exists Ny such that N > N, implies Z f

1 k=1
Then
N k
} £+ T (1-P)
k=1 ¥ i=1 i
N N,
Zf-ncl P+ Z(ifk-n(l PPy
k<1 Ko j=1 k=1 © i=1
N-1 k
* ] ClEeTm =P Py
=N+l k=1 © i=1
Ny
> -QO + jél(-ﬂo)ij+l + positive terms;
hence
L N Kk
lim inf % Y £+ 1 (1-P)
N+ k=l T i=1
> 1im inf SOBStant _ o
= N
N-reo

Case 2b: There exists no such N, . Then for arbitrary e* >0

1

exists N* such that

N*
E (1-P, ) < ¢% and
i=1

b

29

there
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rg K
£+ 01 (1-P,)
k=l & g=1 t

N*  k N K N
= 1§ 01Q-2)+ ] f* 1 (1-P)- T (1-P)

k=1 = i=1 k=Nk+1 © k=N#+1 i=1

N*)f-l Nil
> -0 - Q.°P, . - g% - Q- Q +P
0 3=1 0 "j+1 0 J=Nk41 0 "j+1

by Lemma 6.5 and a slight extension of (6.4),

> =constant - Ne*ﬂo ;

1 N k
hence lm dnf £ ] £+ 0 (1-P) > -foex .
N k=1 i=1
But ¢* was arbitrary:
1 N k
hence lim 1nf-§ Z fk' i (1-Pi) >0,

N-reo k=1 i=1

This completes the proof of equation (6.3'), hence of Lemma 6.3, hence
of Proposition 5.3, hence of Proposition 5.1, hence of Proposition 3.1,

and hence of Theorem I.

Q.E.D. [ ]
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