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STOCHASTIC GAMES I: FOUNDATIONS

by

Curt Alfred Monash

This paper strives to provide a sound underpinning for the theory
of stochastic games. Section 2 is a reworking of the Bewley~Kohlberg
result integrated with Shapley's; the "black magic'" of Tarski's principle
is replaced by the "gray magic" of the Hilbert Nullstellensatz. Section
3 explicates the underlying topology and measure theory; I believe it is
as necessary for Mertens and Neyman's proof of the minmax theorem [8] as
it is for mine [9, 10]. Finally, Section 4 establishes a result on this
sort of structure which may be of some independent interest; in any case,
it is critical for the argument in [10].

This work was strongly influenced by Andrew Gleason. Other acknow-

ledgments may be found in [10].



Fix a stochastic game. 1In this section we study the r-discount
game, following [11] and [3].

Let S5, the state set, A (resp. B ) the choice set each turn
for A (resp. B ), and C, with fixed measurable function gq: [0,1} + C
all be finite sets; let & : SxAXBxC+S and d:SxAxBxC + [-M, M]
give the state and the outcome resulting from choifces (starting in state
8€S5) of a€A, bDEB and random c € C . Without loss of generality,
these sets and functions describe the game completely. Consider now the

stochastic game, with fixed starting state s , and discount rate

r € (0,1) ; that is, let the payoff function be ): di(l-r)i—1 , Wwhere
i=1
h

di the payoff on the :lt step.

As ): di(l-r) i-1. is a continuous payoff function on a pair of
i=}1

compact strategy spaces (see Section 3) the min-max theorem follows immed-
iately (this well;known result follows rapidly from [11]); let the value of the
game, for starting state s, be Vs(r) . Following [3] and [11] we characterize
the values and optimal strategies, by considering the system of equations:

U (r) = val(Exp(d(s,a,b,c)) +(1-r)_J P(s) Uo(x)) . (2.1s)

C EBES

Here P(s) = measure({t € [0,1] : 4(s,a,b,q(t)) = s}) depends upon a ,
b, and s ; val is just the ordinary min-max value of the matrix.
For fixed r , think of the system as one equation in a variable in
cISl . Applying the Contraction Mapping Theorem ([6], p. 229), it
must have a unique solution (Tfs(r)) . Indeed, as the contraction con-

stant ||1-r|| 4is bounded away from 1 on any interval [r*, 1] , and

u
indeed on a set {x+yl € C: r* <x <1, 0 <y < §(r®}, (Us(r)) is



a continuous function of r in (a neighborhood of) (0,1) .

Proposition 2.2: For r € (0,1) , this solution is precisely (Vs(r)) .

Proof: It is clearly enough to show the following, for fixed r € (0,1) :

By playing as his 1th move an optimal strategy in
the game given by the matrix of (2'181—1)’ Mr. A (2.3)
guarantees himself a payoff of at least ﬁs (r) .
0
(2.3) is clearly equivalent to:
i (r) >V (r) for all s,€ S . (2.4)
50 — 8 0

So suppose (2.4) is false. Let @ = max(Vs (r)-—ﬁ; (r)) ; choose s
- S 0 )

so that the max is achieved.

Then

tu(r) = val(Exp(d(s,a,b,c)) + _j (1-r)P(;)'ﬁg(r))
s C 8€ S

= —(1-r)a + val(Exp(d(5,a,b,c)) + _J (1-0)P(®)-((r) +a))
C 8€ES

> ~(l=r)a + val(Exp(d(g,a,b,c)) + ) (1-r)P(s)°V;(r)) .
C S€S

So ﬁg(r) +a > val(Exp(d(g,a,b,c)) + _i (1-r)P(s:a,b,g)-Vg(r)) .
C sES
(2.5)

But since both sides of (2.5) equal Vg(r) , we have a contradiction.

Ul

It is well-known that the value of a matrix is one of a finite list

of rational functions of the coefficients (namely the value of some square



submatrix; see [8], p. 76). Thus the system may be viewed as a set of
polynomial equations—-identifying S as {1,...,k} , where k = || --
gl(xl,..., xk) =0, ..., 3k(x1’°"‘ xk) = 0 , where the coefficients

lie in the algebraically closed field F . Now, if the ideal

k
()5 v+ 8) --that is, { I h

81 ' W€ F,1i=1,...,k} =~--equals the
i=]1 Kk
unit ideal (1), then some linear combination ) hg, =1, h €F
i=1
k k
for i =1, ..., k; this is impossible because z higi((v }) = z h,«0 = 0
1=1 y =1 1

when viewed as functions of r .

By the Hilbert Nullstellenstaz (weak form; see [2], p. 69), then,
the only other possibility is that {(xl, ...,xk) e k. gl(xl, ...,xk)
=0, ..., gk(x s aves xk) = 0} 4is non-empty. On the other hand, we saw
above that the solution is unique in the much larger field of all functions
of r ; hence it is certainly unique in F , and precisely equal to
Gis(r)) . But an algebraic function which maps reals to reals must in-
deed lie in F' = the field of real algebraic functions C F . Finally,
observe that each Vs(r) equals, at each point, one nf a finite list of
algebraic functions; each pair of these can cross each other only finitely
often (for their difference is an algebraic function, which can only have
finitely many zeroes). Thus by the continuity of the Vs(r) , there
exists an interval (0,?) on which the Vs(r) are algebraic, for all
s €S .

F' has a natural ordering: £ > g 1if and only if there exists
an ? such that £ > g on the interval (0,%) . Consider the games
(2.1s5) with the values Vs(r) substituted in place of the Us(r) ; then
these are ordinary two-person zero-sum games, with coefficients in F' ,
and hence have optimal strategies {f(a,s;r)} ; by construction, for

each a and s, f(a,s;r) belongs to F' . For each r , then, we
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More generally, consider an infinite decision tree such that, at
each node, the cholce set is finite. By possibly duplicating certain
branches, we may assume that, without loss of generality, there exist
finite sets Zi » 1i=1, 2, ..., such that Z1 consists simply of the
first node, 22 is the choice set at the first node, 23 is the choice

set at the second node, no matter which node was chosen as the second

node, and so on. Let Q be the space of paths on the tree;

Q=2,%xZ,%... is compact by Tychonoff's theorem ({9], p. 144).

1
Simultaneously fix probability distributions on the choice set
at each node. Then these distributions induce a sequence of functions

Wy ot ZIX...xZi-HR such that

Loug(2ys 2gs s 2y g0 2 =y (s een 2y )
2£2,

for any fixed z,, vens 2y 4 » foramy i-=1, 2, vie .
The following is a special case of the Kolmogorov Extension

Theorem {[5]).

Proposition 3.1: There exists a measure yu on Q such that

p({zl}x{zz}x... x{zi}xzi+lxzi+2x...) = ui(zl, P zi) , for all

Zys eees Zy for all 1 .

Proof: Consider the ring generated by Z = the collection of sets of

the form

{zl}x... X{zi}xzixziﬂx”. .

We clearly have a finitely additive set function p with the desired



properties; to check that u 1s a measure, we need only confirm that
for any descending tower Yl 2Y,2Y;2 ..., Yj € Z for all 3§,

NY, = ¢ dmplies lim p(Y,) =0 ([4], p. 39). But every element of

Z is both open.and closed in the direct product topology; hence the same
is true of every member of the ring. Thus, by the compactness of Q ,
any tower descending to 0 has Yj = ¢ for all j§ sufficiently large;

hence 1lim u(Yj) = 0 trivially. Finally, since I 1is a base for the

j-:-m
direct product topology, the Caratheodory Extension Theorem extends

to the Borel field ([4], p. 54).

[

Denote by <t a function which assigns to every node in N , the
set of nodes, a probability distribution on its choice set; denote the set

of all possible t by M, the space of mixed str&tegies. Then every

1€ M induces a probability measure b, on Q. let Pe M, the space

of pure strategies, be the set of all 7 € M such that, at every node,

7 selects some alternative with probability one. Then there exists a
canonical mapping f : P + Q, sending m € P into the path determined
by 7 . Tt also induces a probability measure BT on P , and we have

eT = urof *

Partition N into two disjoint subsets NB v NC where NB will

be thought of as the set of decision nodes, and NC as the set of chance

nodes. Then we can write M = MB"MC ., Wwhere an element tB(rC) of
MB(MC) is an assignemnt to each node in N (N,) a probability distribu-
tion on its choice set. Similarly P = Pp*Po -

8 then decomposes as a product measure:
(15, 7¢)



0 = § x 0
(TB,TC) g T

c

Assume now that Te is fixed. Letting di ’

a sequence of measurable functions on Q , bounded below, we have

1i=1, 2, ... be

Proposition 3.2:

N
1
inf 1im inf f S1d {de, .
vely, e QM= 1) (7o)

N
= inf lim 4nf [ |{= ) d, |du
N (7 ,m)

nep, M Q=1 t) "pTc

Thus thinking of NB as the nodes controlled by the decision-maker and
NC as those controlled by nature (with nature's "strategy' known in ad-
vance, the decision-maker "might as well” play a pure strategy as a mixed

one. This is true even in a slightly stronger sense:

Corollary 3,3: If there exists a mixed strategy such that the infinum

is achieved, then it is also achieved by a pure strategy.

Proof of Proposition 3.2: For any i , for any =

B ?

/ didu(TB’TC) - fpdi(fu))de(T (m)

0 B’TC)

= (f d,(f(n,, n.))d® (w.))de (w.)
IPB IPC i B C Ty C L3 B

by Fubini's Theorem ([9], p. 233). Thus of course

FIRY prRY
=V 4. ldy = =Yd.ide -do .
qlVi=1 1 (rps1ed Py Pe Nyo1 3 ¢ B



Observing that the support of 6 is a subset of PB on which
B

f(m, nc) z f(ng, ") , for any “CG'PC s We see:

inf lim inf [ | [§ J d lde do_

“ﬂEPB Nereo PB P _Ti=1 e '8

N
= inf lminf [ |7 a fde_ .
P N i T

nePy N P (Mie1 c

But for any fixed Tg »

L N
lim inf [ | d,lde_ ds
Me PP 1==1 Tc s

N
> iaf Limdaf [ 1 dde_
n€Pp M P, c

by Fatou's Lemma ({9], p. 199); of course, the same inequality holds if

we replace the left-hand side by the i1inf . But, since PBC MB , the
T EM
B B

reverse inequality also holds and so

inf 1im inf [ [ zd de_ do_
1€y Me PP ¢ B

N
= nf Umdnf [ |- a,{d6, , and done.
“BEPB Mo B (1= c

1

Proof of Corollary 3.3: For Tg such that the infinum is achieved, the

i=1

1s clearly of measure zero, where I is the infinum, and k an arbitrary

B Nereo

set of m in the support of BT such that 1im inf | [N ): di]da > I+
Tc
c

1
K
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11

Let {21} , Q. {ui] , and u he as in the previous section.

Suppose each Zi has a distinguished subset Z: such that
(le xzi-l"z;" (z;_'_l)cxzz_'_zx". ) =0 ; in other words, once a

*

node in some Z 1

is reached, the path remains in the {Z;} with prob-

ability 1. For a given path z = (zl, Zy, L.2) . let

r - - *
u({zl}x‘-onx{"i'_l}xzixzi+lxunn ) if ¢z*
Wz T x e, _ VX2 X2, % ... ) 21-1 ¥ %31
P, (1;2) = 4
*
L 0 if z, € i1
the probability (conditional on Zys sees Zgq ) of entering Z: . Suppose

we wish to integrate a function over Q which vanishes outside
(ZI)C x (Z;)c X... . Then, intuitively, we can integrate a smaller func-
: tipn, on a neﬁ measure which is bigger on (ZI)C X (Z;)C X.,.. , to achieve
the same result_:. This can be helpful if we wish to estimate the integral
by estimating the (smaller) function directly.

More precisely, we prove this result in terms of truncated sequences;
it is applied in Section 5 of [1Q]. For any z = (.Zl, Zyy eee lJeaqQ,

define the truncations z{(k) = (zl, ceny zk) € Zl X ..% 2 Write also

-
Q(zl, ceer ) = {zl}x{zz}>< x{zk}xzk+1xzk+2x"' € Q. Then

Proposition 4.1: There exists a probability measure :f on Q such that,

for all k , for all fk : le...xzk—r R such that

*
fk : le...xzk_lxzk-v {0},

k
[ £,z00du = [ £ (2(0) T (1-P,(4;2))dn .
Q Q i=1
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Proof: By Proposition 2.1, to specify ﬁ we need only specify

3(Q(zl,..., zi)) s, for all Zis scer 24 for all 1 , while checking
that
I vz z, 1, ) = H(Q(z z, ,)) (4.2)
= 1t By 1° 0t B '
z el
i74
So we define &(Q(zl,..., z,)) inductively on k .
W@ =1. Fix z=(z), ...) €Q
—t—u(Q(z,)) if 2. ¢ z*
. 1-7,(L;2) 1 1% 4
u(Q(zl)) = (4.3)
*
0 if z, € Zl
unless P,(1;z) =1 . 1In that case,
HQ(z,) )
#(Q(z1)) = wlQ(z)) .
More generally, suppose we have specified a(Q(zl, ...,zi_l)) . If this

equals 0, we let ﬁ(Q(zl,..., z; 10 zi)) = 0 ., If not, then also

N(Q(zlg ey zi"l)) * 0 » and we let

a‘(Q(zlv sy zi)) =4

1 a‘(szl, vedy 21-1))
1- P*(i;Z)'H(Q(Zl, ceey zi_l))'U(Q(zl,

*
if zi¢zi

*

0 if z:‘_ezi

unless, again, P,(i;z) « 1 , in which case we let ﬁ(Q(zl, ...,zi))

= u(Q(zy, ..., zi)) .

Now

...,zi))
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) N2, .,z z,)
—_— 1’ ’ 1_1, i

z€2,

n
_ 1 w(Q(zy, ovvs 25 4)) - _
1-P,(i52) uw(Q(zy, ..., z, 1)) ?éz*u QA2Zyy vren 2y g5 24))
b Lo §

But ?1£ZIu(Q(Zl’ cees Zg_1s Z0) = (1= Pd32)0(Q2y5 +nes 2, 1))

by the definition of P,(1;z) , and so (4.2) is checked, and we have
defined a measure % .

It remains to show that

k

[ £ 0)du = [ £ (z(k))+ T (1-P,(i32))d) .
Q* Q¥ -1

i

We start by observing that

| =

Q  zyXeooxzp Qzy*e..xzy) .

k
But on Q(zl X ... xzk) . fk is just a constant,as is iEl(l--P*(i;z)) .
Y
and hence we are asking whether Zf(zl, ...,zk)-u(Q(zl, ...,zk))
k
= If(zy, oo, zk)-inl(l-P*(i;z))'ﬁ‘(q(zl, v+»2)) . This of course follows
if
k MY
w(Q(zg, «enh ) = E (1-P,(1;2)) u(zy, -.vy 7)) (4.4)

i=]1

*
whenever fk(zl’ ...,zk) $# 0 —i.e., whenever zk;ﬁ Zk .
When k =1, (4.4) is immediate by (4.3). So assume proved for

k-1 , and check for k . Then, for any z ¢ Z: , we define u on
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