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INEFFICIENCY OF NASH EQUILIBRIA: I

by

P, Dubey1 and J, D. Rogawski

1. Introduction

The main theme of this paper and its sequel ([5]) is that Nash
equilibria (N.E.) are generally inefficient (in the Pareto semse). Sup-
pose that a game with n players is given by n maps

o, 5 x ,,. X Sn > Yi

and n maps

where Si is the strategy set, Y the outcome space, and ui the utility

i
R .th th
function of the 1 player, Thus the 1 player gets the payoff

u1(¢i(§)) , where s = (sl, ...,sn) and 8, € Sj denotes the strategy

chosen by the jth player. The Si and Yi are taken to be "S-manifolds"
(as defined in Section 2), for instance simplices or manifolds,? and the
maps ¢, and u’  are C2 . The general question is: 'to what extent

are the Nash equilibria of these games Pareto efficient or inefficient?"

The focus of the present paper is the case where all the Yi

1 The first-named author's work was supported by O,N R, Grant NOOO14-77-C-0518
4ssued under Contract suthority NR 047-006,

2Throughout this paper, all manifolds are assumed to be ¢ -manifolds.



coincide with a fixed Y and the ¢i with a fixed ¢ ; this may be
thought of as corresponding to "pure public outcomes.'" We begin its
analysis in Section 2, assuming that Y = Sl X ... X Sn and that ¢ 1is
the identity map. Our main result (Theorem 2.4) states that if the space
of utilities satisfies a certain condition "T.C." given in Section 2, then
generically (for an open demse set of utilities): (a) the set of N.E.
is finite and varies continuously, (b) if an N.E. 1s efficient, then at
least ome player is on a 'vertex" of his strategy set, {(c) if an N.E. is
strong, then at most one player is not om a vertex of his strategy set.
Note that (b) implies generic inefficlency of N.E. if the strategy sets
are vertex-free (e.g. manifolds) or if vertices can a priori be ruled out
of N.E. in the given case. The result applies to the multi-matrix games of Nash.
(Section 3). Here a vertex corresponds to a pure-strategy and, given the
gpecial structure of payoff functions, (c) can be strengthened to: if
an N.E. is strong, every player is using a pure strategy. These results
were obtained when Sj is a simplex in [2) and the present treatment is
based on the same ideas in a more general framework. It is also shown that the
set of efficient strategies is contained in a union of submanifolds of Y

of codimension at least 1 + (N - n) where N is the dimension of Y.

In Section 4, we present a simple example of the results of Section
2. It illustrates all of the general phenomena and the reader who wishes
to understand Theorem 2.4 without reading the proof is encouraged to read
the definitions of Section 2 and then turn directly to Section 4.

In the final section, we discuss what happens for arbitrary ¢ .

When the strategy sets and the outcome space open submanifolds of Euclidean
space, it turns out that a certain inequality relating the number of players,
the dimension of the strategy sets, and the dimension of the outcome space

guarantees that the conclusions of Theorem 2.4 hold for generic ¢ .



In Part IT ([5]) we consider the "pure private outcomes" case, in
which the ¢i are distinct and Yl X se. X Yn is the set of all reallo-

cations of privately-—-owned commodities. The ¢i are subject to certain
constraints in the spirit of [4] (which also includes a survey of recent
articles on such "strategic market games")., The precise statement of in-
efficiency will be made in its place. Here again there is a precursor
([3]), in which a particular example is worked out. But our approach is
significantly different from that of [3]. We show that for fixed ¢i .
the set of strategies S1 X .. % Sn can be partitioned into E and I .
Every point in E has the property that, for any choice of utilities, if
it is an N.E. then it is perforce efficient. I 1is characterized by exactly
the same property with "efficient" replaced by "inefficient." Therefore
we call them "ultra-optimal” and "ultra-inoptimal” points. The analysis
turns on the sets E , I and on showing that the set of N.E. of the
game u = (ul, ...,un) generically has a transversal intersection with

E .

2. The Main Theorem

The strategy sets which occur for many classes of games are not
manifolds. A standard example is the simplex in R® . To take this into
account, we define and prove our theorems for a class of topological spaces
which we call S-manifolds. It seems that most strategy sets are S-manifolds.
Since the proofs for S-manifolds will be reduced to the case of manifolds,
we first define our set-up for manifolds and introduce S-manifolds towards
the end.

We consider games of the following type. There are n players

and the jth player has a strategy set Sj which is a manifold of



dimension r(j) . Let k(j) = 2 r(3) . (Later Sj will be taken to
1<}

be an S-manifold.) Let X = S, X «.. xS ; it is a manifold of dimen-
sion N = k(n) . Let cz(x) be the Banach space of functions u on
X all of whose partial derivatives of order 0, 1 and 2 exist and are con-

tinuous and whose norm ||u||2 , given by

llul}? = sup|Dutx)|
xEX
D

where Du ranges over all partial derivatives of u of order < 2, is
finite.

let U be a Banach submanifold of CZ(X) . Thus U 1is a class
of utility functions and a game consists of an element u = (ul, ce, U EUt
that is, a choice of utility function for each player. A choice of stra-
tegies s = (sl, ...,sn) €X 4{s algso an outcome and the jth player's

payoff is given by uj(E) .

Equilibria: Assume u = (ul, ...,un) € U" is fixed. Let T be a non-

empty subset of {1, 2, ...,n} and for e € 1T Sy » let (s|e) denote

i€T
the element of X obtalned by replacing si by ei for 1 €T.

1) A point s € X is called T-efficient if there is no point

e € 1 Si such that:
1€T

ui(;|E) > ul(3) forall 1€T
uj(EWE) > uj(E) for some j €T

(the coalition of plavers belonging to T cannot Pareto-improve itself

if the other players remain fixed).



2) A point s € X is a Nash equilibrium if it is T-efficient for

all subsets T consisting of one element.

3) A point s € X is efficient (or Pareto optimal) if it is T-

efficient for T = {1, 2, ...,n} .

4) A point s € X is a strong Nash equilibrium if it is T-efficilent

for all subsets Tec {1, ...,n} .
5) Let N(u) , E(u) , S(u) denote the sets of Nash, efficient,
and strong Nash points in X respectively (with respect to the utilities

e R

The Derivative Map: We are going to define a map which will be used in

the investigation of Nash and efficient points of a game. Lemma 2.2 gives
the precise comnnection,

With notation as before, let T* denote the cotangent bundle of

X and T*(x) the fiber of T* above x € X . Thus T*(x) is the co-
tangent space at x (the dual of the tangent space) and if we choose local
1> +++s¥g) around x , then T*(x) can be identiffe!
with 'RN . Each function u € CZ(X) defines a section Vu of T*

cocrdinates {x

Vu is the gradient of u and in local coordinates (xl, ...,xN) near a
point x € X, Vu = (Bu/axl, ...,au/BxN) .
Let T: be the nth power of T* : in other words, T: is the

vector bundle over X whose fiber at x € X is T*(x) % ... % T*(x)

n~times
and in local coordinates we may view an element of this fiber as a matrix
with n rows and K columns.
Given u = (ul, ...,un) € U" , we obtain a section D(u) of T:

whose value at x € X we denote by D(u,x) . In local coordinates

(xl, ...,xN) near x ,



" T
ul aul
3x1 BxN
D(u,x) = : : € T:(x)
au“ du™
_axl 3xN ,l

The map D(u,x) from "€ X to T: is called the derivative map.

We will always choose local coordinates (xl, ...,xN) which are

compatible with the product structure X = S1 X .. X Sn :+ that is, we

always choose (xl, ...,xN) so that (xl, ""xk(l)) are local coordinates

for S1 . (xk(l)+l’ ""xk(Z)) are local coordinates for 52 s €tc.
Let Sa be a submanifold of Sj for =1, ..., n and put
n
X' =8 x,,, x8 ; let d(j) = dim(S!) , a = ) d(j) , and let T'*
1 n 3 j=1

(resp. Té* ) be the cotangent bundle of X' (resp. product of T'* with
itself n times). Every cotangent vector v € T*(x) defines, by restric-
tion, a cotangent vector in T'*(x) , for x € X' . To see this, note
that the tangent space T'(x) to x in X' is a subspace of the tangent
space T(x) to x in X .and hence elements of the dual space of T(x)
(namely, cotangent vectors) restrict to give elements of the dual space
of T'(x) . We shall assume that d(j) > 0 for all j

We define two subsets E" and N" of T;* as follows. Let
(xl, ...,xa) be local coordinates for X' around a point x € X' , chosen
so that (xl, ""xd(l)) are local coordinates for Si .

1
(xd(l)+1, ""xd(1)+d(2)) are local coordinates for S; , etc. With
respect to these coordinates, an element of T;*(x) is represented as

a matrix with n rows and a columns. Define:

E" = {(x,V) € T;* : V has linearly dependent rows} .



(Here (x,V) € Té* means that V d1is an element of the fiber T;* Tepre-

sented as a matrix in local coordinates.) Define:

1-1 i
N' = {(x,V) €T*: V. =0 for 1+ Jd(2) <j< ]d1)}
J 2=1 2=1

where Vij denotes the (i,j)-entry of V . In other words, (x,V) € N"

if vy has the form:

s

- ay
d(1) d(2) d(n)
Define E' (resp. N' ) to be the gset of elements (x,V) € T: such that:
1y x€ex
2) the restriction of V to T;*(x) lies in E" (resp. N" ).
It is obvious that N" is a closed subset of T;* (which is itself a
manifeld). It is also obvious that E" is closed in T;* and this
can be checked as follows. Because T;* is a locally trivial
bundle, it will suffice to show that if {Am} is a sequence of nxa

matrices with linearly dependent rows such that 1lim A= A, then A
mres

has linearly dependent rows. If Am has linearly dependent rows, there

is a non-zero vector v € R" such that vam =0 and, multiplying Vo

by a scalar if mecessary, we may assume that llvmu =1 . Since the unit
sphere in R is compact, there is a subsequence of the v which converges
to a vector v € R" such that ||v]] =1 and it is clear that vA =0 .

Hence A has dependent rows.



In the next lemma, we somewhat pedantically prove some statements
that will be needed to apply the transversal density theorem and ask the

reader for whom these statements are obvious to bear with us.

Lemma 2.1: (i)} N' 1is a submanifold of T: of codimension N .

(ii) E' 1is a finite union of submanifolds of T: of codimension greater
than or equal to N-n+l .

(1ii) E' N N' is a finite union of submanifolds of T' of codimension

greater than or equal to N+1+ (a-n) .

Proof: Because T; is a locally trivial bundle, every point x € X has
an open neighborhood V € X and local coordinates (xl, ...,xN) on vy
such that the restriction of T: to V  is isomorphic to V x Mat{n,N)
where Mat(n,N) denotes the set of matrices with n rows, N columns,
and real entries. Furthermore, we may choose the coordinates (xl, ...,xN)
so that (xk(i-1)+1’ ""xk(i-1)+d(i)) are local coordinates for Si .
It is clear that: 1) to prove that N' , E', and E' N N' are unions
of submaﬂifolds, it suffices to show that N'" , E" , and N" N E" are;
and 2) dim(N') = dim(N") + (N-a)n , dim(E') = dim(E") + (N-a)n , and
dim(N' N E') = dim(N" N E")}) + (N-a)n where dim(E') and dim(E' N N")
denotes the maximum dimension of the submanifolds whose union is E' |
E' N N' , etc. Therefore we may as well assume that X = X' and that
a=N. Then (i) is obvious.

To prove (ii), it will suffice, in view of the local triviality of
Tg y to show that the set A of n x N matrices with linearly dependent
rows is a finite union of submanifolds of dimension < (n-1)(N+l) . Let
T be a proper subset of {1, 2, ...,n} and let A_ be the subset of

T
Mat{n,N) of matrices A such that if Aj denotes the jth row of A,



then the vectors {Aj : j €T} are linearly independent and each Ak
for k € T 1s dependent on the set {Aj : j €T} . We show that b, 1is

a submanifold of Mat(n,N} and compute its dimension. Since 4 = U4, ,

this will show that 4 is a finite union of submanifold s,
We may assume that T = {1, .,.,t} without loss of generality.
Let St be the set of elements in Mat(t,N} with linearly dependent rows,

We have shown that St is a proper closed subset and hence the set

(Mat(t,N) -st) x Mat(n-t, t)

is a manifold of dimension tN + {(n-t)t . We construct an embedding ¢

from (Mat(t,N)-St) x Mat(n-t, t) onto 4, as follows: for

T
B € (Mat(t,N)-—St) with rows By, «v.y B and C = (Cij) € Mat(n-t, t) ,
let ¢(B,C) be the matrix whose ith row is Bi for 1 <i <t and
H t
whose it row is ) Ciij for t <1 <n . This shows that 4, is
5=1

a manifold of dimension tN + (n-t)t and it is easy to see that the largest
of these dimensions (1 < t < n-1) is the case t =n-1, i.e., the largest
dimension is (N+l1)(n-1), and it follows that E' 1is a finite union of
submanifolds of dimension less than or equal to N + (N+1)(n-1) .

It remains to prove (iii). Again by the local triviality of T:
and the above remarks, it is enough to show that the set & of n x N

matrices of the form

’

— -

*
*

N ——— ———— S

r{l) r(2) r(n)

-

-1
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with linearly independent rows is a finite union of submanifolds of dimen-
sion < N(n-1) - (N-n+l) . Let T be a proper subset of {1, +s.,n} and

let QT be the subset of § of matrices A with rows Aj such that

{Aj : j €T} is a linearly independent set of matrices. We show that
QT is a submanifold of Mat(n,N) and compute its dimension; we may assume
that T= {1, ..., t} with t <n . Let Q% be the set of t-tuples of

row vectors of length N (Al, ""At) such that the Aj are linearly

independent and Aj forms the jth row of some matrix in § , i.e.,

Aj has zeroes in the appropriate places. As before, Q% is a manifold.

Consider the map:

w:n%xrmum¢,t)+Rﬂ°ﬂ)x...xnﬂ“)

defined as follows. Let (A "’At) X (Cij) € 9% x Mat(n-t, t) and

1*

t
consider the row vectors z CijAj for 1 =1, ..., n—t . Let vy be
=1

the vector consisting of the k(t+i-1) + 1 to k(t+i) entries of the

t
vector jE CijAj 3 1f vy

t
is zero, then the vector ) CijAj qualifies

as the (i+t)th row of a matrix in & . Define w((Al, ""At) x(Cij))

= (vl, Vo, ""vn-t) . 0On the other hand, we have a map from w_l((O, easy 0))

] =1
to QT : send (Al’ ...,At) x (Cij) €y (0, ..., ®)) to the matrix

whose first t rows are Al’ veey At and whose ith Trow for t <i<n

t

is )¢ A, . If we show that ¢ 1((0, ...,0)) is a manifold, it
4=1 (1-t)373
will follow that QT is, and to do this, we need only check that ¢ 1is

transverse to (0, ...,0) . We omit the straightforward verification.

It also follows that QT is a manifold and since

the codimension of w_l(D, vy 0) in Q% ¥ Mat(n-t, t) is the sawme as that
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of (0, ....0) in RE(ED) o gk®@

dim 9 = (t-1)N + (n-t)t = -t2 + Bn)t - N .

Here 1 <t <n-1 and the maximum value of this dimension occurs for
t = n-1 and we get (n-2)N + (n-1) = N(n-1) - (N-ntl) . This proves (iii).

The transversal density theorem will be applied to the map

D: t" xx - T*
n

(u,x) b b(u,x)

We recall the definition of transversality. Let ¢ : X + Y be a differ-
entiable map between two manifolds X and Y and let W<Y be a sub-
manifold. Let TXX (resp. TXY . wa ) be the tangent space to X
in X (resp. Y, W) for x €X (resp. Y, W) . Then ¢ Iis said
to be transverse to W at a point x € X if either ¢(x) € W or
¢(x) € W and T¢(X)Y = T¢(X)w + d¢(TxY) . This is written as ¢¢XW .
If ¢ is transverse to W for all x € X, we say that ¢ is trans-

1

verse to W and write ¢fW . If ¢fW , then ¢ (W) dis a submanifold

of X ([ 1.

Lemma 2.2: Let X' = Si X L. X S; as before. Suppose that the jth
player is constrained to pick his strategy from 33 and let

u = (ul, ce.,ut) € U® be a choice of utilities. In other words, utilities
come from U but the strategy sets are reduced to S& . Then

(1) If =x € X' is a Nash equilibrium for this game, then D{(u,x) € N' .
(ii) If x € X' is an efficient point for this game, then D(u,x) € E'
(this condition was used by Smale [6]).

(iii) 1f x €X' and x € N(u) , the x is a Nash equilibrium for this

restricted game.



12

Proof: (1) If x € X' 1is a Naéh equilibrium, it follows that for all
i, the point x 1is a local maximum for ui with respect to the Si—
variables, hence the corresponding partial derivatives must vanish.

(1i) If the projection of the rows of D(u,x) onto T;*(x) are
linearly independent, then there is a vector v € R? such that D'(u,x)v
has positive entries, where D'(u,x) denotes the projection of D(u,x)
onto T;*(x) . Then v defines a direction in X' along
which each ui is increasing. Hence =x 1s not an

efficient point for this game. (iii) 1s clear.

We will say that the space U E;CZ(X) satisfies condition T.C.

(transversality condition) if for all u € U, x€ X, and v € T*(x) ,
there exists a path E(t) in U such that £(0) = u and

é%{n(g(t), x})) t=0 =V - Thus condition T.C. implies that the map

D: U x X»>T*
n

is transverse to all submanifelds of T: . It also implies that the map

D' : U x X' - TA* for X' as before is transverse to all submanifolds

of T;* .

Now we define S-manifolds. Let M be an n-dimensional manifeld.
If X 41is a subset of M, the interior x° of X 1is the set of points
x € X such that there exists an open neighborhood of x in M contained
in X . A subset X of M is called an S~manifold if

(1) X = X (where X = the closure of X° in M)

(11) X - X° 1is a union S Xj where Xj is a submanifold of M

and X 1s a submani;ild with boundary.

The Xj (J =0, 1, ...,8) are called components of X .
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If X is a closed subset of a manifold M, we define CZ(X} to
be the set of restrictions to X of C2-functions f with bounded norm
on some open neighborhood of X in M and identify two functions on an

open neilghborhood of X 1f they agree on X . Set

2
1£]]° = sup|DE(x) |
x€X
D
where Df ranges over all partial derivatives of f of order < 2 .
Using the Whitney extension theorem ([ 1}) and an argument involving par-

titions of unity, we can choose one open neighborhood k of X in M

such that every f € Cz(X) is the restriction to X of an element of

Cz(k) . Let U be a submanifeold of Cz(k) with the norm || ”2 defined
above and let || Hg be the usual C2“norm on Cz(ﬁ) . It is clear that
]]fH2 j,|Ff”S for all f € Cz(i) and so a dense subset of Cz(ﬁ) in

the norm || Hg is, a fortiori, dense under the norm [| ”2 .
Now assume that the strategy sets Sj are S-manifolds (defined

as subsets of a manifold Mj of dimension r(j) ) with open neighborhoods

j = Mj as in the previous paragraph. Let X = S1 X .., % Sn , and let
n, n, 2 k 2 .
=07 JRRRY | Sn , 700 the space of C -functions under the norm

i,
]2 , as in the previous paragraph. Let SjJ be a component of S,

i i
_ < 1 n = (4 .
and set X = §;7 X e.. X Sn where o (11, ...,in) ;: let A be the

i,
set of such &k for which dim(SjJ) >0 for all j . Let N; and E&
be the subsets of %ﬁ associated to Xa s Where %; is the nth—power
of the cotangent bundle of X {these sets are defined as in Lemma 1 and

the paragraph preceding it).
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Theorem 2.3: Assume that U satisfies T.C. with respect to the map
B: U x ) *: . Then there is a dense set UO cu® (with respect to
the norm || I ) such that for all u€ Uy :

(1) DWW N (ENN) = ¢ for all o €A

(ii) If X 1is compact, then a U0 satisfying (i) may be chosen

open and dense and such that for all u € U D(wW) (X) N N

0 :
is finite for all a and codim(D( E'>_1(§;) = 1+N - n.

Here D(u)(X) denotes the image of X under the map D(u) = D(u,x) .

Proof: We apply the transversal density theorem to the derivative map

f I Sz ae* .

D: U x X~ n " Since U satisfies T.C., this theorem implies that
there is a dense set UO c u" such that for all u = (ul, ...,un) €,
the map

D : -+
{u) X Tn

is transverse to N& for o € A and each of the finite number of submani-
folds whose union is N; n E& . From Lemma 2.1 we have

(a) dim(X) = codim(N}) for o € A

(b) dim(X) < codim(N;f1E&) for o« €A
where codim(N&fTE&) denotes the smallest of the codimensions of the sub-
manifolds whose union is N& n E& . Part (1) follows immediately from (b)
and (a) implies that the Nash set N(u) , which is contained in

D(G)_l( U N;) is a zero-dimensional submanifold of X . In particular,

a€A i
if ¥ ie compact, D(E)-l( ¥ N;) is a finite set.
GEA i
Suppose that X 1is compact., Since each gsj is a wmanifold with
1
boundary, we can, by considering the boundary components of S separately,

3

choose U, so that D(u) (X) N (ﬁ;(1i;) =¢ for all a € A and u € Uy -
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Here ﬁ; and E& denote the closures of N& and Eé . Furthermore,
the implicit function theorem and the transversality property of D(u)

for uc U, show that for u' sufficiently close to u , the set

D(G‘)-l( u N&) is also finite and varies continuously for u' near u .
€A

This also shows that for u' close to u, D{E")X) N (ﬁ;f?f;) = ¢ for
hence we may assume U_ open. «
all a €A A Furthermore, E: is closed in '[:l for all «€A  and so, by

considering the restriction of D{ w ) to the X, , the transversal demsity

theorem shows that there is an open set UlC: " such that D{( w ) 1is transverse

to E_" for all &€ A. Replacing UO by Uoﬂ Ul proves (ii).

We refermulate Theorem 2.3 in game-theoretic language., Let Sj be

the strategy set of the jth player; since it is an S-manifold,

m,

J .
5. = S0 U (USY) where the S' are manifolds. A point x € S, will
il i=1 3 3 i

be called a vertex if it is a zero-dimensional component of S, under a

3

minimal such decomposition of Sj , l.e., if x = S; for some i and m

h|

is minimal in the above decomposition.

Theorem 2.4: Assume that U satisfies T.C. and that X is compact.

Then there is an open dense set U, © U such that for all u € U, *

0
1) N(u) 1is a finite set which varies continuously for u € Ug -
2) If x = (Sl’ ...,sn) € X and x € N(u) N E(u) , then some
Sj is a ﬁertex. In particular, if the Sj have no vertices,
N(@) N E() = ¢ .
3) If x € S(u) N E(u) , then at most one Sj is not a vertex.
4) E(u) 1is a finite union of "submanifolds" of X of codimension

at least 1 + (N-n) . (Here "submanifold" of X means the

intersection of X with a submanifold of & )
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Proof: This is . ggsentially a restatement of Theorem 3 together with
some remarks made in the proof. Let M < {1, ...,n} be a subset and look

at the finite number of "subgames' among the players in M obtained by
placing all other players on one of their vertices. If card(M) 7 1 our
argument shows that there is an open dense set UM such that if u € UM .
and x 1is a Nash Equilibrium of the subgame u , then it is not M-efficient

unless one of the players in M 1is also at a vertex. Take U, to be

0
the intersection of all such UM .

Finally, we remark that condition T.C, is satisfied 1f U = C2(X)
or if U 1is any linear subspace of Cz(x) such that for all x € X,
there exiét N functions in U which provide local coordinates near x .
For example, if X EZR“ , then a linear subspace U satisfies T.C. if
it contains the linear functions on R™ . Furthermore, there are many
well-known theorems which guarantee the existence of Nash equilibria for

various open classes of functions, e.g. functions satisfying convexity

conditions, etc.

3. Multi-matrix Games

These were introduced by Nash in [5]. Each player 1 has a finite

set K, of "pure strategies" which we number for convenience as follows:

~
1

= {1, ..., k(1)}

~
n

{k(i~-1) +1, ..., k(d)}

b
n

{k(n-1) +1, ..., k(n)} .

Each Ki is now enlarged to a set X, of "mixed strategies,'" which are
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simply probability distributions on Ki :

X, =x€ERT: § x =1, x >0}.

By R~ we mean the Euclidean space of dimension card(Ki) whose axes are

indexed by the elements of Ki . We identify Ki with the set of vertices

K,
i
of X, by associating j € K, with the point (0, ...,0, 1, O, e, ER T
i 1 [ e
i
Let K = Kl X L. X Kn . A multi-matrix game is specified by payoffs:

al € RK, cees a € BK . For any k € K, ai is the payoff to 1 if the

1
n-tuple of pure strategies given by k are used. Given a~, ..., a®

we now define the payoffs 1 12 it q Oon = Xl X .. X Xn as the

a a
K,
expectation of the pure strategy payoffs. Let Zi ={x€eER': %—< X,
jex
K
< L%, ﬂle < 2} i.e., Z., is an open set inm R 1 uhich contains the

simplex Xi . Pur 2 =7Z_ %... xzn . For a € BK , -define Ha : Z >R by

1.(x) = }xa
KeR K K

where X denotes xj(l) s et xj(n) for k= (3(1)y ..., 3(n)) . Then

if a’ € Rx is the payoff of i in the pure-strategy game, I restricted
a

to X gives his payoff in its "mixed extension."

To apply Theorem 1 to this context it will suffice to check that

D

{Ha s act RK} satisfies the T.C. condition for any z € Z . Put

L Kl U ... U K = {1, ..., k(n)} . For any j €L , let

..-j=
K Ky xwee K3 Ky X e XK where 1 1is such that j € K, .

(Since L is a disjoint union, this is well-defined.) Also for any

q = (U1), .ny R(1-1), 2(i*1), ..., 2(m)) dn K3 , denote the element
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(£(1), +vvy 2(271),1,2(141), ooey 2(R)) of K by (g,3) . With this nota-

tion, we see that ?_n_-g z2) = 2 a 2=2 ..B2 . .2
)"J() 2 J 1 04,)) where e T R TS I T R

for %= (l(l),..., 2(14), !.(irl),..., l(ﬂ)} Take any VY CRL_FOI each

J‘: t,.. -;h("‘) there is a 10)6 K™ such that .§$q)$ 0 because

) 1
z_ Z; F 0 for ;= ly....,n , Now consider the path 1Ta‘t lt where:
JEKt "

a, + (tvj/zq(j)) if k= (q(3), 1)

ak otherwise

Then g%{(DH t)(z)) = v , This shows that U satisfies T.C. at any
a

z € 2Z .

n
By Theorem 1 there is an open dense set Vl of CRK) such that

if (al, ...,an} = 3 € V1 then (a) the N.E. of Ha = (1 1° eeay Il n) are
a

a
finite in number, (b) if an N.E. of Ha is efficient, there is at least

one player who uses a pure strategy, (c) if an N.E. of I, is strong, then

at most one player's strategy is possibly not pure. To sharpen (c), let

V2 be the subset of U" given by

1 n 4 %!
V2 = {(a”, «..,a") EU : ay + a

o if either R # &' or k #k'} .

v, is open and dense in u" . Moreover if x = (xl, ...,xn) € X is
an N.E. of Ha for a € vy s and if all but one of the players use pure
strategies at this N.E., then clearly so does the remaining player. Let

vV=Vv. NV

1 9 * We have proved

Theorem 3.1: There is an open dense set V of t" such that, if a €V,
(a) the N.E. of @ are finite in number,

(b) 4if an N.E, of n, is efficient, then at least one player uses a pure

strategy,

(c) 4if an N.E. of Ha is strong, then each player uses a pure strategy.
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4. An Example

We present the following example because it is particularly simple
and illustrates with maximum clarity all of the features of the general
case,

Consider a game with two players where the strategy set of each
player is the interval [0,1] . The payoff functions are then functions
on the square [0,1] x [0,1] , which we call X ; a point in X is de-
noted by (xl, xz)' where xj is the jth player's strategy choice.

For each point P = (a,b) € R? s let u, be the function

P
UP(x,y) = (x—a)2 + (}7--b)2

i.e., uP(x,y) is the sguare of the distance from (x%,y) to P . Let
U be the set {uP : P E F?} of a1l such functions. Then U 1s a sub-
manifold of CZCRZ) and is isomorphic as a manifold to ‘R2 itself,

We want to examine the Nash and efficient sets of the games where
each player's payoff function is selected from U . A game of this type
is determined by assigning a point P = (a,b) to player 1 and a point
Q = (¢,d) to player 2, so that their payoff functions are respectively
up and uQ . We denote this game to be (F,Q)

To find the Nash equilibria of the game (P,Q) , note that player
1's best response to any strategy éhoice of player 2 is the point in
[0,1] closest to a ; thus his best response is a i1f a € [0,1] ,

0is a< 0, andl if a > 1 . Similarly player 2's best response to

any strategy choice of player 1 is the point in [0,1] closest to 4 .
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*Q=(c,d)
R=(a,l)
(0,1) ~ In the figure on the left, the point
R 1is the Nash equilibrium of the
*P = (a,b) game (P,Q) . In particular, we
see that every game (P,Q) has a
(0,0) (1,0) unique Nash equilibrium.

To describe the efficient set of the game (P,Q) , denoted

by E(P,Q) , we need a definition. Given any closed convex set C EEB?

and a point M €'R2 » there is a unique closest point to M in C .

We denote this point by rC(M) and call it the retraction of M dinto C .
Thus

distance(M, r (M)} = min(distance(M,P))
¢ PEC

and rC defines a continuous map of R? onto C such that rC(P) =P

if Pe€C.

Lemma 4.1: For all P, Q € R? s E(P,Q) 1is equal to the retraction

ifito X of the line segment joining P and Q . 1In other words, if

L(P,Q) is the line segment joining P and Q , then E(P,Q) = rX(L(P,Q))

Proof: We leave this as a simple exercise for the reader. Note that for
all x € X, a point y is a Pareto improvement on x 1if y lies on

the perpendicular drawn from x to the line through P and Q .
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Examples: (i) if P and Q both lie in X, then E(P,Q) 1is L(P,Q)

(0,1)

(0,0} (1,0

(ii) if P and Q lie outside of X , then E(P,Q) may look like

the following (the bold line is E(P,Q) ):

P

(031)1 4 (0,1)

R® Q

3 |
0,00

(1,00  (0,0) (1,0)

In the examples (i) and (ii), the point R is the unique Nash equilibrium

and in both cases it is inefficient,

Lemma 4.2: Let R be the Nash equilibrium of the game (P,Q) where
P=(a,b) and Q= (c,d} . Then
(a) 1f R does not lie on the boundary of X (that is, if neither player
is on a vertex of his strategy set at R ), then R i1s efficient
if and only if a = ¢ and/or b =d . The Nash equilibria of nearby

games are generically inefficient,
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In the figure below, consider the three games (P,Q) , (P', Q") ,
and (P", Q") , with Nash equilibria R, R' , and R" respectively.
In these three cases, the Nash equilibrium is efficient and the Nash

equilibria of all nearby games remain efficient. 1In all three cases,

at least one player is at a vertex and in the game (P', Q'} , the

efficient set is reduced to a point.

o
O
o

-~
S
.
0

———
-
.

(0,1)]

|

R'

(0,0)

Proof: This is easy to check using Lemma 4.1.

This example illustrates the following main points of the general

theorem:

(1)
(2)

(3)

(4)

Nash equilibria are finite in number and vary continuously in u.

The efficient set is ceptained in a union of submanifolds of codimension

at least 1+ N - n (equal to 1 in the above example}.

Efficient Nash equilibria at which no player is on a vertex of his
strategy set are not robust.

Robust examples of efficient Nash equilibria where at least one player
is on a vertex of his strategy set exist.

Note that the submanifold of functions U satisfies condition T.C., as
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is easily checked, and hence the above results are consequences of Theorem
2.4, Also, the same game can be played in n-dimensions with n players

with similar results.

5. Varying Outcome Functions

Suppose now that utilities Uys «esp u, are defined on an outcome
space Y and that an outcome function ¢ : X = S1 X oL 0% Sn + Y is glven,
so that the jth player's payoff on a choice s = (sl, ...,sn) € X of
strategies is uj(¢(§)) - In this section, we consider the question "tq
what extent do the conclusions of Theorem 2.4 remain true in this setting?"
and try to give a qualitative answer. No attempt is made at covering 5
"general case' and we therefore make some technical assumptions to simplify
matters.

Assume that each strategy set Sj is an open set in IRr(j) s ¥
is an open subset of Bn » and that the closures of the Sj and Y are

compact. Let U be the space of Cz-functions defined on some fixed neigh-

borhood ¥ of Y . We also fix a neighborhood ¥ of X in RN s Where

n
N = Z r(j) , and let Q be the set of smooth maps from X to Y ob-
j=1

tained by restricting to X smooth maps from ¥ to Y .

The choice of a map ¢ € & and utilities u = (ul, e, uM et
defines a game. Let N¢(u) and E¢(u) the subsets of X of Nash and

efficient points respectively.
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Theorem 5.1: Assume that 24n4M £ N and suppose that the following inequality

holds:

) n-1 <%(N+M-\/(N-M)2+4N,

Then there is an open dense set no € Q such that: for all ¢ € 90 ,

there is an open dense set U, € U such that

¢

(i) N¢(G) is finite for all u € u¢ .

(i1) E (@ NN @ =g for all W€ T

.

¢

Remarks: (i) 1Inequality (%) is satisfied if n-1< M - VN .
(ii) If M =N, inequality (%) becomesn-1< N - VN . For example, if

M =N > 2 and each strategy set has dimension at least two, it is satisfied.

Proof: For fixed ¢ € 7 , consider the map

D, : " x X » Mat(n,N)

i

((ul,...,un), X} b —g-g-— {an nxN matrix)

h|

where the Sj are Cartesian coordinates on BF . Let E' be the subset
of Mat(n,N) of matrices with dependent rows and let N' ©be the subset
of matrices of the form

r(l) r(2) r{n)

—
r— —

=z |
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As in Section 2, if a point x € X 1lies in N¢(u) (resp. E¢(u) ) then
D(u,x) € N' (resp. E' ). By Lemma 2.1, codim(N') = N and
codim(E' NN') > N ,

For x€ X, let d¢x be the derivative of ¢ at x , 1i.e.,
3¢

i
d¢x = EJT(X) where ¢((X1, ey xN)) = (¢1(x1’ ey XN)’ seey ¢M(xl’ e XN))
For u € " and vyvE€EY, let Aa(y) = %3— (an n x M matrix)}. By

the chain rule:

‘D¢(u,X) = A;(da(x))'ddvx .

Conclusions (i) and (ii) of Theorem 5.1 hold if the map D¢(G;x) is trans-
verse to N' and E' N N' , as in Section 2. For fixed ¢ , the open

dense set U¢ c U satisfying (1) and (ii) exists if the map

D. : U" x X » Mat(n,N)

is transverse. The first observation is that D¢ is transverse if the

rank of d¢x is greater than or equal to n for all x € X . To prove
this, let B € Mat(n,N) . It suffices to show that for all x € X and

uweut » there is a path E; € U" such that Gb = u and:

d
el 0600 g =B .

t=0

It is clear that for all C € Mat(n,M) , there is a path E; such that
= C . Hence we must see that if

- = d
u, = u and —=—(A— ($(x)))
0 dt u t=0

rank(d¢x) >n , then there exists a C such that C-ddbx =B . This is
obvious if we consider B, €, and d¢x as linear maps and the equality

C-d¢x = B as the commutativity of the diagram
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If the dimension of the image of d¢x is at lgast n, then C can be
chosen so that C-dqbx =B

To prove the theorem, it remains only to find conditions on M,
N and n which guarantee the existence of an open dense set Q. < 0

0
such that for all 4 € 90 s rank(d¢x) >n for all x € X .

Lemma 5.2: Let f(a) = -a2 + (N+M)a - N(M-1) . For all integers

0 <a<M, there is an open dense set 0° € @ such that for all ¢$€Q ,

{x € X: rank(d¢x) = a} 1s a finite union of submanifolds of X of dimen-
sion £f(a) (if f(a) < 0, this is taken to mean that {x € X : rank(d¢x) = a}

is empty).

Before proving Lemma 5.2, we show that it implies Theorem 5.1 . Let

QO = n 9% . We need only check that £(a) < 0 for & < n-1 1if the inequality (*)
a<n-1

of Theorem 5.1 is satisfied. Note that f(a) is increasing on the inter-

val [O,M] and the smallest zero of f(a) 1lies in that interval. 1In

fact, the smallest zero is equal to %((N+M) - \/(N-—M)2 + 4N’ and f{n-1)

is therefore negative if n satisfies (%).

Lemma 5.2 is also a consequence of the transversal density theorem.

Consider the map

A: 9 x X -+ Mat(M,N)

(4,x) b de_
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We have seen, in the proof of lLemma 2.1, that the set Ra of a Mx N
matrices of rank a (0 <a <M) is a finite union of closed submanifolds

of Mat{(M,N) of dimension aN + (M-a)a . Furthermore, A is obviously

transverse and so there is an open dense set o? e i such that A(¢,x)

is transverse to Ra for all ¢ € o? (openneés follows since the defini-

tion of § implies that all ¢ € @ are restrictions to X of maps defined

on a compact set containing X ). In particular, the codimension of

A(¢)-1(Ra) is equal to the codimension of Ra in Mat(M,N) . A short

calculation yields Lemma 5.2.

naﬂ'°“?+7
Corollary 5.3: If M >n, there is a ), open (though not necessarily dense)

set QO in 2 such that the conclusion of Theorem 5.1 holds for all

¢ € 2 -

Proof: This follows from the above proof and the remark that the set
nﬂahﬂ—EMﬁy

{¢ € @ ¢ rank(d¢, ) > n for all x € X} is opem,in 2 .

What happens if N, M and n do not satisfy inequality (#) of
Theorem 5.17 Any one of the following conclusions may hold robustly, though
not generically, depending on the conditions placed on ¢ : (a) the con-
clusion of Theorem 5.1, (b) all Nash equilibria are efficient (the case
Y = {pt.} ), {(c) the efficient Nash equilibria are a union of submanifolds

of the Nash set of codimension at least one.
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