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Abstract

Sufficient conditions are given for large replica games without
side payments to have non-empty approximate cores for all sufficiently
large replications. No "balancedness'" assumptions are required. The
conditions are superadditivity, a very weak boundedness condition, and
convexity of the payoff sets. An example is provided to show that under

these conditions, the (exact) core well may be empty.
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1. Introduction

Cooperative behavior lies at the very heart of econmomics and the
fundamental concept of a cooperative social equilibrium is the core.
However, the power of the core concept is limited by the fact that the
non-emptiness of the core can be assured only in certain ideal environ-
ments. In this paper, it is shown that all members of a class of games
with many players and relatively few types of players have non-empty
approximate cores and the approximation can be made better as the number
of players increases.

Since Shapley and Shubik [22] first introduced concepts of approxi-
mate cores, a number of authors have demonstrated sufficient conditions
for non-emptiness of approximate cores of large economies, cf. Kannail
[12, 13], Hildenbrand, Schmeidler and Zamir [9], and Khan and Rashid [14].
With the exception of Khan's and Rashid's work, all these results deal
only with the exchange of private goods; Khan and Rashid consider produc-
tion with the firms exogenously given. Recently, this author in [29]
obtained sufficient conditions for non-emptiness of approximate cores
of large replica economies with a local public good and endogencus juris-
diztion formation. All these results are, of course, dependent on the
particular formulations of the economles considered.

In this paper we use the framework of n-person game theory. This
framework is sufficiently general to accommodate a variety of departures
from the classical model of a private goods exchange economy, including
increasing returns, ccalition production, and the presence of local and
pure public goods. The following example illustrates a simple economic
model to which the results of this paper can be applied.

Suppese A = {1, ...,n} is the set agents in the economy and there

are two goods, say x and y . Each agent is initially endowed with



1 unit of good x . A unit of good y is produced from a unit good x
but the production of y requires input of x and also the joint effort

of two agents. One agent, by himself, cannot produce any positive quantity

of good y ;  he can only dispose of the initially endowed good, If three

agents work together, some one of the agents only impedes the work

of the other two. To formally define production technologies which are
consistent with this description, let S be a non-empty subset of agents

and let |S| denote the number of agents in S . Then define

Y[S] = {(x,y) :x <0, y < -x} 1if |S| 4is even and Y[S] = {(x,y) ix<0, y<-x-1}
if |S| dis odd. 1In Figure 1, the production technology sets for both cases

are depicted. Theutility function of agent 1 is ui(x,y)=y for each 1 ;

r

agents do not derive any utility from the initially endowed good. From this

economic data, for each coalition of agents S, we can define a set
V(S) C R" where V(S) represents the utility levels achievable by the
members of 5 using their own initial endowments. Define

V(S)={'Ge]Ri: ZGi_sz_IS| if |S| is even and Z-Gii|5[—1 if |s|
ies ies

is odd} (we follow the convention that coordinates of V(S) not asso-
ciated with members of S are unrestricted). The pair (A,V) 1is a game
(a formal definition of a game is provided later). It is easy to see that
for this simple model, if u is in V(S) then the members of S , using
only their own initial endowments, can produce (yi :i € 5) such that
ui(yi) = Gi for each 1€ 8§ . 1In Figure 2, the maximal sum of the utilities
achievable by the members of a coalition S , using their own resources

is sketched (ignoring indivisibilities of agents). Some features of this
model to note are: (1) V(S) is convex for each coalition S ; and

(2) Vv(S) NV(s8')C V(S U S') for any disjoint coalitions S and S' ,

i.e. V 1is superadditive. Observe that even though preferences are convex,

production sets for each coalition 'S are convex, and V(S) is convex
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for all coalitions S of agents, for n > 2 the core of the game is
non-empty if and only if n 1s an even number. As our main theorem states,
however, given any € > 0 for all sufficiently large =n an approxi-
mate e~core is non-empty.

A simplifying feature of the above example is that the game (A,V)
is one with side-payments, i.e. for each non-empty subset of agents §
there is a real number, say v{(S) , such that u € V(S) if and only if

E Ei < v(8) . It is easy to generate examples of games without side
ies

payments to which our results apply. For example, for each non-empty

subset S5 of A when ]Sl is even define V(S) = {G'E.RA : z G? f_K|S|}
i€es

and, when |S| dis odd define V(S) = mexrb: {Ei < K(ls| -1)} where
ieS

K is some positive constant. In Shubik and Wooders [25], we provide
additional examples of games to which our results can be applied. For the
present purposes, the point we wish to make via the example is that even
though V(S) is convex for all coalitions § and the game 1s superadditive,
the game may have an empty core and such games can arise as games derived
from economic models. We remark that Scarf [16] has shown that "convex
economies" have non-empty cores but this result depends on the economy
being a private goods exchange economy.

In this paper, we develop the concept of a sequence of replica
games without side payments (i.e., with not-necessarily~transferable utili-

V.

ties). More specifically, we consider a sequence of games (Ar, =1

where Ar is the set of players of the rth game, consisting of r players
of each of T '"types," and Vr is a correspondence from gubsets of Ar

to ?RrT . Given any coalition 5 contained in Ar , the set Vr(S)
describes the utility vectors achieveble by the members of § . We assume
that Ar(: Ar+1 for all r . The sequence is then said to be a sequence

of replica games if (a) all players of the same type are substitutes for



each other, and (b) Vr(s) does not "decrease' as r increases; {.e.,
if sC A and SCA , where r <r' , then the projection of Vr(S) on
the subspace associated with the members of § 1s contained in that of
Vr.(S) .1 imple and quite general conditions are demonstrated under which
given any € > 0 there is an r* such that for all r > r* the game
(Ar’ Vr) has a non-empty eé-core. The conditions are that the games are
superadditive, that vr(Ar) is convex for all r , and a 'per-capita
boundedness™ condition. For the present, we remark that for games with
side payments, the per-capita boundedness assumption puts an upper
limit on the average utility obtainable by the players of the game.2
We also remark that our conditions are sufficiently general to include,
as a speclal case, sequences of games derived from sequences of replica
economies as in Debreu and Scarf [6 ], and Shapley and Shubik [22].

Before concluding this introduction, we briefly relate our results
to other results concerning non-emptiness of cores and approximate cores
of games.

Bondareva [4, 5 ) and independently, Shapley [18] introduced the

concept of "balancedness" for games with gside payments and showed that

2 game with side payments is balanced if and only 1f it has a non-empty

lThis definition of a sequence of replica games 1s sufficiently general

to include games derived from sequences of private goods economies as

in Shubik [23] and Debreu and Scarf [ 6], of coalition production econo-
mies as in Boehm [ 3], of economies with local public goods as in Wooders
{29], and also economies with pure public goods as in Wooders [30]. It
does not include the games derived from sequences of economies with a
pure public good as developed in, for example, Milleron [15] because

the method used there of "replicating" the economy is different than

that used in the other papers referenced (this is discussed further in
Wooders [30]).

zln the side paymentscase, this is simply the assumption that for all r ,
v
—E-er for some constant K where v_ is a real number such that

r A
Vr={H€Br: Z"t'ftq_gvr}.
(t.q)eAr



core. In [16], Scarf extended the concept of balancedness to games with-
out side payments and showed that if such a game is balanced, it has a
non-empty core. Other authors have demonstrated other conditions suffi-
cient to ensure non-emptiness of the core of a game. In particular, some
variations of the concept of balancedness have been studied and shown

to ensure non-emptiness of the core; cf.Billera [l, 2]. Shapley [19] intreo-
duced the concept of a convex game and showed that convex games have non-
empty cores; these results have been extended to games without side
payments by Vilkov [26].3 Shapley and Scarf in [21] showed that games
derived from a certain class of economies with indivisibilities are
balanced. Numerous other results have been obtained showing that games
derived from particular classes of economies have non-empty cores; how-
ever, numerous results have shown that games derived from economic models
may well have empty cores, cf. Shubik [23, 24], Shapley and Shubik [22],
Shapley and Scarf [21], and Greenberg [7].

In [28], this author introduced a concept of "approximate' balanced-
ness, called e-balancedness, and extended Shapley's and Shubik's result
(for the weak e-core) by showing that under extraordinarily simple con-
ditions, large replica games with side payments are e-balanced and have
non-empty €-cores. The conditions are simply that the sequences of games
are superadditive and per-capita bounded. This present paper begins the
study of approximate cores of replica games without side payments. In
Shubik and Wooders [25], alternative and less restrictive concepts of
approximate cores than the one used herein are investigated and results
analogous to the main result of this paper are obtained without any con-

vexity assumptions.

BConvexity of V(A) does not imply that the game (A,V) 1s a convex
game.



We remark that other authors, in particular Weber [27] and Ichiishi
and Schiffer [10], have shown conditions under which games without side
payments and with measure spaces of agents have non-empty approximate
cores. These authors have, however, initially assumed the games were
balanced, using extensions of the concept of balancedness introduced by
Kannai [11] and Schmeidler [17). 1In contrast, we require no assumptions
of balancedness.

The paper is divided into several sections. In the next section,
we introduce some notation. The third section consists of a statement of
the model and results. All the results are proven in Section 4. Section
5 concludes the paper. 1In the appendix, a technical result used in the

paper is developed.

2, Notation

The following notation will be used: R" : Euclidean n-dimensional
space; ]Ri : the non-negative orthant of ]Rtl ;5 given K c:m“ , 1nt K
denotes the interior of the set K ; given a finite set S, |S| denotes

the cardinal number of S and iRS is the Euclidean |S|-dimensional space.

Define 1 = (1, 1,...,1) €R" . Given x € R" , we denote the (sup)

norm of x by ||xH where ||xH = max ab(xi) and ab(xi) denctes the
i
absolute value of X b ]R:L .
Given x and y in r" s we write x >y 1if Xy 2 ¥y for all
1; x>y 4if x>y and x#¥y; and x>y if x; >y, for all 1.



3. The Model and the Results

A game without side payments, or simply a game, is an ordered pair
{(A,V) where A , called the set of players, is a finite set and V 1is
a corresponden'ce from the set of non-empty subsets of A into subsets
of RA such that:
(i} for every non-empty SC A, V(S) 1is a non-empty, proper,
closed subset of ]RA containing some member, say x , where x »> 0 ;
(i) if x e V(S) and ¥y eRA with xi = yi for all i es ,
then v € V(S) ;
{1i1) Vv(S) is bounded relative to Ri i.e., for each 5, there
is a vector k(S)€ RA , where, for all x€& V(S) , xi < ki(S) for all i€ 5§,
(iv) 1if x € V(S) then there is a2 y € V(8) N Ri such that y > x .
The above definition differs from the usual definitions of a game in
that we've required each payoff set V(S) to contain a strictly positive
member and in that we've imposed property (iv). Both these requirements
are simply for technical convenience.
Let (A,V) be a game. A vector X E.RA , where the coordinates
of x are superscripted by the members of A, 1is called a payoff for
the game. A payoff x 1s feasible if x e V(a) . Given a payoff x
and players i and i, let o[x;i,j] denote the payoff formed from
x by permuting the values of the coordinates associated with 1 and
4 . Players 1 and j are substitutes if: for all 8 C A where
1i¢S and j &S, given any x € V(S5 U {1}) , we have

olx;1,j1 € V(s U {j}) ; and, for s11 S CA where 1 €S and j eSS,

given any x €V(8) , we have ol[x;i,j] € V(S) . The game is superadditive

if whenever S and S' are disjoint, non-empty subsets of A , we have

¥{8) N V(8') € V(8 u S") . It is comprehensive if for any non-empty subset

S of A, if x€V(S) and y <x then y g V(S) .

Given a game (A,V) and ¢ > 0, a payoff x 1is in the g-core



of (A,V) if (a) x i1if feasible and if, (b) for all non-empty subsets
S of A, there does not exist an x' € V(S) such that x' >> x + €l .
When € = 0, we call the e-core simply the core. When (A,V) 1is com-
prehensive, condition (b) is equivalent to the condition that

x + e}_;éint V(S) and our definition of the e-core corresponds to that
used by other authors, such as Weber [27). When (A,V) is comprehensive
and, in addition, e = 0, the e~core is equivalent to the (exact) core

in Scarf [16],

Given a game (A,V) , define VP(S) by VP(S) = {x G]RS : for

some x' € V(S) , x is the projection of x' on ]RS} where R° is
the subspace of EA asgociated with the members of S . (Note that if
(A,V) and (A,V') are two games where VP(S) = V'P(S) for all sC A,
then the correspondences V and V' are identical by condition (ii)
above.)

Let (Ar, v )on be a sequence of games where, for each r ,

r'r=1

ALCA and A = i(t,q) : t efl,..., T}, q €{1, ..., r}} . Write
x = (xl,..., xq,..., xr) for a payoff for the rth game where
xq = (xlq,..., xtq,..., qu) and xt9 is the component of the payoff

associated with the (t,q)th player. Given r and t , define

[t]r by [t]r = {(t,q) € Ar : g€ {1, ..., r}l} ; the set [t]r consists
th o

of the players of type t of the r game. The sequence (Ar, vr)r=1

is a sequence of replica games if:

(a) for each r and each t =1, ..., T, all players of type

t of the rth game are substitutes for each other;a

(b) for any r' and r" where r' <r" and any SCA., , we

have Vi,(s) C.Vzn(s) (i.e., the set of utility vectors achievable by

aPlayers of different types might also be substitutes for each other; thus
the requirement that (Al, Vl) has one player of each type is not as

restrictive as it might at first appear.
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the coalition § does not decrease as T :lncreases).5

Let (Ar’ V)

=1 be a sequence of replica games. A payoff x

for the game (Ar' Vr) is said to have the equal-treatment property if,

. tq' tq" 1 "
for each t , we have x = X for all q' and q" ; players of

the same type are allocated the same amount. The sequence of games is

superadditive if (Ar, Vr) is a superadditive game for all r . The

sequence is per-capita bounded if there is a constant K such that for

all r and for all equal-treatment payoffs x in vr(Ar) we have

xtq < K .6

The sequence has a non-empty asymptotic core if given any ¢ > 0

there is an r* such that for all r > r* , (Ar’ Vr) has a non-empty

E=-COTEe.

Theorem 1. Let (Ar' v be a sequence of superadditive, per-capita

r'r=1
bounded replica games where Vr(Ar) is convex for all r . Then the

asymptotic core is non-empty.

When a sequence of replica games satisfies the conditions of Theorem
1, and, in addition, the games are comprehensive, we have egual-treatment
payoffs in the e-core (where € > 0 ) for all sufficiently large repli-

cations. Our next theorem provides a stronger result concerning equal-

5In an initial draft of this paper, we required that Vz,(s) = Vf"(s) -

what a coalition S can ensure for its members is independent of the
size of the game containing that coalition. This property is common for
games derived from sequences of replica economies; cf. Debreu and Scarf
[6] and Wooders [29]. The weaker restriction, that when ' < x"

we have Vz,(s) C-V:"(S) , permits some "positive enternalities" to

benefit the coalition as the set of players is replicated. This is suf-
ficient to permit our results.

6It can be easily verified that games derived from sequences of replica

economies, such as in Debreu and Scarf [ 6], Boehm [ 3], and Wooders [29]
all satisfy the per-capita boundedness property. We note that the per-
capita boundedness assumption does not rule out the possibility that the
sequence (Vr(Ar)) is unbounded from above.
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treatment payoffs in the e£-cores.

Theorem 2, Let (Ar, V}):_l be a sequence of replica games satisfying
the conditions of Theorem 1 and, in addition, assume the games are com-
prehensive., Then given e > 0 there is a x = (Ei, ...,E&) €£RI such
that X is in the ec-core of (Ar, Vr) for all sufficiently large r

x. is defined by its coordinates x:q = ;t for each (t,q) € Ar .

Part of the strategy of the proof of Theorems 1 and 2 is to con-

where

struct other sequences of games with additional properties and to approxi-

mate the games in the original sequence by the constructed games. Since

games having these additional properties are of some interest themselves,

we introduce these properties here and state an additional result.

We first review the conceptsof balancedness and the balanced cover

of a game, Let (A,V) be a game. Consider a family 8 subsets of A

and let B, = {SefB :1€8} . A family B of subsets of A 1is balanced

i

if there exists positive "balanced weights" Vg for S in B with

Z wg = 1 for all i1 €A . Let B(A) denote the collection of all
S€R,
i

balanced families of subsets of A . Define V(A) = V) N y(8)
BEB(A) SEB

Define 3(5) = V(S) for all SCA with S # A . Then ¥ maps subsets

of A into R and is called the balanced cover of V . The game (4,

is called the balanced cover of (A,V) . If the game (A,V) has the

1))

property that W(A) = V(A) , the game (A,V) is balanced, and from Scarf's

theorem [16], the core of the game is non-~empty.

A sequence of games (Ar, Vr):=l satisfies the assumption of quasi-

transferable utility, QTU, if, given any r and any S in A, if
S

x>0 and x is in the boundary of VE(S) , then VE(S) N {x'E€R

x' > x} = x . This is called the assumption of quasi-transferable utility
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because it has the implication that for any x>0, if x € Vi(s) for
scme subset S and x' € Vi(S) where x' > x , then there is an

x"' € vf(S) where x" >> x —a property of games with transferable utility.
The QTU assumption rules out the possibility that segments of the boundary
of VZ(S) in ‘Bi are parallel to the coordinate planes.

£
Given a game (A,V) and any positive number & , let (A, V)

be a game with the QTU property where, for all non-empty subsets

S of A, we have Vr(S) - VS(S)

and the Hausdorff distance (with respect to the supncrm) between Vr(S)
and Vi(S) is less than & .7 Then (A, VG} is called a 48-Q7U cover of
(A,V) . In the appendix, we show that if (A,V) 1is a comprehensive game,
then trhere is & ccmprehensive 8-QTU cover of (A,V) .

let (Ar, v )Clo be a sequence of replica games and let 5 be

r'r=1

a non-empty subset of Ar for some r . Define the vector s EiRT bv
the coordinates S, = |s [t]r| for each t € {1, ..., T} ; the vecter

s is called the profile of S ., Define p(S) =s so p(-) maps subsets
ntc their profiles.

©

A sequence of games (Ar, V)

is said to satisfv the assump-
r'r=1

tion of minimum efficient scale (for coalitions), MES, if there 1is an

% such that for all r > r* , given x € %I(Ar) there is a balanced
collection 5 of subsets of A with the properties that (1) p(S) < r(A )

for all S €8 and (2) x € 1 Vr(S) . We call r* an MES bound.
: SeB

Informally, a sequence of games satisfies the MES property if a1l "in-

creasing returns to coalition size' are eventually exhausted.

Ig?e definition of the Hausdorff distance can be found in Hildenbrand
P 'P- 16.
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Theorem 3. Let (A, V )°°

et Vplp=1 be a sequence of superadditive replica games

satisfying the assumptions of QTU and MES with MES bound r* . For any
r >r* , the core of the game (Ar’ Wr) is non-empty and if x 1is a

payoff in the core, then x has the equal treatment property.

The non-emptiness of the core of the game (Ar’ Vr) is Scarf's
result [16]. It is well-known that for games with side payments, the
core is non-empty if and only if it contains a payoff with the equal-
treatment property. The result that the MES and QTU properties ensure that
all payoffs in the core of a balanced game have the equal-treatment property

is new,

5. Proofs of the Theorems

Throughout this section, we let (A_, V ¥

denote a sequence
r r'r=1 n 9

of superadditive replica games with T types of plavers and let (Ar’ Wr):=l be
the associated sequence of balanced cover games. We continue to let
1l denote the vector of ones and the reader is to infer from the context
the dimension of the space in which 1 is contained. Given r and a
positive integer n , we write (Anr’ vnr) for the game (Ar., Vr,)

1

where r' = ar ,

Given a payoff x for the rth game, (Ar’ Vr) , when we write

n
y= 1 x it is to be understood that the coordinates of y are super-
i=1

scripted so that y 1is a payoff for the nrth game.

Throughout the following, given any § C-Ar itJis to be understood
that S 1is non-empty.

The proofs proceed through several lemmas. The main result of these
lemmas is that in the case where Vr(Ar) is convex, the equal-treatment

payoffs in vr(Ar) converge to those in Wr(Ar) . This result and other
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lemmas used along the way towards this result are then used to prove the

theorems.

Lemma 1. Given r , let y € Vr(S) for some S C-Ar where y has
the equal-treatment property. Let S§'C A_ where $' has the same pro-

fileas S . Then y € Vr(S')

Proof. Since S and §' have the same profile, we can define a one

to one mapping, say ¥, of S onto S' such that if ¢((t,q)) = (¢', q") ,
then t = t' . Since for each player (t,q) in S, the player y({t,q))

is a substitute for (t,q) , the payoff y' {is in Vr(S') vhere y'

is constructed from y by permuting the values of the coordinates of

y associated with (t,q) and v((t,q)) for each (t,q) 1in S . Since

y has the equal treatment property, y' =y and, since y' is in

Vr(S') , We have y in Vr(S')

Q.E.D.

Lemma 2. Given r and a positive integer n , 1let S C Ar and let

s! C:Anr where, for some j £ {1, ...,n} , we have S' = {(t,q) : for

n
some (t', q') €S, t=1t' and q= (j-1)r+q'} . Then R V. (S)C V (S")
=1 T nr

Proof. Let Bj = {(t,q) €a :t=1, ..., T and (j-1r < q < jr}.

n

Let x' € I Vr(S) and let x denote the projection of x' on the coor-
i=1

dinates associated with members of Bj . Observe that x € Vr(S) and

n
Tx eV _(S) since V(S)C VL (S) and from (i1i) of the definition of
1‘1 nr T nr

n
a game. Let y = T x . From the construction of y , given any (t, q')
i=1
tq tq' - -
in A, we have y "=y where q = (j-1)r+q' : therefore

r

oly; (t, q'), (t,q)) =y . Since each piayer {t, ¢') in Ar is a
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substitute for the player (t,q) in Anr it follows that y € Vnr(s') .
Since the projection of y on the coordinates associated with members

of S' equals the projection of x' on the same coordinates,

n
] L 1
x' € Vnr(s } . Therefore 1 Vr(S) C'Vnr(s ) .
i=1
Q.E.D.

Lemma 3. Given any r and any positive integer n , we have

n
.: Vr(Ar) c Vnr(Anr) *
i=1

Proof. Given j €11, ...,n} , let Bj‘{(t,q) €A t=1, ..., T

n
and (j-1)r < gq < jr} . From Lemma 2, T V. (A ) CV_ (B.) for each
— =1 T T nr ' j
j=1i, ..., n . Since {Bj : i=1,...,n} is a partition of A s
n n
£ . como Y : . -
fromw superadditivity o Vr(Ar) C _r\vnr(Bj) C'vnr(Anr)
i=1 _ i=1
Q.E.D.

Given a finite set A , a balanced family F# of subsets of A

is a minimal balanced family of subsets if no proper subset of £ is

balanced. OQur next lemma is a restatement and an easv extension of a
result due te Shepley [18, Corollary to Lemma 2}, and is stated without

proot.

lemma 4. let A denote a finite set and let B denote the collection

of all balanced families of subsets of A . Let {51, ...,ﬁi, ...,61}

denote the minimal balanced families of subsets of A . Then
(1) £ €B if and only if for some subset L' <€ {1,...,L} , we have

g = U BR and (2) for each £ , there is a unique set of balancing
e

wejights, wé for § € 52 » and each wé is a rational number.
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The next lemma 1s a key lemma since it relates the sequence of

balanced cover games to a subsequence of the sequence of games.

Lemma 5. Given any r , there is a positive integer n such that 1if

n
x eV (a), then 1£1x v (A .

Proof., Given r , let {Bl,.... BE,..., BL} be the set of all minimal

balanced families of subsets of Ar . From Lemma 4, for each % , there

is a unique set of balancing weights, wg for S € B2 , and each wé

is a rational number. Since all the weights w2 are rational, we can

5

choose a positive integer n such that nwé is an integer for each

S E 82 and for all & . We claim that this n satisfies the require-
ments of the lemma. More specifically, we claim that given any £ ,

there is a partition of A , say P, such that givenany xe€ N _ V_(S) ,
nr segt T
n

we have Ixe NV__(8) . (The result then follows from superadditivity
i=1 sep M

and properties of minimal balanced families.) We next prove this claim.
Given 1 , let gt = {Sl, oes Spo ...,SK} and, for ease in nota-

tion, for each k 1let Vi denote the associated (rational) balancing

2
weight for § € B” . We now construct a partition P of A . such that

P contains nw, menbers with the same profile as Sk for each Sk € B2 .

For each (t,q) € Ar , let [(t,q); n] = {(t', ¢') : t' =t and, for
some j €{1,...,n}, q" = (j-1)r+q} . Observe that ([{t,q); n] con-

tains n oplayers all of whom are substitutes for each other. For each

nw,
k , choose nw, subsets, say Di, ceey By euey D s such that

k
(1) for each m , 1if (t,q) E:Sk , then IDE N [(t,q); nl| =1

and if (t,q) ¢?Sk , then IDE N [{tyq); nl] =0 ;
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(2) for each k', each m' < nw, , and each m < nw, we have

1
Dln: N DE, = ¢ whenever k ¥ k' or m#¥ m' (or both).

Less formally, the sets DE are selected so that each set Dﬁ contains
one and only one member of ([(t,q); n] for each (t,q) € Sk and no player
appears in any two of the sets {DLll t1 <k <K 1l<mzx nwk} . We observe
that from (1) each set DE has the same profile as Sk . We are now

going to show this selection 1s possible. For each (t,q) €A, let

K(t,q) € {1, ..., K} be such that k € K(t,q) if and only if (t,q) € 5, -

k-1 "Yk'
m
Observe that |[(t,q); n] N (a . - Y Dk')l =n - )': v, .
k'=1l m=1 k«k
k'eK{t,q)
Since B'Q is balanced, z W = 1 and we have
k'ek(t,q)
n - Z nw., = n I W - It follows that it is possible to
k'<k k'>k
k'€K(t, q) k'eK(t,q)
1 nw.
select subsets Dk’ ey Dk satisfying the requirements (1) and (2), i.e,

for each k and each (t,q) € Sk » there are enough players in [(t,q); n]

k-1 ™!
and not in U U D‘kn, so that nw, players can be selected from those
k'=1 m=1

remaining players who have not previously been selected. Moreover, since

n - ¥ nw, =0 for each (t,q) €A, all agents in each set
k €K(t,q)
f(t,q); n] are eventually taken in the construction of the sets D: .

Therefore the collection P = {Df(' : 1<k <K 1<mz< nwk} is a parti-

tion of A .
nr

Civen B = {Sl’ cees Spa vens SK} and P as above, let
K n t'q' tq
Xx € NV _(S,) . Define y = N x . Observe that vy = x for all
k-1 T K i=1

m h m
(t',q') € [(t,q); n] foreach (t,q)éAr . For each Dk , the fact that Dk
consists of one member of [{t,q); n] foreach (t,q)€ Sk defines a one to one
mapping, say ¢ , of the set of agents in Sk onto the set of agents

in DE such that for ¢({t,q)) = (t, q') for some (t, q') in DE and
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1
'q . y*9 | gince for each player (t,q) in S5, the player ¥((t,q))

is a substitute for (t,q) , the payoff y' 1is in Vnr(Dﬁ) + Where

y

y' 1s constructed from y by permuting the values for the coordinates

of y associated with (t,q) and ¢((t,q)) for each (t,q) € Sk .

]
However, since ytq = ytq when y((t,q)) = (t, q') , y' =y . There-
fore ye Vnr(D{(n) . From superadditivity, since P = {D]T} is a partition,
y €V (A5)

We have shown in the above that given any minimal balanced family

n
of subsets of Ar s Say BE s 1f x € N Vr(S) » then I x€ NV (S

- nr
SGBR ni—l S€EP
for some partition P of A . - From superadditivity, 121x € Vnr(Anr)
Now let B be any balanced family of subsets of A_ and let x € N Vr(S)
S€B
From Lemma 4, for some subset L' C {1, ...,L}, we have B = U 82 .
L€L’
Therefore x € N Vr(S) = N A Vr(S) so, for 2 €L'", x€ N V. (S)
seg 2EL .8 2
0 S€B SeB
From the above result, ITx eV (A )
nr ‘nr
i=1
Q.E.D.

We remark that none of the preceding lemmas required comprehensive-
ness and therefore can be applied to not-necessarily-comprehensive games.
Define E(r) and E(r) to be subsets of BF representing the
equal-treatment payoffs in Vr(Ar) and %r(Ar) respectively, i.e.,
T : T :

r Ny r ny
Nx€evVv._(A)} and E(r) = {(x ER TxevV.(A)} .
{=1 T r i-‘-'-]. T r

T N T
Defime E (r) = E(r) NR, and E (r) = E(r) NR, .

E{(r) = {x €R

From the preceding lemma, we immediately have the result that given
any r , there is a positive integer n such that if x € %(r) ., then

x € E(nr)
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We remark that when (Ar’ Vr) is comprehensive and, consequently,
E(r) 1s comprehensive, the set E(r) + e{l} wused in the following lemma
is the e-neighborhood of E(r) ; i.e. E(r) + {1} = {x €X' : for some

y €E(r) , |lxyll < e} .

Lemma 6. Suppose Vr(Ar) is a convex and comprehensive set for all r .
Then, given any € > 0 and any r' , there is an r* such that for all

r > r* , we have E(r')C E(r) + {1} .

Proof. Let r' and € > 0 be given.

The following observations will be relevant. From Lemma 5, we
can select a positive integer n’' such that %(r') C E(n'r') . Let
! From Lemma 3, for any positive integer n , we have
E(r") € E(nr") ; therefore nEu(r') C E(nr") for all positive integers
n . Given any r > r" , let n and j be non-negative integers such

that r = nr" + j where j €{1,...,r"} . Observe that, from superad-

ditivity, given any x € %(r') and any 2z € Vl(Al) , we have

nr" j
(Tx, Tz €V.(A)
i=1  i=1 rr

Since Vr(S) is cleosed and bounded relative to ]Ri for all §

we have r\\fr(Ar) ﬁ]RiT compact. It follows that f_‘_(r') is compact.

£ L

. 1
Therefore there srea finite number of points, say X, ..., X, voep, X ,

L

in E_'_(r') such that %_'_(r') c YU {x ER' : ||x-x£|| < £/2} . Arbitrarily
=1

select 2z € Vl(Al) . Now given r" and r = nr" + j as above, given
nr" . j

any £ €{l,...,L} wehave (NI x, T z) € Vr(Ar) . Since players

i=1 i=1

of the same type are substitutes, it follows that any vector with nr"
components (in ]RT) equal to xE and any j components (also in ]RT)

equal to z 1s also in Vr(Ar) and there are C such vectors where
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L] AN}
C = 1%§%ﬁ§?§%L - In this collection of vectors, given p € {1, ..., nr"+j} ,
2 th nr'"
we have x in the p position in ;;ﬁ:ric of the vectors and =z
in the pth position in ;?ﬁ%rsc of the vectors. From the convexity
assumption, a convex combination of these vectors is in Vr(Ar) . In

particular, the convex combination formed by taking the sum of these vectors

times 1/C is in Vr(Ar) . The vector thus formed has the equal-treatment

nr''x? 4 )z
ar'+j  nr''+j

property and each component (in Ig?) of the vector is

nr'x jz
- - It
let zgj(n) L + Y follows that zgj(n) is in E(1r) .

Also, it is obvious that given any j € {1, ...,r"} , zij(n) converges

to x- as n becomes large. Since j < r" for all n, we can select

r , and therefore n , sufficiently large so that ![z (n)-—x£I| < ¢f2

L3
Let n* be suificiently large so that for all £, all j , and all
n > n* , we have |izij(n)-xiii < e/2 . Suppose r > n*r" so =n > n¥

where r =nr" +j for some j € {1, ...,1"} . Let x be an arbitrary
element of E+(r') . Then there is an xE such that in-xH < ef2 .
Since n > n* | Pz . (n)-x"1] <e/2 so }|z£j(n)-x i < £. Therefore
%;(r') C {x : for some x' €E(r) , |lx-x"l| < el = E(r) +efl} and

from property (iv) of the definition of a game 2nd comprehencsiveness,

T(r') € E(r) + efll

Q.E.D.

Lemma 7, For all r , we have f(r) Cfi(r+l) .
Proof. Given any r , let x E E(r) . TFor some balanced family

r
B of subsets of A, we have T x€ NV_(S)Y . We construct a balanced

T o

i=1 ses

family nf subsets of Ar+1 ., say B* , such that if § € B* then

S has the same profile as scme S' € B . We then use Lemua 1 to show
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r+l
that I xev
i=1

r+l(s) for all S €B* ; therefore x € g(r+l)

let 8 = {Sl,..., Spr e SK} and let w,_ denote the weight for

S € B . Given q € {1, ..., r+1} , 1let Bq = {{t,q) : £t =1,..., T}

Given £ € {1, ..., r+l} , we construct a balanced family of K sub-
T+l .

sets of UB_, sav B = {Sl,.... SE,..., sy , where (t,q) € st
=1 q 1 k K k
q¥:

if and only if (a) (t,q) €S, with g# 2, or (b) q=r+l and

k

(t, ) ELSk . Informally, £ and 62 are the same except that for each
type t , each plaver (t,%) 1is replaced by (t, r+l) . Note that the
weights v for Si € ER balance Bl . In this manner we construct

T+l T
r+l1 talanced families, 31, ceey Br+l , of UB, ..., UB

- 4 - 4

+1 | r+l zq
respectively (where, of course, T = 8 ). Let B*x = UB . We claim
£=1

that this is a balanced family of subsets of A . . Clearly

™+ K .
A S U US = U S. Note that given (t,q) €A there are
- +
T+l 121 kel k Sei* r+l
r+l
r mezhbersof { UB, : &£=1,..., 741} containing (t,q) . Since,
.71
r+1q #i
if (t,q) € U Bq. » the sum of the weights z v, 1s one,
c'=1 . g,
q'#i Llw(.(t,Q)E.Sk}
k
we have Z w =r and the weights < for Sﬁ € &* balance
(k, i1 (t,q)€s, ]
r+l
gEx Fror the definition of a sequence of replica games, I xe\%+1(sk)
i=1 .
r+l 2
for each k=1, ..., K. From Lemma 1, T = E:Vr+l(Sk) for all k
i=1
r+l L K ¢
and ! so I x€ n AV ..(5)Y=mn v_.{8) . Since g&* is balanced,
+ +
=1 g=1 k=l TTEOKT gegw TH
T+l %
T 7
we have i:lx G:‘r+1(Ar+l) and therefore x € E(r+1)

Q.E.D.
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In the following, we use the concept of the closed 1limit of a se-
quence of sets. A definition of this concept and some properties can
be found in Hildenbrand [8], pp. 15-18. We also employ the theorem that
a sequence of subsets (Fn) of a compact metric space converges to a
subset F with respect to the Hausdorff distance if and only if the
closed limit of the sequence exists and equals F (see Hildenbrand [8,
p. 17]). The closed limits, which we will show exist, of (E(r)) and
(E(r)) are denoted by L(ﬁ) and L(E) respectively. We denote the
Hausdorff distance between two sets, say F and G (with respect to the

sup norm metric) by ||F,G|| .8

Lemma 8. Assume that (Ar’ v 1 is per-capita bounded and that vr(Ar)

r'r=
u
is convex and comprehensive for all r . Then the closed limits L(E)
and L(E) exist and are equal and ||¥(r), E(r)| converges to zero as

r goes to infinity.

Proof. Since B(r) C:%(r+1) for all r and from the per-capita bounded-
ness assumption, it can easily be shown that the closed limit,

L(E) » exists. Also, from the per-capita boundedness assumption there

is a compact set, say X , such that E+(r)C3 K for all r . It follows
that given e > 0, there is an r' sufficiently large so that for all
r>r', ]|E+(r), L(%+)[] < €/2 . From property (iv) of a game and com-

prehensiveness, we have ||E(r), L(E)| < e/2 for all r >r'

8We've used ||- to denote the sup norm and |-,- to denote the Haus-
dorff distance. This should create no confusion, however, since in the
first case the variable is a vector and, in the second, two sets.
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Given £ > 0, let r' be sufficiently large so that for all
r>r', [Er), L®|| < e/2 . From Lemma 6, there is an r* > r' so
that for all r > r* , g(r') C E(r) + —;—{L} . Since E(r) < '1-‘:’(::) , for

all r > r* we have
B(r') € E(r) + 501 € B + S cu® + 500 .

Since ]If(r‘), L(%)]l < g/2, it follows that ]|§(r), E(r)}l < ¢ for
all r > r* . (We've squeezed E(r) and E(r) between E(r') and
L(E) + £{1} .) Tt follows thar L(E) = L(E)

Q.E.D.

We remark that nothing we have done so far depends on the assump-
tions of QTU and MES. Therefore, it is possible to use these lemmas in
situations where some or all of these assumptions are not made.

The theorems are now proven-—-in reverse order to their statements

since each proof uses the preceeding one.

Proof of Theorem 3

Select r > r* and let x be a payoff in the core of (Ar, vr) ;
from Scarf's theorem there is such a payoff. Note that x > 0 from the
assumption that x is in the core and (i) of the definition of a game.

Let 8 be a balanced family of subsets of Ar such that x € N Vr(S)
Sed

and such that p(S) j_p(Ar*) for all S €8 ; f{from the MES assumption

such a balanced family £ exists. Suppose x does not treat all players

f L] " tq‘ rq"
of type t equally, i.e., for scme ¢ and q" , we have x # x

We consider two cases which cover all posgibilities and in both cases obtain

a contradiction.
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Case 1: Suppose for some S' in B we have (t, q') €S' and

(t, ¢") £S' . Since § 1is balanced, it follows that there must be an
" 4n B such that (t, q") €S" and (t, q') €5S" ; otherwise B8
could not be a balanced family since no set of "balancing" weights could

sum to one over both these members of the family containing (t, q')

1 "

and those containing (t, q") . Suppose x5 x* | Let
8k = (S5'-{(t, ¢")H v {(t, ¢")} . Then, since (t, g') and (t, q")

are substitutes, the payoff x' = o[x; (t, q'), (t, 9] is in Vr(S*)

L L "
Since x't 4 z_xt 9 for all {t', @@ in S* and L BPLL | , from
the QTU assumption there is a payoff x" in Vr(S*) where x" >> x .

This contradicts the assumption that x is in the core. Therefore

tq

tg <

x X However, since (t, g¢") € S8" and (t, q') £5S" , by

reasoning as above, we can again obtain a contradiction to the assumption
that x 1is in the core. Therefore, for Case 1, we have the result that

1
xtq - xtq

"

Case 2: Suppose for some S in B we have both (t, q') and (t, q')

in S . Since [8N [t]rl < r* there is a player of type t , say

t "

(t,q) , not in S . From Case 1, we have xtq tq and xtq = xtq

= X

Q.E.D.

For the proof of Theorems 1 and 2 we require the following definition.

Let P(Ar; r') denote the collection of partitions of A into

non-empty subsets where, given P in P(Ar; r') , for each S'€ P, we

have p(S") :_p(Ar|) . Given a sequence of replica games (Ar’ Vr):'l
1 th

and given r' , we define the r truncation of Vr by the correspondence

Vr('; r') , where, for each non-empty subset S of Ar , we have

v.(s; ') = U N V (5') . It is easily verified that the sequence
PEP(A _;r') S'EP



25

(Ar, Vr('; r')):_l is a sequence of superadditive replica games and that
the sequence of balanced cover games (Ar’ %r(-; r')):_1 satisfies the

9
assumption of MES with MES bound r' . Define E(r; r') = {x e]RT :

T T T
Txe€V(A;r')) and E(r; r') ={x €R : T xeV. (A; ")} .
1=1 rr 1=1 T

Observe that E(r) C E(r+l; r} ; this is an application of Lemma

7. It is immediate that E(r+l; r) C:ﬁ(r+l; r} and E(r+1; r) C %(r+1)

We note that from Theorem 4 in the appendix, given & > 0 and

a sequence of comprehensive replica games (Ar, Vr):=1 , Wwe can select

§ = 8§
a sequence of comprehensive games (Ar, vr)r=l where each game (Ar’ Vr)
is a 8-QTU cover of (A., Vr)

For ease in exposition, since comprehensiveness is assumed for
Theorem 2, we use the fact that a feasible payoff x is in the e-core
of a comprehensive game (A,V) 1f and only if x + al_é int V(S) for

all sSCA.

Proof of Theorem 2

Given € > 0, select a positive number & such that ©6 <

=™

5 .
Ar+1’ Wr+l(-;r)) be the balanced cover of a comprehensive, §-QTU
T

Let ¢
v}

cover of (Ar+l’ Vr+l(-;r)) for each r . Let E (r+l; r) = {x €R

T+l

I1xe€ ?5 (A

; T)} and let L(Eé) denote the closed limit of the
i=1 r+l r+l

sequence (Eé(r+l; r)) . It is easily verified that

v

r+l(Ar+1
||¥(x+1; 1), ﬁs(r+1; r)|| < e/4 for each r , and since L(E) = L(E)

1 r), vi+1(Ar+1; r)|| < €/4 for each r , so

we have ||L(E), L(Eﬁ)H < el/4,

9 (Ar’ Vr(-; r')) 1is the balanced cover of (Ar’ Vr('; r')) , i.e., we

"truncate'" then "balance."
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From Theorem 3, for each r we can select yr c %G(rﬂ; r) such

T+l r
that Ty 1is in the core of (A
i=l

yr > 0 and since L(EG) I’\R}‘_ is compact, (yr) has a convergent subse-

8
r+l? vr_’_l(-;r)) . 8ince for each r ,

quence; let y denote the limit of some such subsequence. Define x= G-%l)

T+l
We now show that for all r sufficiently large 1@ X is in the
i=]
5 . 5§, ... 5
e-core of (Ar+1’ '\‘7r+1( :r)) . Since % (r+l; r) converges to L(g) .

for all r sufficiently large, say r > r¥ , x € %6(r+1; r) . There-
r'+l

fore, if T x 4s not in the e-core of (A, . %5, {(*; r')) for some
'+l r'+l
i=1 P4+l
r' > r* , for some S C A_, we have I x+ €l € int 36, (S; ")
— '+l = r'+l

r'+l 1=1

Consequently i (§+%}_) € int '\Yf_,ﬂ(s; r') . Select a member of the
i=1

L)
sequence (yr) y say yr , such that r" > r' and such that

”;‘Yr |] < €/2 . From (b) of the definition of a sequence of replica
- " il _ £ $
games, and since |[y-y" Il < e/2 and | (y+§_l_) € int r\\fr,_*_l(S: r') ,
r”+l i=1
we have il yr € int i‘fﬁ,.ﬂ(s; r") . This is a contradictien.
i=1

Now select r sufficiently large, say r** , such that r**% > r*
and for all r > r** | X € E(r) . From comprehensiveness, the fact that
E(r) C ¥O(r41; r) and lL(E), L(%ﬁ)ll < ¢/t it is routine to verify

r ——
that there is such an r** ., Then for all r > r*% | T x € E(r)

i=1

Suppose for some r>r** and some § CAr » Wwe have

r r+l_

1 x edint V.(S)+e{1} . But then Tx €int V 1(S; r) +e{l}

i=1 r - 1=1 ¥ B

C int {7:4_1(8; r) +e{l} which is a contradiction to the result of the
r —

preceeding paragraph, Therefore 11 x 1is in the e-core of (Ar’ Vr)
i=1

for all sufficiently large r .

Q.E.D.
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Our final result is now easy.

Proof of Theorem 1

Let (Ar, V:) denote the "comprehensive cover'" of each game
(Ar, V) in the sequence, i.e., Vﬁ(S) = {x e]RrT : for some y € Vr(S) ’
X <y} . Note that since Vr(Ar) is convex, V:(Ar) is convex. From
Theorem 2, given € > 0 we can select r* such that for all r > r* ,
the e-core of (Ar' V:) is non-empty. Given r > r* and a payoff x
in the e-core of (Ar, V;) , let x' € Vr(Ar) where x' > x . From
the definition of the comprehensive cover, there is such an x' . Since

x 1s in the e=-core of (Ar, Vc) , 1t is jimmediate that for all S C'Ar .

r
there does not exist an x" € Vr(S) where x" >> x + €l . Therefore x'

is in the €-core of (Ar, Vr) . Q.E.D.

Conclusions

In this paper, we have shown that quite simple conditions--convexity
of the payoff set for the entire set of players, superadditivity, and
per-capita boundedness--ensure that sequences of replica games have non-
empty asymptotic cores. Of these conditions, we view the superadditivity
and per-capita boundedness ones as particularly non-restrictive. We view
the convexity assumption as more troublesome. As Shapley [20] has pointed
out, although convexity of the sets V(S) often arises in application,
convexity is not an ordinal concept since It depends on the topological
structure of R . Moreover, it is easy to generate examples of economic
models whose derived games do not satisfy the convexity requirement, cf.
Shapley and Scarf [21]. On the other hand, the notion of a non-empty
asymptotic core used in this paper is quite restrictive. To illustrate
this, observe that from the proof of Theorem 2 it follows that given any

€ > 0 there is an r sufficiently large so that
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APPENDIX

From the following theorem it is immediate that givenany 6 >0 and any

comprehensive game (A,V), there is a comprehensive 6§-QTU cover of the game.

Theorem 4. Let K CRE be compact and comprehensive in Rn s 1l.e.,
if x €K, then y €K for all y€R, with y < x . Then there is
a compact, comprehensive subset K'(C IRi such that K CK' ,
Ik, K'|] < 6§ , and K' satisfies the property that if x is in the
boundary of the set {y € R” : for some z € K, y <z} and x >0,

then
KN {x'":x">x}= {x}.

In other words, the upper boundary of K' contains no line segments

parallel to the coordinate axis,

Proof. There is no loss of generality in assuming that K 1s a subset
of the unit ball in R" . Let f be any continuous, real-valued func-

tion on K such that

1l < £(x) < 1+8 for all x € K where x > 0 and

x <y =>f(x) > f(y) .

(For example, we could use the function f(x) = 1 +

—e/2 .) Define
n

1+ Zx
i=]1

T: K +]RI_:_ by T(x) = f(x)x ; this is continuous, so T{K) is compact.

i

Let K' = T(K) . Since ||x~T(x)}|| <8 for x €K (because we have

assumed K 1is a subset of the unit ball) we have ||k, K'| < § .
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We note that for x €K, T(x) Iies on the ray from 0 through
x and (unless x = 0 ) 4is further out than x . Thus T maps each
ray to itself, continuously.

To see that K' 1s comprehensive, it suffices (because K is
comprehensive) to prove
(¥) if x €K and aER: where a < T(x) , then there is a y in
K, y<x, with T(y) = a . To see this, write T(x) = f(x)x and
set z=T1x)a. Then ze.Ri and z <x so 2z €K and f(z) > f(x) .
Hence T(z) = f(z)z > f(x)z = a ; since the points 0, a , and T(z) all
lie on the same ray, and in that order, we can apply the Intermediate
Value theorem to T on this ray to conclude that there is a y on the
ray with T(y) =a and y <z < x , as desired.

It remains to prove the assertion about the boundary of K' .
If there were a line segment in the boundary of K' parallel to a coor-
dinate axis and not lying in a coordinate plane, its endpoints, say a
and b , would give two points in K' , with,say b < a and no
coordinate of a equal to zero. Since we can replace b by the mid-
point of this segment, we assume also that no coordinate of b is equal
to zero. Let x €K such that a = T(x) ; wuse {(*) to find y € KX such
that T(y) = b and y < x .
Case 1. y <x but y < x ; that is, some coordinate of y is equal
to the corresponding coordinate of x ; say Yy =% - Then
bi = f(y)yi > f(x)xi =a, , since f(y) > f(x) and no coordinate of

a 1is zero (s0 no coordinate of x 1s zero). This is a contradiction.

Case 2. y << x . On the ray from zero through y there is a unique
point w with w < x but w ¢k x; this is the first point on the ray

with some coordinate equal to the corresponding coordinate of x ; say
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