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Introduction

“"The essential point to grasp...in dealing with capitalism” is,
according to Joseph Schumpeter [1950, p. 82], that "we are dealing with
an ‘evolutionary process.” The evolutionary character of the capitalist
process is due to the fact that "the fundamental impulse that sets and
keeps [its] engine in motion comes from the new consumers' goods, the
new methods of production or transportation, the new markets, the new
forms of industrial organization that capitalist enterprise creates”
[p. 83]. Such "“innovation" then creates a market power which enables
the innovator to earn a monopoly profit or what is called an entrepre-
neurial profit, and it is this prospect of gaining entrepreneurial
profit that in turn supplies the motives for innovative activities.

But the innovator's monopoly position is only temporary. As soon as an
innovation is made, “the spell is broken" and the way for others to imi-
tate is opened up. The first innovation draws followers, and then
successful imitation again makes it easier for more imitators to follow
suit, until finally the innovation becomes familiar and the associated
entrepreneurial profit is wiped out, or until the appearance of another
innovation renders it obsolete (Schumpeter [1961]). This process of
"Creative Destruction”--the process that "incessantly revolutionizes the
economic structure from within, incessantly destroying the old one, in-
cessantly creating a new one''--is what Schumpeter regarded as "the
essential fact about capitalism" (Schumpeter [1950], p. 83).

The orthodox theory of competitive equilibrium consists precisely
of assuming this "fundamental fact about capitalism” away. The notion
of competitive equilibrium in its most basic form is defined to be a

state of affairs in which a set of prices, one for each commodity,



balance demand and supply of all commodities and coordinates the actions
of all market participants who take prices as given and determine demands

and supplies accordingly. There is thus no one within the system who

has any motivation to change the reached position, not to mention the

one who strives for creation or destruction. Indeed, from therperspec—
tive of the orthodox analysis, the existence of entrepreneurial profit
which arises ipevitably from successful inmovation must be treated as an
example of the "imperfection" of competition; the wave of imitations which
relentlessly follows the first success must be classified as an "exter-—
nality”™ to markets; and the entire process of creative destruction is
merely an "adjustment process’ which transfers the economy from one equi-
librium to another. What Schumpeter considered to be "the essential fact
about capitalism” is regarded here as an aberration from the competitive
equilibrium-—a slip of the Invisible Hand.

This is the first of a series of papers whose major objective is to
develop a coherent theoretical framework which is capable of placing the
evolutionary process of creative destruction at its central analytical
core.l/It is an attempt to analyze the phenomena of inmovation, imitation,
and growth, not as equilibrium outcomes of the far-sighted choices of
optimizing economic agents, but as the dynamic processes moved by com—
plex interactions among individual firms which are constantly striving
for survival and growth by their competitive struggle against each other.
Indeed, underlying the whole series of papers is a premise that even for
the analysis of such "long-run"” economic phenomena it is essential to
begin with the study of disequilibrium processes working at the micro
level of firms and to trace out carefully the manner in which they inter-

act with each other and cause the aggregate economy to move from one



position to the next., Such a "disequilibrium" view of techmnological change
and economic development has certainly been foreign to the orthodox econo-
mists who tend to identify "long-run" with "equilibrium" and dismiss
"disequilibrium" as mere "short-run" problems.

By proposing to construct a disequilibrium theory of technical change
and economic development, however, I do not claim that the behaviors of
the firms are not economically motivated or that they are outright irra-
tional. Indeed, it was Schumpeter, along with many other social thinkers,
who considered the capitalism as the quintessential rationalistic civili-
zation and claimed that Ycapitalism--and not merely economic activity in
general-~has after all been the propelling force of the rationalization
of human behavior" ({1950], p. 125). By rational behavior or rationalistic
civilization, Schumpeter meant a way of social life in which “individuals
or groups go about dealing with a given situation, first, by trying to
make the best of it more or less—never wholly--according to their own
lights; second, by doing so according to those rules of consistency which
we call logic; and third, by doing so on assumptions which satisfy two
conditions: that their number be a minimum and that every one of them
be amenable to expression in terms of potential experience" ([1950], P-
122). The main actors of our scenario--the firms—-are all supposed to
behave rationally in the sense used by Schumpeter. This notion of
rationality should, however, be distinguished from the very limited
notion of rationality used in the orthodox theory. While the latter
identifies rational behaviors as the optimization of a well-specified
objective function over a sharply defined set of alternative actions whose
outcomes are (at least probabilistically) fully anticipated, the former

assumes a much broader position which takes due account of the limits



of human capacities to comprehend and compute in the face of uncertain
environment and complex cognitive process. It is, in other words, equi-
valent to what Herbert Simon called the "procedural rationality" or
"bounded rationality" (Simon [1957, 1978]).

In order to describe the behavior of the firm in terms of this
broader concept of rationality it is convenient to distinguish the short-
run from the long-run decision processgj.At any point in time the behavior
of a firm is governed by a given decision policy, which processes the
stimuli from its emvironment in accordance with a pre-existing schema and
routinely transforms them into a set of decisions to be taken. This short-run
decigion policy is the historical product of the firm's search for the
better rules in the past, and not the result of any full-fledged optimizing
computations which take account of all the data relevant to the current
situation. In the short-run, the firm thus "satisfices" (A la H. A.

Simon [1957]) rather than optimizes. In the long-run, however, the de-
cision policy itself is subject to changes. As long as the decision policy
on the basis of which the firm makes its day-to-day decisions yields
satisfactory outcomes (in terms of profits or some other criterion of
evaluation), there is little motivation left on the part of the firm

to change that policy. As time goes by, however, the market environment
including the rivals' decision rules, changes gradually over time or
shifts suddenly over night. The current decision policy then begins to
yield umsatisfactory outcomes, which sooner or later induce the firm to
search for a better decision policy. Search continues until another
policy is discovered,whose performance meets a certain pre-specified
aspiration level; and a new round of satisficing behavior on its basis

starts from that moment, 1In the long-run, therefore, the firm's decision



policy tends to accommodate to the demands of market reality.

This series of papers will be structured in conformity with the pre-~
ceding account of the firm's decision process. To be specific, the present
paper sets up the basic framework for our Schumpeterian dynamics and de-
duces certain prototypic results, It will be then followed by papers
which enlaxge the scope of this basic framework. These papers are to
be written under the premise that firms' decision rules are given once
and for all and their behaviors can be described by the satisficing
principle. This premise will indeed allow us to analyze in detail how
the dynamic processes of firms' innovation, imitation and growth will
interact with each other and shape up the evolutionary pattern of industry
structure. The more complex analysis of how the individual firm comes
to choose particular policies concerning innovation, imitation and growth
in the long-run is postponed until the evolutionary pattern of industry
structure, which each firm has to cope with, is spelled out clearly in
these papers.éj A truly Schumpeterian picture of the economy will emerge
only as a synthesis of these two analyses. The present paper is there-
fore no more than the introduction to the first half of our Schumpeterian
dynamics.

Let us begin by specifying our basic model.



1. The State of Technology

Consider an industry which consists of a large number of firms com-—
peting with each other. (We denote by M the total number of firms
which participate, either actively or potentially, in the working of
the industry.) Each firm may produce an undifferentiated product homo-
geneous throughout the industry, or a unique product of its own which
is differentiated from the products of others, depending upon the struc-
ture of a particular industry in question. In fact, we shall present,
in this series of papers, a theoretical framework which is capable of
dealing with any of these alternative industry structures,

Unless there is a universal access to the same and best technology,
production method actually employed are different from firm to firm.

Let us identify each production method by a positive real number c .
Although we call this number the firm's "unit cost" (in terms of a num-
eraire) for the sake of concreteness, it is only one of many possible
interpretations. All that is needed in most of our subsequent investi-
gations is a convention that the smaller the value of ¢ 1is, the more
profitable is the corresponding production method. (Indeed, in one ex-
ample dealt in the following paper the inverse of ¢ will be given the
interpretation of an index of the 'quality" of the product processed by
the method in question.) If the number of production methods coexisting
in an industry is finite (n) we can represent them by a list of unit
costs, ¢ < Cheyg < voe < ey < eee < Eq arranged in ascending order.
The first in the list <, then designates the unit cost of the best
practice method and the last one cy the unit cost of the worst practice
method. To describe the "state of technology" of an industry at a point

in time, it is therefore necessary to stipulate how these different



production methods are distributed across firms.

Let ft(c) represent the relative frequency of firms whose unit
cost equals ¢ at time t ., It is, in other words, the frequency func-
tion of unit costs at time t . Since only the production methods with
it costs, Cys Cgy vy €, are actually employed at time t , the
value of ft(c) is zero for any other value of unit cost. (By conven-
tion we have ft(cl) + ...+ ft(cn) =1.)

Let Ft(c) denote the cumulative frequency function of unit costs

at time t , defined by

(1) Ft(c) = ft(ci) + ft(c Y+ ... ft(cn) H

i+l

for <c ey {We set, as convention, Ft(c) = 0 for c¢ < ¢,

€i-1
and Ft(c) =1 for c > €y .} In words, Ft(c) represents the relative
frequency of firms with unit cost c¢ or lower at time t . In terms

of this cumulative frequency function, the frequency function ft(ci) can

now be redefined as
(2) ft(ci) = Ft(ci) - Ft(ci_l) s

with an understanding that ft(CN) = Ft(cN) . Or, more generally, we

have

@) £(e) = F(e) - Fle-0) ,

where c¢-o denotes 1lim ¢-h . Figure I-1 illustrates the relation be-~
h+~t+o

tween ft(c) and Ft(c) .

The frequency function ft(C) or alternatively, the cumulative fre-
quency function Ft(c) represents how a variety of production methods

from the most profitable one to the least, are distributed across firms.
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at a given point in time. Either function gives us an equally informa-
tive snapshot picture of the industry's "state of technology." Unlike
the paradigm of the orthodox economies, however, the state of technology
is mot a given datum to the industry. As time goes by and future unfolds
itself, dynamic competition among firms for technological superiority
constantly changes it from one configuration to another. The state of
technology is.never static and never exogenous in a capitalist economy.
The main aim of the following sections is to develop a theoretical
framework which is capable of studying the evolutionary process of the

state of technology.

2. Imitation, or Diffusion Process of Technolopy

In the world of Schumpeterian competition, each firm is constantly
striving for a better production method. There are basically two means
by which that aim can be achieved. A firm may succeed in putting a new
production method into practice by its own R&D effort; i.e., it may succeed
in "innovation." The firm can also direct its eyes towards outside; it
may indeed "imitate™ one of the more profitable methods which are currently
employed by other firms. The evolution of the state of technology is
therefore determined by the interaction of these two dynamic forces.
In order to give an orderly exposition of this complex evolutionary pro-
cess, however, we shall devote the present section exclusively to the
study of the process of imitation, postponing that of the process of
innovation until the next section.

Schumpeter wrote:

[TIhe carrying out of new combinations is difficult.

.-.However, if one or a few have advanced with suc-
cess, many of the difficulties disappear. Others



can then follow these pioneers, as they will clearly

do under the stimulus of the success now attainable.

Their success again makes it easier, through the in-

creasingly complete removal of the obstacles..., for

more people to follow suit, until finally the inno-

vation becomes familiar and the acceptance of it a

matter of free choice. (Schumpeter [1961], p. 228)
For our purposes it is, however, necessary to translate this somewhat
picturesque description of the process of imitation into a much more
prosaic mathematical language. Indeed, we shall now introduce an ex-

tremely simple hypothesis regarding the probabilistic law which goverms

the process of imitation among firms in an industry.

Hypothesis (IM'): The probability that a firm is able to copy a particu-

lar production method is proportional to the frequency of firms which
employ that method in the period in question. The firm, of course, im-
plements only the method whose unit cost is lower than the one currently

ysed by it.ﬁj

Formally, it will be assumed that the probability that a firm of
unit cost ¢ imitates a production method of unit cost ¢ during a
gmall time interval between t and t+At 1is equal to
uft(c)At , for e <e¢, , and

(3)

0 , for c >

fiv
n

where y > 0 is a parameter which summarizes the effectiveness of the
firm's imitation activity.

The value of the imitation parameter u should be influenced by the
particular imitation policy the firm has come to adopt in its long-run
pursuit of survival and growth. In particular, it should be positively

correlated with the portion of economic resources the firm is willing
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to direct towards its imitation activity. The present paper, however,

is not concerned with the analysis of how each firm shapes up its imi-
tation policy and chooses (or at least influences) the value of the
imitation parameter 1y . As was already indicated in the Introduction,
the main objective here is rather to work out the mechanism through which
a given long~run imitation policy of the firms (along with a given long-
run inmnovation policy, to be discussed in Sections 5 and 6) structures
the evolutionary pattern of the industry's state of technology.

We shall, therefore, assume in this paper that the imitation param-
eter y 1is a given constant whose value is a legacy from the past. We
shall also assume that the value of u depends neither on the current
unit cost of the firm nor on the unit cost of the production method it

5/

wishes to imitate.~ We shall assume further, for the sake of simplicity,
that a new production method once copied can be implemented to the entire
productive capacity within a firm without any cost and without any delay.
Indeed, throughout this series of papers, all technical changes are
supposed to be of the disembodied type., The problem of intra-firm dif-
fusion process of new technical knowledge, as is analyzed, for instance,
by Mansfield [1968], Chapter 9, is thus set aside from our investigation.
Now, hypothesis (IM') turns out to be powerful enough to determine
(at least approximately) the whole evolutionary pattern of the industry's

state of technology. To see this, let us examine the way in which Ft(ci)

the relative frequency of firms with unit cost c; or less, changes its
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value from time t to . t+At . It is clear that this relative frequency
increases whenever one of the firms whose unit cost is higher than cy
succeeds in imitating one of the firms with unit cost c, or less. Now

the relative frequency of firms whose unit costs are higher than ey

equals ft(ci_l) + ft(ci~2) + ... + ft(cl) ,» which can be conveniently
rewritten as 1 - F (c;) by (1). On the other hand, hypothesis (IM')
tells us that the probability that each of these firms succeeds in imi-
tating one of the production methods with unit ecost ¢, or higher during

i

a time interval between t and t+At 1is equal to uft(ci)At-+uft(c YAt

i+l
+ oeea F uft(cn)At + which can be conveniently rewritten as uFt(ci)At
by (1). (Here, we have ignored the very small probability that a firm
succeeds in copying two or more production methods simultapeously during
a small time interval At ,) We can therefore compute the expected in-

crease in Ft(ci) during a time interval between t and t+At as the

product of these two expressions:

{uFt(ci)At}-{l-Ft(ci)}.

In fact, if the total number of firms M is very large, the so-called
law of large numbers allows us to use this expression for a good approxi-
mation for the actual increase in Ft(ci) . In what follows, we assume
this is indeed the case and treat the above expressions as representing
the actual increase in Ft(ci) .

0f course, -even among firms whose unit costs are lower than Cg s
relatively higher cost firms are imitating the production methods of
the lower cost firms. It is, however, plain that these infra-marginal
imitation activities result only in infra-marginal transfers of frequencies

and do not affect the value of Ft(c itself.

"
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We have thus obtaimed an equation which describes the change in the
relative frequency of firms of unit cost c; or less, from time t to

t+At , effected by the firms' imitation activities in an industry:

(4) Ft+At(ci) - Ft(ci) = uFt(ci)(l-Ft(ci))At .

Furthermore, if we divide the both sides of this equation by At and
let At approach zero, we can transform it in the following differential

equation:
(4") Fo () = wF (c)(1-F (),

where ft(ci} represents the time derivative of Ft(ci) . Since the
same argument can be applied without any modification to any value of
unit cost, we have, in fact, obtained the following series of differen-

tial equations:

Fo(c ) = wF (c)A=-Fc))
(5)  { Foley) = wF (e)(1-F (c))
\ F (c)) = uF () -F (c.}) .

It requires only a moment's reflection to recognize that each of the
above series of differential equations is nothing but a well-known "logis-
tic differentiél equation," which appears frequently in population biclogy
and mathematical ecology. (See, for example, Pearl and Reed [1924],

Lotka [1925], or any modern textbook on these subjects. Samuelson [1947],

Pp. 291-94, also contains a useful discussion on this form of differential
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equation.) It is very easy to show that this logistic differential equa-
tiomr has the following form of explicit solution, which is called the

"logistic growth curve."

_ 1
Ft(cn) T 1+ (l/FT(cn) - Dexp[-u(t-T)]
(6) { F (c,) = 1
£t i 1+ (1/FT(ci)-1)exp[-u(t—T)]
F (c,) = 1
t'\t1 1+ (llFT(cl) - Dexp{-n{t-T)] *

where exp(-) stands for exponential, and FT(ci) represents the cumu-
lative frequency function at a given time T ( < t) in the past. From
this it is also easy to deduce the expression for the growth pattern of

the frequency function ft(c) by invoking the relation (2). But, here,
we do not bother to write it dowm,

Figure 2 illustrates the foregoing result. Each of the S-shaped
curves traces a logistic growth curve that represents the growth patterm
of the cumulative frequency function of firms. 1In particular, the one
at the lowest layer depicts the growth pattern of the relative frequency
of firms with the least unit cost c, - When only a small number of firms
employ this production method, its growth is hesitant and slow. But
as this number gradually increases, imitation activities of the less effi-
cient firms become more and more successful. '"The spell is broken," and
a bandwagon sets in motion. The growth rate then accelerates, until a
half of total population comes to adopt this method., Once this median

point is passed, the effect of saturation steps in and the growth rate
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starts decelerating. But the growth itself continues until the whole
population of firms is swamped by this best practice method. The fate

of the less efficient production method, on the other hand, can be easily
reéé-by tracing out the changing width of a strip formed by two adjacent
logistic curves. Initially its number may expand by absorbing the firms
with less efficient techniques. But sooner or later it will lose ground
to the more efficient techniques, and will find its way to the eventual
extinction.

The idea of using the logistic curve to describe a band-wagon phe-~
nomenon that can be commonly observed in a variety of diffusion process
of a new idea, new technique, new instrument, and so forth is not new.
Indeed, there is an abundant literature on this application in economics
and other social sciences. (See, for example, Coleman, Katz, and Menzel
[1957], Griliches [1957], Ozga [1960], and Mansfield [1968], Ch. 8.)
OQutside of social sciences the so-called "models of epidemics" deal with
mathematically similar problems. (See, e.g., Bailey [1957].) What seems
novel about our foregoing analysig is its application of the logistic
law to the description of the evolutionary pattern of whole array of pro-
duction methods coexisting side by side at the same time. And it is this
small innovation which allows us to study the dynamic interaction between
processes of imitation and innovation in an integrated manner, as we

shall soon see.
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3. Innovation

As is shown in the preceding section, firms' imitation activities
will gradually upgrade their production techniques, and, if other things
are equal, all the firms will eventually succeed in adopting the best
practice method. This limiting state must be the paradigm of neoclassical
economics in which every market participant is supposed to have complete
access to the best technical knowledge of the society,

Other things, however, do not forever remain the same. The tendency
towards technological uniformity among firms is bound to be upset by a
sudden introduction of a new and better production method by one of the
firms. Indeed, to destroy the stalemate brought about by imitation pro-
cess and to create a new industrial structure is the role our capitalist
economy has assigned to Schumpeterian entrepreneurs or to innovative
firms. It is this "process of creative destruction" that 1s 'what
capitalism consists in and what every capitalist concern has got to live
in" (Schumpeter [1950), p. 83). Let us now turn to the formal analysis
of this perennial gale of creative destruction,

Suppose that at some point in time one of the firms finally succeeds
in implementing a new production method whose unit cost equals Cn+1
{ < cn) . We denote by T(cn+l) the time at which this method is intro-
duced for the first time and call it "the innovation time" for the pro-
duction method with unit cost €4l ° (This somehwat clumsy notation
will make more sense in Section 5.) Since the total number of firms is
M and hence each firm's share is 1/M , this innovation creates a new
relative frequency of the magnitude of 1/M at the new and lower unit

cost cn+1 . That is, we have
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(7N FT(

1
(c_..) =% .
Cn+l) n+l M
No sooner does this innovation cocecur than do 21l the other firms start
struggling to imitate it, A firm or two will eventually make a headway,
and after that a wave of imitation follows. Under hypothesis (IM), this

sets in motion a new logistic growth curve of Ft(c from the initial

Y .

n+1)

condition (7) given above. Hence, we have for t > T(cn+l

1
) =
1+ (UFT(an)( ) - Lexp[-u(t-T(c

@ Ft(cn+1

)]

“n+1 n+l

N 1
T 1+ (M-l)exp[-u(t-T(cn+1))] iy

How does this innovation affect the evolutionary pattern of the state
of technology of the industry as a whole? The answer to this question
depends upon whether or not the imnovator has used the best practice pro-
duction method before imnovation. We first examine a special case.

Let us suppose that the innovator of ¢ has employed the then

n+l
best practice method c, before the innovation time T(cn+1) . In this
case, the size of ft(cn) declines by 1/M at the time of T(cn+1) .

but this decline is recouped at the same time by the new creation of an

equal magnitude of as shown in (7). Obviously, this exchange

ft(nn+l) ’

of an equal mass of frequency leaves unaffected the cumulative frequency

Ft(cn) , for it is nothing but the sum of ft(cn) and ft(c It

n+1) )
then follows that even after the innovation time T(cn+l) » the cumulative
frequency Ft(cn) keeps moving along the same old logistic growth curve

(6). Indeed, since the innovation in question involves no other produc-

tion method, all the other cumulative frequencies must follow the same
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old logistic curves as well. Part of Figure 3 around the innovation time
T(cﬁ41) illustrates all this. By comparing it with Figure 2, the reader
can immediately see that the only alteration we made te the latter is

to superimpose a new logistic growth curve that starts with an initial
mass 1/M at time T(cn+1) .

Innovation is not a single-shot phenomenon. No soconer than an inno-
vation occurs, a new round of competition for a better production method
begins. And no sooner than a winner of this game is named, another round
of competition for a still better production method is set out, And so
forth. Innovation is by nature a recurrent process.

Accordingly, let T(cn+2), T(cn+3), s T(cN), ...y denote times
at which production methods with unit costs ¢ >cC >

n+2 n+3 st N

are introduced for the first time into an industry, respectively. We call

> c > LI
T(CN) the "innovation time"” of the production method with unit cost

- " "
°y and T(cN) T(cN_l) the '"waiting time" for a new method with cy -
(There is, of course, no reason to believe that these innovation times
are evenly distributed over time.) Then, at each innovation time a new

frequency emerges

<1
9 F&(CN)(CN) =N

and a new logistic curve starts its growth path from that instant on,

_ 1
(10) Ft(cN) T 1+ (M—l)exp[—p(t-—T(cN))} » b2 T(CN)
If, as in the case of the first imnovation, innovations always emerge
from the class of firms which have practiced the then best production

method, we can repeatedly apply the same argument as was given earlier
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and claim that none of these successive innovations perturb the logistic
growth patterns of all.the cumulative frequencies of the currently prac-
ticed production methods. They only add a new logistic growth curve (10}
onéﬁby one from the bottom at each innovation time., This process 1is
explained in Figure 3.

We are now in a position to examine the more general case by removing
the supposition so far made that innovations always emerge from the class
of technologically most advanced firms. Then, the evolutionary pattern
of the state of technology becomes slightly more complex.

Suppose, for example, that production method with ol unit cost
is introduced into an industry by a firm whose pre-innovation unit cost

c; is not the most efficient one, that is, ¢, > ¢

i - Then, at time

T(cn+1) , the frequency of firms at c; declines by the magnitude 1/M ,
and at the same time a new mass of frequency of firms with the equal size
1/M emerges at Ci4l (See (7).) Then, it is not difficult to see

that this exchange of a distribution mass also causes an equal discrete.
jump of all the cumulative frequencies of firms whose unit cost is lower

than ey Formally, this can be represented as

(11)

v

1
F (c) = F (¢) +=, for e, >c>c .
T(Cn+l) T(cn+l)-0 M i n+l

F, (¢) = F ~{c) s for ¢ >c, 3
T(cn+l) T(cn+1)~0

I
He

where T(cn+l)—0 represents a time immediately before the imnovation
time T(cn+1) . As soon as the jumps are made at time T(cn+1) , these
cumulative frequencies begin their new logistic growth process from new

initial conditions (11). Thus, we have for t > T(c

n+1)



19

) 1
1+ (l/FT(Cn+1)(C)-1)expl—u(t-T(cn+1))] i

12)  F o) =

This new logistic growth process will continue until it is again upset
by another innovation at the next innovation time T(cn+2} . At time
T(cn+2) » yet another logistic growth process will be set off only to

be upset once again at the next innovation time T(c_,.) . And so forth.

n+3
Figure 4 presents an evolutionary pattern of the state of technology in

this general case.

4. A Specific Model of Innovation

In the preceding sections we have seen how the process of imitation
and the process of innovation Interact with each other and mold the evo-
lutionary history of an industry's state of technology. The process of
imitation works essentially as an equilibriating force that continually
tends the industry towards a static equilibrium, in which all firms employ
the same production technique. The function of imnovation, on the other
hand, lies precisely in upsetting such an equilibriating tendency. It
is a discontinuous process which breaks up the existing order of an
industry and forces the state of technology to become more progressive
but more volatile.

The purpose of this section and the next two is to study the long-
run consequence of the interaction of these opposite forces on the
development of the state of technology. To this end we have to specify
the structure of firms' innovation activities in more detail.

Basic or applied scientific researches in private firms, governmental
institutions and academia, weekend experiments of amateur inventors in

their backyard garages, and so forth continucusly expand the stock of
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technical knowledge potentially applicable to industrial production.
But such a continuous inflow of new technical knowledge or "inventions"
does not necessarily lead to a corresponding improvement of production
methods actually employed in an industry. 'As long as they are not carried
into practice, inventions are economically irrelevant” (Schumpeter [1961],
p. 88). For the purpose of industrial production, the potentially must
be transformed into the actuality; a production method hitherto untried
must be put into industrial practice. This is what we mean by the word
"innovation," which must be conceptually distinguished from "invention."
Let us denote by C(t) the unit cost of the best production method
that is "technologically possible™ at time t but has thus far resisted
the actual use in the industry. (For the sake of simplicity we ignore
all the problems associated with the uncertainty as well as fuzziness
inherent in delineating what is technologically feasible from what is
not.) We eall C(t) the unit cost of the potential production method
or, more simply, the "potential unit cost" at time t . It is then
reasonable to suppose that the continuous inflow of technological know-
ledge or continuous supply of inventions constantly reduces the potential

unit cost of the industry, so that we have
(13) C(t) <0 .

This paper, however, does not probe into the mechanism of "inventive'

activity itself; it is merely supposed to occur outside of the industry
and beyond the control of the individual firms. This is, of course, a
heroic assumption to maintain.éj

It then becomes possible to characterize the notion of '"innovation”

formally as the activity by which a firm puts into practice the potential
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production method and thus succeeds in reducing its unit cost to the level
of potential unit cost. Now, let T(c) denote the inverse function of

C(t) , defined by
(14) T(C{t)) =t or C(T(c)) = c .

{(Because of the monotone decreasingness of C(t) with respect to t ,
as is assumed in (13), T(ec) is also a monotonically decreasing function
of ¢ .) We know that if an innovation occurs at time t it introduces
a production method with C(t}) wunit cost for the first time into an
industry. It then follows that if a particular production method with
unit cost ¢ 1is presently in use it must have been introduced into the
industry at time T(e¢) , for in view of the inverse relation (13) we have
¢ = C(T(c)) . The function T{ec) can then be interpreted as the "inno-
vation time" for a given production method with unit cost ¢ , and this
interpretation and the notation are perfectly consistent with the defipi-
tion of the same concept we introduced in the preceding section.

Later we shall find it useful to introduce the following hypothesis

which further specializes the dynamics of the potential unit cost C{t) .

Hypothesis (PC): The potential unit cost is declining at a constant rate

over time.
More formally this hypothesis supposes that
(13"} C(t) = exp(-At) ,

where A is a positive constant, (For convenience, we set C(0) =1 .)
Under this special hypothesis, the innovation time T{c) --the inverse

of C(t) --can be expressed simply as a logarithmic function of ¢, or
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) T =-Ime.

This special hypothesis will simplify our later exposition.

We have seen above what innovation consists of. But we have not
seen who does innovation. For this purpose we have to specify in more
detail the stochastic process that characterizes the way innovation occurs.
We shall indeed consider two alternative models, which can be regarded
as two polar cases spanning more realistic situations as their convex

combinations. Let us explore these two models separately.

5. The State of Technology in the Long-Run (I)

In the first case, we postulate the following hypothesis concerning

the stochastic nature of imnovative activity.

Hypothesis (IN-i): Every firm has a small but equal chance for success-

ful innovation at every point in time.

Let wve«At ©be the probability that a firm succeeds in carrying out
an innovation during a small time interval At ; where v is a positive
constant which is supposed to be of the much smaller order of magnitude
than the innovation parameter u ., Then, the probability that an inno-
vation is successfully carried out by one of the firms during a time

interval At becomes equal to
(15) vMAE

The probability that two or more firms simultaneously succeed in innova-
tion is extremely small and hence ignored. Hypothesis (IN-i) amounts

to saying that the occurrence of innovation is subject to the law of
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rare events or to the Poisson law which supposes that whether or not an

innovation occurs in any time interval is independent of whether or not

an innovation occurs in any time interval preceding it., (This is called
the lack of memory property of Poisson process.)

The innovation parameter Vv represents the effectiveness of each
firm's innovation activity., Its value should, therefore, reflect a
particular innovation policy the firm has come to choose as a critical
pillar of its long-run growth strategy. In the present paper, however,
we are concerned only with analyzing how the evolutionary pattern of the
industry's state of technology is causally determined by a given inno-
vation policy of the firm, together with its imitation policy. The study
of how the firm selects a particular innovation policy in the long-run
and how this long-run decision process reflects the evolutionary pattern
of the industry's state of technology is left for the future research.

The state of technology of an industry is a historical outcome of
the dynamic interactions between the process of imitation and the process
of imnovation. The process of imitation is a force which moves the
entire state of technology along the family of logistic growth curves,
whereas the process of innovation is a force which disturbs this smooth
journey and restructures the state of technology from time to time. As
time goes on, however, innovation takes place over and over again. After
a long period of time, it is expected that a certain statistical regularity
will emerge out of this random pattern of the occurrency of innovations.
(For instance, it is not difficult to show that after a long passage of
time the average rate of innovation tends to approach a constant value
vM , under the Poisson hypothesis (IN-i) .) Indeed, not only the dynamic

pattern of innovation but the entire state of technology are also expected
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in the long-run to exhibit a tendency towards certain statistical regu-
larity as a long-run averaging result of the dynamic balance between the
forces of imitation and of innovation.

Let F:(c) represent the expected cumulative frequency function of
unit costs at time t . We shall now turn to the study of the behavior
of this expected cumulative frequency function. Since we are now con-
cerned only with describing the industry's state of technology "in the
long-run,"” this is all that we have to do.

Now, we know from (5) that the cumulative frequency function Ft(c)
increases by Ft(c)(l-Ft(c))At , if no innovation occurs during a time
interval [t, t+At] . 1If, on the other hand, an innovation occurs during
the same time interval, it creates a new cumulative frequency Ft(C(t)) of
the size equal to 1/M . When the innovator has belonged to the class of
firms whose unit costs are higher than ¢, thisinnovation increases Ft(c)
by the same magnitude 1/M . When, however, the immovator is from the
class of firms whose unit costs are less than or equal to c , the inno-
vation effects only an infra-marginal exchange of an equal mass of frequency
and leaves the wvalue of Ft(c) unchanged. Since by hypothesis (IN-i)
the probability of an innovation during a time period of At is vMAt
and thelfraction of firms whose unit costs are higher than ¢ is 1-Ft(c) .
the expected number of innovators whose unit costs are higher than ¢
can be calculated as vM(l-Ft(c))At during [t, t+At] . We can thus
conclude that the cumulative frequency function Ft(c) increases on average
by {uFt(c)(l-—Ft(c))+vH(1-Ft(c))(l/M)}At from time t to t+At . In
terms of expected cumulative frequency function F:(c) s, We can state

this result as

* g _
(16) Ft(c) = uF:(c)(l-F:(c)) + v(l-F:(c)) ,
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or

Ff(c) +v/u
(16") é%{F:(c) + E} = (u+v)‘{F:(c) + E}' - _£I7757§"—

This again is a logistic differential equation of F:(c) + v/u , which

has an explicit solution of the form:

an F¥e) + 2 = 1+ v/y

u 1+v/u - _ ?
1 +E¥(c)(c)+v/JEXP[ (ptv) (£ - T(ec)) ]

for t > T{c) ; where T{(c) is the innovation time for a given unit
cost ¢ and F¥(C)(c) is the expected value of the cumulative distribu-
tion at that point of time. Although FT(C)(C) equals 1/M when an
innovation occurs, the probability of an innovation at a particular in-
stant is of course equal to zero. Hence, F¥(c)(c) =0, and we can
simplify (17) as:

1+ v/u _
1+ (u/v)eexpl-(utv) (t~T(c))]

t % - y

(17%) Ft(c) i

In order to study the structure of this expected cumulative frequency
function further, we have to invoke the hypothesis (PC) which assumes

that the potential unit cost C(t) declines at a constant rate ) over

time. Let

{18) z

fnc - tn C(t) ( > 0)

represent the proportionate difference between the unit cost ¢ of a
given production method and the potential unit cost C(t) . We call this
“cost gap," for short. By definition the potential unit cost has zero

cost gap, and all the other feasible production methods have positive
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cost gaps. Then, in view of the logarithmic relation (14') between a
given unit cost c¢ and its innovation time T(c) , we can rewrite (17')

in terms of 2z > 0 as follows:

%(z)

*
(19) Ft(c)

1+ v/ _
1+ (u/v)-expl-(utv)z/2]

v
; )

which is independent of the calendar time! ¥(z) 1is the "long-run average
cumulative frequency function" of unit costs or cost gaps, we have sought
to deduce under the hypothesis (IN-i). It is a function only of the cost
gap, 2z = fn ¢ - fn C(t) , and not of the value of the potential unit
cost C(t) itself, Figure 5 illustrates the structure of this long=run
average cumulative frequency function. It has the shape of a truncated
logistic growth curve, with growth parameter (u+v)/A. and initial slope
v/x .

The long-run average cumulative frequency distribution obtained above
is a long-run statistical summary of the way in which firms in the industry
are distributed over a multitude of diverse production methods with dif-
ferent unit costs, It shows that while the continuous inflow of new tech-
nological knowledge constantly reduces the potential unit cost over time,
the industry will never be able to enjoy its fruits fully and unit costs
of a majority of firms will always lag behind the potential ome, The
industry's state of technology will thus never approach a neoclassical
equilibrium of uniform technological knowledge. Indeed, it is only the
relative shape of the distribution of firms over different cost conditions
which exhibits any tendency for a statistical regularity over the long-

run course of events in the industry.
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The dynamic interaction between the forces of innovation and imita-
tion, together with the exogenous inflow of new technological knowledge,
is what maintains the relative configuration of the state of technology
in a statistical equilibrium in the form of (19). 1In order to study how
a change in each of these forces will shift this delicate statistical
balance, it is easier to examine the density form of the long-run average

frequency function, given by

(20) £(z)

[11]

(u+v)2
Ay

AY) uy u H+v z’
/;—'E"P [“ET‘] +/";'exp(' W] -

for z >0 . As is depicted in Figure 6, the long-run average density

i

distribution is a smooth bell-shaped curve, truncated at the left. It
has a peak of the height equal to (u+v)2/41p at the value of cost gap
equal to [A/{y+v)])-2n(u/v) , and the intercept equal to v/i at the
zero cost gap. It is thus not difficult to see that an increase in the
declining rate of potential unit cost, X , tends to widen on average
the cost gaps of the industry and at the same time to disperse their
distribution across firms, that an increase in the rate of innovation,

v , tends, albeit weakly, to narrow on average the cost gaps and concen-
trate their distribution, and that an increase in the rate of imitation,
¥ , also tends to narrow on average the cost gaps and concentrate their

7/

distribution.— Figures 7, 8 and 9, respectively, illus-
trate these comparative statics results numerically. (The base value
of parameters, A= .05, v=.01, u= .50, means, if the number

of firms in the industry is 20, (i} that the potential unit cost declines
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Fig. 8: The long-run average density functions under hypothesis (IN-i)
for various values of v (where X = .05 and u = .10)
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5% amnually, (ii) that the average lag between invention and innovation
is 5 years, and (iii) that it takes on average 5.89 years for a half of
the firms to succeed in imitating an innovation,)

It should be borne in mind that the long~run average frequency dis-
tribution of cost gaps, %(z) or ?(z) , 1s no more than a leng-run
statistical summary of the evolutionary pattern of the state of technology.
It never implies that the industry's state of technology will, in the
long-run, converge to a static equilibrium, Far from it, the state of
technology is a state of constant flux. As was illustrated in Figures
3 and 4, it is continuously moved by the force of imitation, and discon-
tinuously disrupted by the force of innovation. 1Its year-to-year or
decade-to-decade evolution exhibits no tendency towards equilibrium.

All that is claimed here is merely that if the long history of the develop-
ment of the industry's state of technology is patiently studied, it is
possible to detect the existence of certain statistical regularities out

of its seemingly irregular evolutionary pattern.

6. The State of Technology in the Long-Run (IT)

In the second special case, we introduce the following hypothesis

concerning the nature of innovative activities.

Hypothesis (IN-ii): Innovation is always carried out by a firm techno-

logically most advanced at the time of innovation. Among those firms
which are potentially capable of carrying out innovation the chance for

success is equal at every point in time.

This hypothesis is, of course, an opposite extreme of hypothesis (IN-1)

which insisted that every firm, whether technologically advanced or not,
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is potentially capable .of striking immovation. Needless to say, it cor-
responds to the special case we examined in Section 3. Although we found
it easy to illustrate, by means of a diagram, the evolutionary pattern

of ‘the state of technology in this case, the analysis of its long-run
average performance turns out to be far more involved.

Let £At represent the very small probability that one of the tech~
nologically most advanced firms succeeds in carrying out an innovation
during a small time interval At ; where & is a very small positive
constant. Then, the foregoing hypothesis can be restated more formally
in the following manner. Suppose that the best practice production method

at time t has unit cost equal to c¢,, which was introduced into an industr;

N
at time T(CN) ( < t) . Then the number of firms which employ this pro-

duction method at time t can be computed as

M

Fo e M =173 (M-L)expl-u(t =T I)T °

Since the hypothesis (IN-ii) insists that only those firms whose unit

cost is ¢y are potentially capable of introducing a new and better pro-
duction method CN+1 and that any of those potential innovators has an
equal chance for success, the probability that an innovation occurs during
a small time interval between t and t+At must be equal to EAt times
the number of those firms given above, or

MEAL
(21) 1+ (M_l)exp[—u(t-T(CN))] )

Consider the sequence of successive waiting times for Innovationm,
T(cz)-T(cl), T(c3)-T(c2), ...,T(cN)-T(cN_l),... . Under hypothesis

(IN~ii) they can be regarded as random variables which are identically
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distributed and independent of each other. 1In fact, that hypothesis
enables us to compute explicitly the probability distribution of each
waiting time.. Let U(s) denote the cumulative probability distribution

of the waiting time T(CN) - T( } . Then a calculation whose detail

“N-1
is relegated to Appendix 1, shows that it has the form of

~EM/u
(22) s =1- E‘-‘ﬁl— temen |

for s > 0 . From this we can also calculate the expected waiting time

for innovation T as

(23) T

m

which is a decreasing function of £ and yp . (See Appendix 2 for the
derivation.) The waiting time for innovatiom is thus expected to shorten
as the effectiveness of innovative or imitative activity tends to increase.

In contrast to the first case, the probability of an innovation is
uneven under hypothesis (IN-ii). The probability of the next innovation
is very small immediately after the occurrence of one inmovation (for
there is only one firm capable of striking it), but, as more and more
firms succeed in imitating the best practice method and become potential
innovators, this probability rises accordingly until the whole population
of firms become capable of inmovation.

As time poes on, however, innovation takes place over and over again.
After a sufficient number of years, therefore, a certain statistical

regularity is expected toemerge out of the seemingly uneven pattern of
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the occcurrence of imnovations. For instance, 1t 1s expected that the aver-
age number of innovations during a given time interval should depend in
the long-run only on the length of that interval, and not on the calendar
time itself, This is indeed the case, for we can establish the following
limit theorem. Let N(t) be the number of imnovations from time zero

to time t , (This amounts to saying that the best practice production
technique at time t has unit cost cN(t) .} Then, as t >« , for any

time interval At > 0 we have

(24) E{N(t+At) - N(£)} ~ %-At )

(This is an adaptation of the sc-called renewal theorem in probability
theory. See, for instance, Feller (1966), Ch. XI, for the proof of the
renewal theorem as well as for the related discussioué.) This theorem
says that after a long passage of time the time rate of inmovation,
(N(t+At) - N(t)) /At , on average tends to a constant rate whose value
is equal to the reciprocal of the expected waiting time T .,

The fact that the dynamic pattern of innovations will in the long-
run settle down to statistical uniformity suggests to us that even under
the hypothesis (IN-ii) the entire state of technology itself, whose total
structure is shaped up by a dynamic interaction between the forces of
innovation and imitation, will also exhibit a statistical tendency towards
regularity, Let F:(c) be, as before, the expected cumulative frequency

function of wnit costs at time t. Then, we are indeed able to show that

as t »®
(25) Fi(e) > ¥(2)

2/ -1 ~(EM/u)
= -1—"[ E.-I- (M-1) exp{— -piz + pyH - Ei—_m—l+i]§iexp(uy)] dy ,
g
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for z = &nc - &n C(t); >0, independently of the calendar time ¢t .
Since the proof of this theorem is rather lengthy, it is relegated to
Appendix 3. %(z) introduced above is the "long-run average' cumulative
freéﬁenéy function of cost gaps under the hypothesis (IN-ii). It is a
function only of the value of cost gap =z the relative measure of the

distance between a given unit cost ¢ and the potential wmit cost C(t) .
FigurelO illustrates a typical shape of %(z) ¢§/ As is seen from
this diagram, the long-run average cumulative frequency function of cost
gaps has also a shape like the logistic growth curve even under hypothesis
(IN-ii). But, as is indicated by its density form ?(z) = d%CZ)/dz illus~
trated in Figure 11, it is, unlike the true logistic growth curve, skewed
to the left. Figures 12, 13, 14 ang 15 then illustrate
numerically the influence of a change in each parameter value on the shape
of the density form of the long-run average frequency function of cost
gaps. The first diagram shows that an increase in the de-~
clining rate of potential unit cost A tends to widen the average gap
between unit costs and the potential unit cost and at the same time to
disperse their distribution across firms. The second one shows that an
increase in the rate of innovation (among the technological leaders) &
has a tendency, albeit weak, to narrow the cost gaps and to make their
distribution more concentrated. The third one shows that an increase
in the rate of imitation u also tends to narrow the cost gaps and con-—
centrate their distribution. Finally, the last diagram shows that the
shape of the long-run average frequency function is sensitive to a change
in the number of firms under hypothesis (IN-ii). An increase in M in

fact has a tendency to widen on average the cost gaps and at the same

time to make their distribution across firms more concentrated.
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Fig. 14: The long-run average density functions under hypothesis
(IN-ii) for various values of u (where X = .05 ,
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Fig. 15: The long-run average density functions under hypethesis (IN-ii)
for various values of M (where A = ,05 , £ = .01 and
= .50)
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7. Concluding Remarks

In the present paper, we have developed a simple evolutionary model
of technological imnovation and imitation, which captures some of the
essential features of what Joseph Schumpeter called the process of cre-
ative destruction in a capitalist economy. In the first place, we have
been able to describe the dynamic pattern of the diffusion of a new pro-
duction method through firms' imitation activities as a logistic growth
process, in which the rate of diffusion is slow and hesitant initially,
but soon accelerates by the so-called bandwagon effect, and then slows
down again as the industry is more and more saturated with the production
method in question. The firms' imitation activities thus constitute an
equilibriating force of technology, which tends the industry's state of
technology (not wmniformly but logistically) towards a neoclassical equi-
librium, in which all the firms have full access to the most efficient
production method available, We have then seen that the function of
innovation lies precisely in upsetting this equilibriating tendency.
Whenever it occurs, it breaks up the existing order of an industry and
starts a new round of competitive struggle for imitation, The evolution
of the industry's state of technology is therefore governed by the dynamic
interaction between the continuocus and equilibriating force of imitation
and the discontinuous and disequilibriating force of innovation. In fact,
we have been able to show how these two opposite forces will work hand
in hand to generate a certain statistical regularity in the way in which
the relative configuration of the distribution of efficiencies across
firms develops itself over time. Under the joint pressure of imitation
and innovation, the industry will not reach a neoclassical equilibrium

with perfect technological knowledge even in the long-run. While new
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technological knowledge .constantly flows into the industry, actual pro-
duction methods of a majority of firms always lag behind it, and a
multitude of diverse production methods with a wide range of efficiencies
will coexist forever. Indeed, it is merely the statistical
regularity of the relative pattern of these microscopic disequilibria
that characterizes "the long-run" of the industry.

The only economic principle we have employed in the present paper
is that of efficiency, namely, that firms always desire to adopt the more
efficient or more profitable production method, whenever possible. (That
they are not always able to do so is, of course, the starting-point of
this paper.) All the results we have obtained here are therefore founded
ultimately on this weakest of all economic principles. The task of the
sequels is to introduce more specifically economic principles into
the basic model and to work out their implications for our Schumpeterian

dynamics, In particular, in the sequel

(Part II: Technological Progress, Firm Growth and "Economic.Selection")
we shall introduce another simple economic principle, that firms success-
ful in innovation and imitation grow relatively faster than less success-
ful ones, and study how the process of firm growth and the process of
technological innovation and imitation work hand in hand to mold the

evolutionary pattern of the industry's state of technology.



APPENDIX 1

Let U(s) be the cumulative probability of the waiting time for
innovation T(cN+1)-T(cN) » Suppose that none of the firms have been
successful in innovation during a time interval [0,s8) after the last
innovation time T(cN) . Clearly, the probability of this occurrence
is given by 1 - U(s) . On the other hand, by (21) the probability that
one of the firms will int;oduce 2 new production method with CN+1 unit
cost during the next small time interval At equals EMAt/{1+ (M-1)exp[-us]} .

Since the probability that the production method with SN+l unit cost

will be introduced for the first time during the same small interval is

the probability that no firms have been successful in [0,s) and one of
the firms becomes successful during the next small interval At , we have

the following equation:
(A1) U(s+at) - U(s) = (1-U(s))-{eMat/[1+ (M-1)exp(-us)]} .
By letting At -~ 0 , we obtain:

(A2) -d%%s—)-= (1-u(s)) -[eM/{1 + (M-1)exp(-us)}] .

We can solve this differential equation as follows. Rewrite (A2) as

(43) i‘-l-'g‘g‘—sl’—/(l—msn = -M/{(1+ M-Dexp(-us)} ,

and integrate, we obtain

1

s
(A4) sm(l-U(s)) = ¢ - eMf T D et
0




A2

where C 1is an integration constant, If we note U(0) = 0, we can

rewrite (A4) as follows

S
(a5y U(s) =1 - EXP[;EMIO 1+ (M—l%exp(-ut)d€] ’

Now, the term inside of the exponential function must be computed. Let

y(s) represent 1+ (M-1l)exp(-us) . Then

1

fo T Demp(oot T LY
M

ey

vy —ply-n)

-]

M

P B o 2

y(s) y=1 ¥

M

y(s)

1 w11
=3 zn,:—-—M +;iexP(us):l .

Substituting of this into (A4), we finally obtain

(A6) U(s) = 1 - exp{—&M'%ﬁnEexp(us) +%}

-EM/u
=1 - Eiexp(us) +-M—}.;]-E[ .
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APPENDIX 2

The expected waiting time is given by

o

)= Tle)} = [ 5-du(s) .
0

(A7) T = E{T(CN_H_

By integrating the right hand side by parts, we have
[ sedu(s) = [ [1-U(s)lds .
0 0

Hence, by (A6), we obtain

o -tM/u
(AB) 1= f E%—l- +—§exp(us{l ds
0

1 ~1
-1 t(EM/u)-l_(l___;t] “ar |
LI M

where t = [(M-1)/M+ (llM)exp(us)]-l » which can be further rewritten as

1 © n
S L@ [M_;il] Pt
o n=0

n 1
: Hy?-{;] . tn-1+(€!'1/u)d{{
n=0 0

‘E -1\ 1
0 M un+EM 7

n=

I

=

-
~18
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APPENDIX 3

The purpose of this appendix is to deduce the long-run average cumu-~
lative distribution %(z) under hypothesis (IN-ii).

As a preliminary for this, let us introduce several random wvariables
which play useful roles in the analysis that follows. Let N{(t) be, as
in the main text, the number of innovations from time Q0 to t . Then,
we can represent by N (L) the unit cost of the best practice method at
time t . We can alsoc represent by CN(t)+1 the unit cost associated

with the next innovation. Obviously, > C(t) >

“N() = °N(t)+1 * “here

C(t) 1is the potential unit cost at time t . Moreover, since we can repre-
sent the innevation times of Ch(t) and SN (E)+ by T(cN(t))' and
T(;N(t)+l) ,, this inequality implies by (13) and (14) that

T(CN(t)) st <T(c

Then, T{e ) = t represents the time

N(t)-i-l) . N(t)+1

period from t to the next immovation time. We call this "the residual
waiting time" at time t . (The time elapsed since the last innovation
time, t - T(cN(t)) , may be called "the spent waiting time," but we are
not concerned with this in this appendix.) Let us denote by Ht(y) the
probability that T(CN(t)+1) ~t <y . In other words, Ht(y) represents
the probability that the first innovation time after time t 1lies within

a time~-interval (t, t+y} . 1In the theory of renewal process it is well

known that as t +> = we have
1

W9 H ) s Hy) [ (1-UG6)Ids
0

where U(s) and 1 are the distribution function of the waiting time

and its expected value, introduced in the preceding two appendices. (See



Feller [1966], p. .) Substituting {A6), we obtain the formula for

the limit distribution ﬁ(y) as

) " - (EM/u)
(a9") H(y) = f -+*exp(usi] ds .

Consider Ft(c) , the relative frequency of firms with unit cost
¢ or less at time t . Let s = T{c) denote the imnnovation time cor-

responding to ¢ . Then, N(s) represents the number of innovations

from time zero to s , CN(S) the unit cost of the best practice method

at time s , and cN(S)+1 the unit cost of the first innovation following
time s . We have ¢ = C(s) > Ch(s)+1 ° By the inverse relation (14),

we also have s < T<°N(s)+1) . (We suppose, for the

time being, that s # T(CN(S)) .} Now, when ¢t < T(CN(s)+l) , an inno-
vation with unit cost cN(s)+l has not occurred as yet, so that

Ft(CN(s)+1> equals zero. Indeed, since by definition ¢ < °N(s)+1 °

Ft(c) also equals zero. Then, at the innovation time of CN(s)+1

i.e., at t =T(c the value of Ft(c ) jumps to 1/M.

N(s)+1) °
Together with this, the value of Ft(c) , for

N(s)+1

na

CN(s)+l = © © “N(s)

also jumps from zero to 1/M . After this innovatiom, Ft(c) starts
growing under the pressure of the firms' imitation activities. In fact,
it is plain from the discussion of the special example in Sectiomn 3 that
under the hypothesis of (IN-ii) Ft(c) grows according to a logistic
growth curve:

1
1 + (M-Dexpl-u(t-T(c

(A10) F (c) = , t2T(e ),
N(s)+1))) = TN(s)H

independently of the pattern of the occurrence of innovations that follow.



Ab

Let us rewrite (Al0) as follows:

(A10')  F,(c) = L

1+ (M-1)exp{-u(t-s) +u[T(c 5]}

N(s)-i-l) -

1
T 1+ Dexpl-Gu/a)z +uyl *

for y £ z/x ; where 2z 2 fn c -~ &n C(t} = «A(s~-t) and y = T(c
The variable y in the above expression is nothing but the residual
waiting time at time s and has the probability distribution Hs(y) .
The expected cumulative distribution can be therefore calculated as

z/A 1
(Al1) Fi(e) = | H_(dy) .
0

1+ (M-Dexpl[-(p/A)z +uy]

(In calculating this expected cumulative probablity, we have ignored the
possibility of s = T(CN(S)) s for its probability is zero in any way.)
Let t and s go to infinity, while keeping =z constant, and take note

of the limit theorem on Hs(y) » given by (A9'), we finally obtain

the limit theorem that

a12)  Fio) » F(2)

2/ -1 ~(EM/u)
| [ gy G/Rm L L LTy
0

which is independent of the calendar time ¢t .
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FOOTNOTES

Recent attempts at formalizing the "vision" of Schumpeter - Winter
{1969], Nelson and Winter [1973, 1974, 1976, 1977] and Futia {1980].
Our indebtedness to their pioneering works ought to be obvious.

See Iwai [1981], Chapter 2 for an application of the similar idea
to the theory of expectation-formation.

This will link our Schumpeterian dynamics to the so-called neo—
Schumpeterian models of Scherer [1967], Kamien and Schwarts [1972,
1975], Loury ([1979], Dasgupta and Stiglitz [1580a, 1980b] and others.
Their analyses, however, treat the firm's R&D activity as a one-
shot game and fail to situate it in a long-run evolutionary process
of industrial development.

In the next paper which takes an explicit account of the process
of capacity growth, this hypothesis will be wodified into:

Hypothesis (IM): The probability that a firm is able to copy a

particular production method is proportional to the share of total
productive capacity which employs that method in the period in
guestion.

It is, however, possible to replace the assumption (3) by another:
that the firm imitates only the best practice production method,
or uft(c)At , for ¢ = c, (the wnit cost of the best practice

method), and 0 otherwise, and then to reproduce qualitatively most
of the results obtained under (3).

In the modern economy where many firms are engaged in Research and
Development activities, however, the distinction between invention
and innovation has become very fuzzy. I am in fact planning to
develop an alternative model in which the firm does both inventive
and innovative activities.

An increase in u may widen the average cost gap if 1+v/u < fn(u/v) .

But this somewhat perverse case can be ignored as long as v 1s
sufficiently small relative to u .

For this illustration, we have chosen the values of parameters as
x=,05, £=.01, u=.50 and M =20,
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