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ARBITRAGE PRICING THEORY IN A FINITE ECONOMY*

by

John J. Beggs

1. Introduction

In a recent paper Huberman (1980) has re-examined the central result
of the arbitrage pricing theory (Ross, 1976), namely that there exists
a linear-like relationship among mean returns of assets and the covariances
of those returns. Huberman establishes that such a linear relatiomship

is "approximately' true for "most'" assets in the limit economy. The pro-

cedure involves establishing a bound on the squared deviations from an
exact linear relationship and showing that such a bound is independent of
the numbers of assets being traded in the economy. Hence as the number of
assets becomes large the given amount of deviation from the linear rela-
tionship between mean returns and covariances must be “spread"” over a
large number of equations. This spreading involves, for example, making
the deviations from linearity on each asset very small or, perhaps, fixing
the deviations from linearity to be all associated with one or several
assets and have all the remaining assets fit the linear relationship exactly.
Huberman avoids making assumptions about preferences and defines arbitrage
as a situation where there exists a sequence of arbitrage portfolios whose
expected returns go to infinity as the variance on returns goes to zero.
One important consequence of this definition of arbitrage is that it does
not allow one to constructively establish the "size" of the bound on the

squared deviations from linearity, hence it is not possible to constructively

*This paper has benefited from discussions with Stephen Ross and Gregory
Connor.



establish how many assets would be required before the bound becomes rela-
tively insignificant. Connor (1980) has examined this linear-like rela-
tionship, again in the context of sequences of economies, and has, with the
aid of assumptions on preferences shown that in the equilibrium state for
the limit economy the linear relationship among mean returns on assets and
the covariances of those returns will hold exactly. Connor also requires
further assumptions upon the asset structure of the economy which admit the
possibility of all asset holding portfolios being well-diversified in the
limit economy.

The notions of sequences of economies, and limit economies, while
useful theoretical comstructs, de not relate well to real-world market
phenomena. For these reasons it is most useful to establish the arbitrage
pricing theory result for a fixed finite economy. In a finite economy
the linear relationship of mean returns to covariances does not obtain.

Rather one can establish an exact linear relationship among mean returns,

covariances and equilibrium portfolios,

The chief result for quadratic preferences can be summarized
as follows. Let 0« be an N-dimensional vector containing the proportions
of wealth held in each of N assets. If E is an N-dimensional vector
of expected returns per deollar invested in each asset, and B 1is an
(Nxk) matrix of factor weights for the variance-covariances of asset
returns, and D is a diagonal matrix containing the variance of the ido-
syncratic risk terms (defined more formally in Section 2), then an equi-
librium portfolio which is efficient in the sense that it exploits all

desirable arbitrage possibilities may be expressed as

(1) E = YOE + YlDu + Byz



where Yo and Yl are scalars and Y2 is a k-dimensional vector. The
vector & is an N-dimensional vector of units. This result is powerful
in that it suggests a testable hypothesis for the theory. Generalizations
to other utility functions are considered in the text of the paper.

It is useful to link this result to the "limit" economy case. Connor
establishes sufficient conditions for a well diversified economy, so that
in the equilibrium of the limit economy all asset holding portfolios will
be well-diversified. By well diversified one means that the proportion
of wealth held in any one asset becomes small. Connor's well diversified
economy has the further property that the proportion of total idiosynchratic
risk due to any given asset is small relative to the sum of the idiosyn-
chratic risk on all assets. This, in effect, ensures that none of the
elements of D , defined above become large. It is immediate from (1)
that these conditions ensure the linear relationship among expected returns
and covariances of returns. If in equation (1) o = 0, the familiar arbi-
trage pricing result obtains exactly.

The presentation procedes first with the result for a quadratic
utility function. This allows an attractive diagrammatic exposition of
the relevant propositions. Extensions to more general utility functions
are then considered. Section & of the paper indicates the close relation-
ship between the arbitrage pricing theory and the CAPM, while Section 5
discusses the significance of the results in terms of the testing of

asset pricing models.



2. Model

In this section the basic model of the asset returns generating
process 1s introduced along with some propositions on the opportunity set
created by arbitrage possibilities. Individuals are assumed to believe
that the random returns on the set of assets being considered are governed

by a k-factor generating model of the form:
(2) R=E+BS+¢.

The first term in {(2), R , is an N-dimensional vector of returns on an
initial one dollar purchase of each of the N assets traded in the market.
E is an N-dimensional vector of expected returns. The term & represents
a k—-dimensional vector of random variables which are the random factors

in the model. These factors capture the systematic components of risk

in the model., 1t is assumed that

(3a) E(§y = 0

B is an (Nxk) matrix of weighting coefficients which reflect the sen-
sitivity of each asset's returns to the movements in the factors. The
final term, & , is an N-dimensional vector of random variables which
capture the unsystematic risk component which is idiosyncratic to each
asset. It is assumed to reflect the random influence of information that

is unrelated to other assets. It is assumed that

(4a) E(e) = O

(4b) E(ee') = diag[ci s oi ] =0

1 N NxN



and further that e is distributed independently of & . Finally it is
assumed that N , the number of assets being traded, is much greater than
k , the number of factors.

An individual's wealth holdings are dencted by the portfolioc vector
a , an N-dimensional vector, where each element shows the proportion of
total wealth held in an asset. When considering an alteration of that
portfolioc any new portfolio will differ from the old portfolio by amounts
contained in an N-dimensional vector, x . The sum of the elements of x
will be zero since the old and the new portfolios put the same wealth into
N-assets. In other words, additional purchases of assets must be financed
by sales of others. Portfolios, such as x , which use no wealth are
called arbitrage portfolios.

The vector of expected returns can always be written

(5) E = eY0~+DaY1 + BY2 +u

where Yo and Y, are arbitrary scalars, Yy is an arbitrary k-dimensional
vector and e is an N-dimensional vector of units. The elements of u ,

an N-dimensional vector, can then be chosen to ensure the equality. The
proposition introduced in Section 1 is established by showing that in equi-
1ibrium there exist values of vy for which the elements of u will be zero.

Consider now an arbitrage portfolio, x , constructed so as to

have zero systematic risk {orthogonal to B ) and having returns which are
uncorrelated with the returns on the weighted initial portfolio, Da (ortho-

gonal to Dua ). Formally, then x should satisfy the conditions
(6) x'[e:Da:B} = 0

where [e:Da:B] is a partitional (N x (k+2)) matrix, It is also useful



to scale x so that it satisfies the "size" requirement that
(7 x'x =1,

The exercise of an arbitrage opportunity, or the realignment of
a wealth holding portfolio, alters the expected return and the risk asso-
ciated with the wealth holding portfolio. The net expected return from
any alteration of the portfolio from o to (a+x) is given by x'E X

In view of the restrictions placed on x it can be seen from equations

(5) and (6) that
(8) x'E = x"u .

The risk associated with the initial wealth holding portfolic a , and
with the realigned portfolio (a+x) are given by the formulae in equations

(9) and (10) below.
(9) Risk(a) = Var[a'R] = a'BAB'a + ciu'Du
(10) Risk(o+x) = Var[(a+x)'R] = a'BAB'a + a'Do + x'Dx .

The simplification of the expression for the variance in (10) is due to
the orthogonality conditions imposed on the arbitrage portfolio, x , in
equation (6).

For notatiomal purposes the arbitrage portfolio has been normalized
(equation (7)) to be of unit length. In making investment decisions the

individual investor will select an arbitrage portfolio ¢x , where ¢ is

*The net expected return x'E will be taken to be non-negative. Suppose

an arbitrage portfolio satisfied (6) in such a way that x'E were nega-
tive. Then an equivalent solution would be X = -x , for which x'E would
be positive and X would continue to satisfy (6).



a positive scalar. The ¢ term has the effect of scaling the portfolio
up or down in the desired size. The net expected return from any arbitrage
or realignment of the portfolic, is linear in ¢ , while the net increment
to the variance of asset returns is quadratic in ¢ .

Arbitrage portfolios are the device by which an individual can alter
a wealth holding portfolio so as to take on alternative combinations of
expected returns and risk. Making use of equations (8), (9) and (10) the
opportunity set created by the presence of arbitrage portfolios, for which
there are positive net expected returns, can be graphed as in the diagram
in Figure 1. The diagram shows such an opportunity set for a given arbitrage

portfolio x satisfying the conditions in equation (6).
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FIGURE 1: Opportunity Set Created by Arbitrage Portfolio x , (x'u > 0) .



3. Linearity Relationships in "Arbitrage-Efficient" Portfolios

As indicated in Section 1, let us now assume that individuals have
mean-variance utility functions with the usual concavity properties. In-
difference curves can then be drawn on a diagram similar to that shown in

Figure 1. Figure 2, below, shows the individual's indifference curve which

passes through the point (a'BABa‘i—cga'Da, ¢E) the variance and expected return

associated with the initial wealth holding portfolio a . Superimposed

on Figure 2 is the opportunity set (for realignment of the portfolio)
associated with the presence of an arbitrage portfolic =x which satisfies
the conditions of equation (6) and for which x'u > 0 . The shaded area

on the opportunity set represents all those possible realignments of the

Expected U(a)-concave
Return indifference
curve
Desirable ¢
arbitrage
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FIGURE 2. Desirable Arbitrage Opportunities Created by Arbitrage Portfolio
x, (x'u>0)



wealth holding portfolio (associated with different values of ¢ in the
arbitrage portfolio ¢x )} which would allow the individual to obtain a
higher level of utility. Since the slope of the opportunity set approaches
infinity as ¢ approaches zero such a realignment of the portfolio will
be desirable as long as the indifference curve between expected return and
risk is concave. This is in accord with the notion that the individual will
accept any small orthogonal risk which yields a positive expected return.
It is apparent from the above discussion that equilibrium will not
obtain (opportunities remain to be exploited) while there exist arbitrage
portfolios such as =x for which x'u 1is positive (recollecting that x
is selected to ensure that x'u is non-negative). Referring back to
equation (6) it is known that there exist (N-k-2) linearly independent
arbitrage portfolios which can satisfy the orthogonality conditions. These

arbitrage portfolios can be collected in a matrix
(11) X = [xl, x
which is of dimension (N xN-k-2) . For an equilibrium to obtain a neces-
sary condition then is that

(12) X'u =0,

Since the y terms introduced in equation (5) are entirely arbitrary we
can now procede to make a judicicus choice of values. For example, one

can define vy 1in the following fashion. Let

o — _— — _-1— —
.Yo E' e!
"
(13) Y=1v; | = |{a'D]|[e: :B] a'D |E .
.Y Bl B'
IR N T I
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It is a simple result in linear algebra to then show that the residual

terms, u , defined

(14) u =F - [e:Da:D]¥

will be orthogonal to [e:Da:B] ., That is

(15) [e:Du:D}'u =0 .

As the arbitrage portfolios were selected to be orthogonal to ({e:Da:B] ,
equations (12) and (15) together form N linearly independent homageneous
equations. For vy defined as in (13) the solution of the equations ensures
that the vector of residual terms, u , is zero valued. That is, there

is an exact linear relationship among expected returns, covariances of

returns and equilibrium portfolios (appropriately normalized for idiosyn-

chratic risk)

(16) E = [e:Da:B]? .

Alternétively this exact linear relationship can be restated as
(17) Do = [e:E:B]A

where the X are the obvicus transformations of ? .

Equations (16) and (17) are then the central results of this paper,
They extend the exact linearity results of the arbitrage pricing theory
to the finite economy. The result applies to the equilibrium portfolios
of each trader so that the vectors o and ¥ could well be subscripted
by 1 to read ui ’ %i where i =1, 2, ,,,, M and M 1is the number

of investors in the market, Since linearity holds for each individual

it must be true for the portfolios of any subset of traders and, of course,
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for the market portfolio,

The result in (16) is quite similar to the arbitrage pricing theory
results for limit economies. These results require that the number of in-
vestment opportunities become large and that portfolios be well-diversified
so that the proportion of wealth held in any one asset (the value of any
one element of the vector a ) becomes very small. Exact linearity among
expected returns and covariances is achieved as the elements of o go in-
dividually to zero.

Exact linearity among expected returns and covariances may be achieved
in a finite economy in the special situation in which,at equilibrium there
are traders with no wealth and no position in the market, o =0, wheo
will swoop in to take advantage of any arbitrage oppertunity should it arise.
It is certainly a traditional dichotomy in economics to think of capitalists
and workers., In the present context the workers might be imagined
at the fringe of the market, having no capital wealth, but willing to exer-
cise any arbitrage possibility which arises (picking up the crumbs if you
will). In many cases this may be a plausible empirical approximation to
real world markets. An exact linear relationship will also obtain if any
individual trader were in equilibrium, holding a portfolio, <« , such
that Do were spanned by the columns of [e:B] . Unfortunately there
is little theory to guide us as to when this happy event would occur.

The first order conditions for optimum portfolic selection under
quadratic utility functions bear some resemblance to the results in equa-
tions (16) and (17). The problem posed, in its simplest form is:

(18) Max: Expected Utility = wla'E + wza'(BAB'-+D)
a

Subject to: a'e =1 .
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The solution to (18) yields the following familiar first order condition:

(19) (BAB' +D)a = ele + ezE

where the parameters 91 and 82 contain the parameters of the utility
function wl and wz and a Lagrangian multiplier. For the case where
the processes generating factor return does not contain factors (B = Q) ,
but only idiosynchratic risk, then (19) simplifies to a comparable result
for (17) where B = 0 . For the general case where B # 0 (19) gives

a highly non-linear relationship between portfolio shares and factor weights

and bears no immediate relationship to the equilibrium statement in (17).

4, Extensions to More General Utility Functions

The constructive application* of the arbitrage pricing theory re-
quires some bounds being placed on the curvature of the utility function.
Ross (1975), for example, assumes bounded relative risk aversion while
Connor (1980) requires bounded absolute risk aversion and bounded third
derivatives of the utility function. The extensions of the results in
Section 3 go through in cases where the utility function is a polynomial

function of bounded order. The exact linearity result requires that some

higher order derivative of the utility function becomes zero. In so far
as the utility function is well approximated by a polynomial of bounded

order the results stated in this paper can be reinterpreted as approximate

linearity.

*To reiterate the point made in the Introduction: Huberman provides an
existence theorem without recourse to conditions upon the utility function,
Though this is indeed a parsimonous proof of existence it does not leave

any indication as to how "large' an economy needs to be before the arbitrary
pricing theory "approximation" can in fact be regarded as an "approximation."



13

Consider the individual, having a wealth holding portfolic a ,
who is considering an alteration of that portfolio, via an arbitrage port-
folio x, to (o+¢x). If o 1s to be an equilibrium portfolio it must
be that the expdcted marginal utility of any alteration to the portfolio
will be zero. If =x is defined to satisfy the normalization in equation

{(7) and if ¢ 1is a scalar of the form defined earlier, equilibrium then

requires that

(20) BE{U[(uB+ ¢x) "R]} -
¢ ¢=0

that is,
(21) E{U'[«"R](x"R)} = O .

Consider now a Taylor Series expansion of U'(-) around the terms
a'(E+B§) . 1If the arbitrage portfolio, x , 1is chosen as before to be
orthogonal to the factor weights and the unit vector we can write x'R

as (x'E+x'e) . If the marginal utility function U'(+) can be written

as a Jth order Taylor's Series expansion equation (21) can be stated

J .
(22) E{U'[a'R]}(x'E) + E{ | (x"e)(a'e)? J
j=0

A+ 1 (E+B5) ]
I

U(1+J)(-) is the (1+-j)th partial derivative of the utility func-

where
tion U(<) . The similarity to the result for quadratic utility functions
is now apparent. In Section 2 the arbitrage portfolio was selected to be
orthogonal only to the vector of the wealth holding portfolio o . Now

consider placing additional restrictions on the arbitrage portfolio.

Congider the vector defined
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(23) LG D

which is a vector containing the proportion of wealth held in each of the
N-assets raised to the jth power. Let D(j) be a diagonal matrix where
the diagonal elements contain the jth moments of the idiosynchratic
disturbance terms. Now the arbitrage portfolios will be required to satisfy

, P
the orthogonality condition

(24a) x'[e:B:D(z)a(l):... :D(J)u(J-l)] =0
(24b) x'0 =0 .

There will be (N-k-J) linearly independent arbitrage portfolios which
will satisfy condition (24). For arbitrage portfolios satisfying equation
(24) the independence of the idiosynchratic disturbances ¢ and the
factors & ensures that the second term in the expression in equation
(22) will be zero. Taking the expected marginal utility to at all times
be positive it follows that the x'E term must be zero. Collecting the
(N-k-J) 1linearly independent arbitrage portfolios satisfying (22) in an

(N x (N-k-J)) matrix, X , we can write that
(25) x'E=20
Writing E as the regression of E on the matrix & we have

(26) E=0y +u

* D(z)a(l) corresponds to Da defined in Section 2 of the paper.
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where u 1s a vector of residual term which will be orthogonal to Q .
That is,

(27) u'Q =0 .

From (25) and the orthogonality conditions imposed on X ,

(28) X'E = X'y + X'u

]
e
‘:..

It
o

Since X and & are linearly independent by definition of X , equations
(27) and (28) give N 1linearly independent homogeneous of degree zero
equations in u which ensures that the sclution for u in equilibrium
will be zero. Restating the exact linearity result we have that in equi-

librium, where o dis an equilibrium wealth holding portfolio

(2) (D),

(29 E = [e:B:D P, :D(J)a(J-l)]y

where y is a (K+J) dimensio al vector of parameters.

As discussed for the quadratic utility function, diversification of
the type envisaged by Connor (1980) which made individual wealth holdings
in any one asset small would cause there to be near linearity among expected

. %*
returns and the covariances.

*The above result requires finite moments of the idiosynchratic risk term

up to the Jth order. Connor (1980) requires only finite third moments.
Intuitively, this parsimony with moments is achleved by assuming bounded
third derivatives of the utility function. In the case described in this
paper finite moments to the third order would only be adequate if the
utility function were a fourth order polynomial.
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5. The Not-50"Grey Eminence" Behind CAPM

In a recent paper Roll and Ross (1981) assert that

There are two major differences between the
APT and the original Sharpe (1963) diagonal model,
a single factor model which we believe is the in-
tuitive grey eminence behind the CAPM. First, and
most simply, the APT allows more than just one
generating factor. Second, the APT demonstrates
that since any market equilibrium must be consis-
tent with no arbitrage profits, every equilibrium
will be characterized by a linear relationship
between each assett expected returns and its re-
turn's response amplitudes, or loadings on common

factors.
Indeed, the relationship between the APT and CAPM models can be made
most transparent in the context of presentation of the arbitrage pricing

theory offered in Sections 3 and 4 of this paper. The linearity result

of CAPM is of the form (see, for example, Roll, 1977).

(30) E = eoe + (rm"BO)B

where E 1is the vector of expected returns, 60 is the rate of return

on the riskless asset, T, is the expected rate of return on the market

portfolio so that

(31) E

=
1l
2

E-

where o is the market portfolio, and is a vector containing elements

defined

Covariance between return on ith asset]
(32) 8. = and return on market portfelio
i (Variance of return on market portfolio)

, 1=1,...,N.

Consider the case where the basic asset return generating process

is of the type employed in the APT and which was described in equation (2).



17

It is then a2 routine exercise to demonstrate that equation (30) may be
rewritten in the form of the result for the arbitrage pricing theory given

in equation (16). That is,

(33) E=84e + 8D + B8

0 1 2

where, 6, 1s as defined above, and

0
{a'E-0.)
_ m 0
(34a) el " (o BAR'a' +'Du_)
™ m m m
(a'E-86,)
- m 0 '
(34b) B, = (e BAB'a' 4+a'De_ ) AB %
m m m m

&, is a scalar and 6, 1is a k-dimensional vector.
It seems that some disservice is done to the CAPM by describing it
as a single factor returns generating model. An inspection of equations
(30) and (33) makes quite clear that the CAPM 8 simply serves to aggre-
gate, ex post, all the information pertaining to factor specific effects.
The linearity between expected returns and factor effects is again achieved
with the aid of the terms in the vector (Dum) . The simplicity of the

g decomposition has apparently not been fully realized in earlier liter-

ature on this subject.

6. Empirical Testing of the Arbitrage Pricing Theory

In view of the above results for a finite economy it is useful to
reflect upon the empirical testing of APT and CAPM as reported in the
literature. The central concern of Roll and Ross (1980) and, for example,

Miller and Scholes (1972) has been the apparent ability of the idiosynchratic
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risk term to explain expected returms. In the APT model, as formulated
by Ross (1976), expected returns were thought to be fully explained by
"factor" weights, while in CAPM expected returns were thought to be fully
explained by the covariance with the market portfolio as measured by beta.
As Miller-Scholes and Roll-Ress indicate part of their apparently contra-
dictory results may be due to sample bias in the estimation of variance
in non-symmetric¢ distributions,

A reading of the results in Sections 3 and 4 indicates that in a
finite economy there may be good theoretical reasons to believe that idio-
synchratic risk plays a role in explaining expected returns in the arbitrage
pricing framework. Empirical studies which regress expected returns on
factor weights in a world with quadratic preferences clearly omit the
variable (Da) , a vector containing idiosynchratic variances in each
element. When such idiosynchratic variance terms are included in the re-
gression one would expect the improvement in explanatory power of the
regression of the type reported by Roll and Ross (1981).

As the utility function is generalized to higher order polynomials
additional terms must be included in the regression (of the form
[D(Z)a(l):D(s)a(2>:... :D(J)a<J“1)] , see equations (23) and (24)}) to
ensure the linearity of the relationship. The CAPM automatically includes
the terms (D(z)a(l)) but if the utility function is more general, addi-
tional terms need to be included. Indeed the omission of these terms may
explain the Miller-Scholes result if variance is acting as a proxy for
other omitted higher order moments.

Future testing of asset pricing models will certainly require that
attention be paid to the curvature of the utility function, as indicated
by the order of the polynomial, and to the resultant higher moment terms

which appear in the relationship between expected returns and factor weights.
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7. Conclusions

Since it is never clear what real world phenomenon corresponds to
the notion of a sequence of economies, it is valuable to have insights
into relevant theoretical mechanisms for the case of a finite economy.
The chief result of the arbitrage pricing theory, namely a linear rela-
tionship among expected returns and covariances of returns does not hold
exactly in s finite economy. However, for a large class of utility func-
tions it is possible to construct comparable linear relationships, where
the gap between expected returns and covariance is "figuratively" filled
by terms involving the equilibrium wealth holding portfolio and the vari-
ances and higher moments of the idiosynchratic disturbance term. Since
it is possible to empirically examine wealth holding portfolios and to obtain
estimates of the moments of the idiosynchratic risk term for each asset
this information can be incorporated into any empirical investigation of

the arbitrage pricing theory in real world finite economies.
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