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Abstract

It is known that in large economies with strongly convex preferences,
the commodity bundles agents receive at core allocations are near their
demand sets. Without convexity, it is known that agents need not be near
their demand sets, although they will satisfy a weaker condition. 1In
this paper, we show that, for "most" economies (in the sense of prob-
ability and in the sense of the Baire category theorem), the stronger

form of approximation holds without convexity.
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I. Introduction

It has been known for some time that in large finite economies with
strongly convex preferences, core allocations can be decentralized in
a strong sense: there exist prices so that individuals get commodity
bundles close to their demand sets (Hildenbrand [12], Anderson [1]).
However, counterexamples are known if one drops the strong convexity
assumption, and the published theorems in that case give weaker results:
agents get bundles which are functionally like demands, but need not be
near their demand sets (Hildenbrand [12], Dierker [10], Anderson [2]).
The difference is significant for the following reason. If the average
distance from the core allocation to the demand sets is small, then it
follows that average excess demand must also be small. Thus, core allo-
cations will be close to approximate Walrasian equilibria. Since it
could be argued that approximate equilibria are as stable as exact equi-
libria (after all, slight deviations in supply and demand can be accom-—
modated through inventory adjustments), this is very nearly as strong
as asserting that core allocations are near exact Walrasian equilibria.
It should be emphasized, however, that not everyone shares this view,
and many would consider this "strong" form of decentralization to be
considerably weaker than being near an exact Walrasian equilibrium. We
believe everyone, however, would consider it considerably stronger than
the "functional" notion of decentralization previously known to hold
without convexity.

The main thesis of this paper is that such counterexamples are rare
exceptions, and that the typical economy with non-convex preferences
is every bit as well-behaved as one with strongly convex preferences.

We make this explicit by using both probabilistic and topological notions



of "typical" behavior.

In Section 3, we show that the strong form of convergence holds for
all type sequences of economies, and in particular for replica sequences.
The theorem in the replica case shows that the convexity assumption in
the classic Debreu-Scarf Theorem may simply be dropped, and a conclusion
nearly as strong as theirs will still hold. The proof given is completely
elementary, and was obtained by translating a nonstandard proof.

In Section 4, we show that there is a residual set of economies
(without convex preferences) so that the strong form of convergence holds
for any purely competitive sequence converging to an economy in the
residual set. Residual is a notion of a "large" class, obtained from
the Baire Category Theorem; it is weaker than the notion of open and dense.
The residual set contains all the economies with strongly convex preferences,
so the result generalizes the previous results on core convergence with
strongly convex preferences. The proof uses Nonstandard Analysis, ori-
ginally introduced into the study of the core in Brown-Robinson {61, [7].
It should be noted, however, that it is possible to give a proof using
the standard measure-theoretic machinery described in Hildenbrand {12].

The results of Section 4 are related to Mas-Colell [17], which notes that
rate of convergence theorems of the type proven by Debreu [8] and Grodal
[11]) hold for sequences of economies with regular limits. However, the set
of regular economies, while open in one topology and dense in another,

does not appear to be residual in any topology.

In Section 5, we consider sequences of economies constructed at randow
by sampling from a measure describing the distribution of agents' char-
acteristics. We show that, with probability one, all core allocations

will be decentralized in the strong sense. The proof again uses Non-



standard Analysis. A genmeral meta-theorem guarantees that a standard
proof also exists, but it could be quite difficult to write it out.
Comments on this point are given in Section 5,

A few diagrams will help to clarify the intuition behind the proofs.
The decentralization theorems for the nonconvex case (Anderson [1])
establish a functional relation between core allocations and demand sets,
They assert that, for most traders, core allocations must lie within a
relatively constrained region which grows smaller as the number of traders
increases.

In Figure 1, e denotes the endowment vector, and p is an approxi-

mately decentralizing price vector. 21 . 22 » and & are perpendicular

3

to p; 22 is the boundary of the budget set with respect to p . The
core allocation can be guaranteed to lie within the shaded area; as the
number of traders get large, the distance between El and 13 can be
guaranteed (for most traders) to shrink to 0. As this happens, the shaded
region shrinks towards the demand set; this 1s illustrated in Figure 2
for the same preference relation used in Figure 1. It is illustrated

in Figure 3 for a preference relation with multiple demands. Problems
arise only if the preferences are tending to (but never quite reaching)
a preference with multiple demands. In Figure 4, we illustrate such a
sequence of preferences. Consider a sequence of economies in which some
agents of the first economy have preference », , some agents of the
second economy have preference >2 » and so on. In each case, x is
the unique consumption vector in the demand set. However, consumption
vectors near y could be in the core, provided the indifference curve
is tending toward y at least as rapidly as 23 is converging to 22 .

This shows how to construct examples whose core allocations do not converge
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to the demand sets, but it also gives a good idea of why such examples
are exceptional; the preferences must be changing in a way which is
carefully matched to the number of agents.

Finally, we point out that all our theorems are actually given as
limit thecrems for the d-core. The &-core is bigger than the core, and

is known to be non-empty in a more general setting than the core itself

(Hildenbrand-Schmeider-Zamir [14], Kannai [15]).

2. Preliminaries

We begin with some notation and definitions which will be used
k k

throughout. Suppose %, yYER , ACR
xi denotes the ith component of x
i i
X>y means x >y for all i
x>y means x >y and x # ¥y
i i
X >>y means x >y for all i
llxlt, = max |x']
l<i<k
k i
=)l = 1 %7
i=1
k

Ri-{xek : x>0} .

A preference 1s a binary relation on Rl_: satisfying the following

conditions
(1) monotonicity: x>y =— x H»y¥y
k
(11) continuity: {(x,y) : x >y} 1is relatively open in R,

(iii) free disposal: x >>y , y >z => x >z .

Let P denote the set of preferences.



An exchange economy is amap € : A + P x Ri s Wwhere A 1is a finite
set. For a€ A, let >E denote the preference of a (i.e. the pro-
Jection of €(a) onto P ) and e(a) the initial endowment of a
(i.e. the projection of &e(a) onto m& }. An allocation is a map

f:A +ﬁRi such that z f(a) = X e(a) . A coalition is a non-empty
a€A a€eA

subset of A . A coalition S can improve on an allocation f if there

exists g : § 4-Ri » g(a) >é f(a) for all a €S, and Z gla) = E ef(a)
aes aes

The core of €, C(e) , 1is the set of all allocations which can't be
improved on by any coalition. A price p 1is an element of Ei with
llpll, =1 . S denotes the set of prices, s° = {pe S :p> 0}
ME = max{”e(al) + ... + e(ag)ll°° :8yy ..., a, are distinct elements
of A, & <k} . Note that in the last definition, k is the dimension
of the commodity space mﬁ_.

Given x €RS, (»e) € PxB, and p €S, define
¢(p, %X, (>e)) = |p-(x-e)| + |inf{p-(y-e) : y >x}| . ¢ measures how
far x is from being demand-like. By a slight abuse of notation, we

let ¢(p, £, a) = ¢(p, f(a), (>h’ e{a))) if f 4is an allocationm.

The demand set for (>,e) , given p€ S, 1is
D(p, (>e)) = {XE]RI_: ! p*X < pre, ¥ > X = p°y > prel .

D(p, (>,e)) could be empty under the hypotheses we've placed on preferences.
By abuse of notation, we let D(p,a) = D(p, (>a, e{a))) i1if a € A .
We shall let P' denote {>€P : D(p, (»,e)) # ¢ for all pe S°
and all e € B&j . P' 1includes all preferences which are irreflexive
(x #x) and transitive (x >y, y» z => x > z) , as well as all pref-

erences which are irreflexive and convex ( {x : x >y} is convex for



all y ) (Sonnenschein [19]).
We need a way to measure the distance from x.e.mi to the demand
set. For B € Ri , p(x,B) = inf{”x~y”w: y € B} . Observe

p(x, D{(p, (>,e))) == 4f D(p, (>,e)) = ¢ .

The following theorem is proved in Anderson (1], under weaker assump-

tions on preferences:

Theorem 2.1, Let € : A+ 7P XJRi be an exchange economy. If £ € C(g)

there exists p € § such that

L ¢(p,f,a) < 4M .
aEA
Finally, since the core of an exchange economy with non-convex pref-
erences may be empty, we want to be able to deal with approximate cores.
We say an allocation f : A.*-Ri can be 6-blocked if there exists S C A

and g : S +]R§ such that g(a) ); f(a) for all a €S and

I g(a) < z f(a) - (5lal, ..., 8|A]) . The fat &-core of am exchange
aes aes

economy is the set of all allocations which can't be &-blocked.

The fat 6-core is similar to, but larger than, the strong d-core and
weak &-core defined by Kannai [15], and which are proved non-empty by
Kannai andHildenbrand-Schmeidler-Zamir [14]. Observe also that, by free
disposal and continuity, & < §' = CG(e) C CG.(E) , and

C{e) = N CG(E) .
&>0
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Theorem 2.2, Let ¢ : A+ P x Ri be an exchange economy. If f € Cﬁ(e)

»

there exists p € $ such that

1 o(p.f,a) < 4(M_+6[a])
aci

Proof. A routine modifjcation of the Proof of Theorem 2.1, as given

in [1].

3. Type Sequences

A type sequence of economies is a sequence of economies €, * A.n - T,
where T is a finite subset of P x m& . The elements of T are called
types; two Individuals a, b € Ah with en(a) = en(b) are said to be
of the same type, in that they have identical characteristics. Note
however that allocations (including core allocations) may give different
consumption vectors in.'mi to a and b . Let MT be the largest
]]-Hm-norm of the endowments inm T .

Theorem 3.1 asserts that, under mild hypotheses, the average distance
from the core allocations of individuals to their demand sets shrinks
as the number of individuals grows. This theorem has been known for a
long time under convexity assumptions (Debreu-Scarf [9], Hildenbrand-
Kirman [13]). The closest analogue without convexity is in Brown-Robinson
[7], who prove essentially the same conclusion for equal-treatment core
allocations in replica sequences.

Theorem 3.1 is actually a :specilal case of a nonstandard theorem
(Theorem 5.2) which will be presented in Section 5. Indeed, our first
proof of Theorem 3.1 was nonstandard, and inspired the generalization.

Here, we give an elementary standard proof which we obtained by trans-

lating the original nonstandard proof; we hope it will make the ideas of
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Section 5 more accessible to readers unfamiliar with the nonstandard

methodology.

Theorem 3.1. Let €y * Ay > T be a type sequence of exchange economies

satisfying ]Ahl + @, inf|e;l(t)]/]Ah[ >0 for each t€ T, and
n

1 e> 0. Then
(>e)er

lim T3m  sup  inf ﬁ Y p(f(a), D(p,a)) = 0 .
§+0 e fECG(En) p€S '“n aeAn

In particular,

1
lim sup inf TU_W— Z p(f(a), D(p,a)) =0 .
n-+e fEC(En) peS An aezl‘s.n

Remark. If we recall the definition of p from the end of Section 2,
we see that if C(en) is non-empty for all n , then the demand set
D(p, (>r,e)) 1is non-empty, at least for some p € S . This is somewhat
surprising, since our assumptions on preferences are not sufficient to
guarantee non-empty demand sets. An analogous phenomenon occurs in

Aumann's equivalence theorem [12].

Proof of Theorem 3.1. If the theorem is false, we may find én -0,

0 > 0 and a subsequence (still denoted € ) such that for some

1
£ € c. (e), E p(f_(a), D{(p_, a)) > ¢ for all n and all
n 6n n lAhl aeAh n n

P, € S . We shall show this leads to a contradiction.
We may find prices an S such that

I ¢(qn, fn’ a) < 4(ME 1-6nlAh|) , by Theorem 2.2,

aEAh n
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k
1 My
Since MEn j_kMT , TE;T Z ¢(qn f n’ a) < 4 T—;T + 0 . By passing
to a subsequence, we may assume a > q €S.

The bulk of the proof will be devoted to showing q >> 0 . This
is by now a routine argument (see Anderson [2] or Hildenbrand {12] for
similar ideas). If q 1s not strictly positive, we may assume without

loss of generality that q1 = 0.

Let o = 1nf T——TZe (a > 0 . Ti%w- I qn-fn(a) =9q, z e (a) > a .
n

n aeA

Jn
Hence, there exists j_ such that T——T- £ M(a) > a/k . Passing
B aeA qn

to a subsequence, we may assume jn does not depend on n ., Relabélling

coordinates, we may take jn = 2 . Thus, TjFT- z qi-fi(a) > al/k , for
aEA
n

all n . Observe qi -+ q2 » and hence q2 >0 .

C
For any Sn An ’

1 2 2 1 ’
TaT @@ S TaT 1 q £ (a)
Ah agén non Ah aeS qn n

;ﬁ( L adf (@) -e (@) + || I e (]

n aES aesS
n

4 s_|

ki
iw+46n+m .

2
Letting 5 = {a € A : fn(a) > af2k} ,
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Isnl 4k,
1 2 .2
A [a_] L ap e - AT " 480 1My

n' aes
n

-%-QH{T-M]/MT

=
Iv

.

-

{v

T wle

a .
ilm.[k for n sufficiently large.

On the other hand, -[—]- ): |f (a) Hw_mH Z e (a)I[ MT R
n

{a €A =l @l </ [813%}} g—&r— .

other words, we've found B >0, Y€ R, and &8 > 0 such that

80 flAnl >1 In

[{ae A : £2(a) > 8, £ @ ll, < vH/la ] > 6.

There exists A > 0 such that for all preferences » in T and all
x with ||x||_<~v, 2 >B, x+ (1, -2, 0,...,0) » x (if not, take
a subsequence conwverging to Xy o and use monotonicity and continuity).

Suppose a € Au satisfies ftzl(a) > B, ||fn(a) ”,, <Y

¢(qn, fn, a) > Aqi - q:'l . Therefore —]Alr z ¢(qn, fn, a) > G(Aqi-qi)
n

acA
n
-+ quz > 0 . This contradiction shows q >»>> 0 .
We claim that, if ¢(qn, X (>,e)) > 0, then p(xn, D(q, (>e))) - 0 .

If not, we can pass to a subsequence and find X, * X, ¢(qn, X {(>,e)} - 0,

6>0, plx, D(q, (re))) >6 . But ¢(q, x, (¥,e)) = lim ¢(q,, x, (=e))

n-x

=0 . Thus q-x = q-e¢ and 1inf{q'y : y > x} = q+e . By continuity,
y > x=>4q'y >qx, 8o x €D(q, (>,e)) . But then ||xn-x||m +0,
contradicting p(xn, D{q, (»,e))) > & .

1
Since m aeIA ¢(q_n, fn’ a) -0, we find T 0 such that, with
n
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Sn = {a €LAh : ¢(qn, fn’ a) < Tn} s [Sn]/|Ah| + 1. If we choose
anéi Sn maximizing p(fn(an), D{q, an)) , then p(fn(an), D(q, an)) + 0
because of the last paragraph and because T 41is finite. Thus

sup p(fn(a), D{(q,a)) = 0O .
aESn

Since |Sn|/]An! + 1 and ini]e;l(t)|/|An| >0, S contains at
]

least one trader of each type when n is sufficiently large. Hence,

D(q,a) is nonempty. Thus, p(f_(a), D(q,a)) :_max{”fn(a)”m. l|D(a,q)Hm}

(2k+1)MT kMT (3k+1)MT
< 1 ” + 1 X -+ 1 o Therefore,
min{qn, ...,qn} min{q™, ..., @} min{q", ..., q}
TaT L etf @, Dla,a) ﬁls“l (f_(a), D(q,a)) + |1 T—rls“]
p a), q,a)) < sup p a), D(q,a + -
An aeAn n An aeSn n ’ An
(2k+1)MT kMT
. + + 0 ., Letting p,=4q, we obtain

min{qi, ...,qz} min{ql,..., qk]

a contradiction proving the theorem.

4. The Topological Approach

In this section, we show that most sequences of economies, in the
sence of the Baire Category Theorem, exhibit strong core convergence,
without assuming convex preferences. The theorem includes all sequences
of economies with strongly convex preferences. We shall require preferences
to lie in P' , and thus have non-empty demand sets.

The statement of the theorem depends on notions of weak convergence
(see Hildenbrand [12]). The proof we give uses nonstandard measure theory
(Loeb [16], Anderson and Rashid [4]). It is not difficult to give a
standard proof using the measure theoretic methods and core convergence
results described in Hildenbrand [12). Giving an elementary statement

and proof of the theorem, not using measure theory or nonstandard analysis
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appears to be a more difficult task. This is possible in principle by
translating the nonstandard statement and proof; however, the elementary
theorems we have found in this way so far have proved too complicated

to be interesting,

We begin by summarizing some facts from Hildenbrand [12}. P' can
be made into a Borel subset of a compact metric space; the topology this
metric generates is called the topology of closed convergence. Hence,
P' x mi is a Borel subset of a complete separable metric space. Let M
» with the

be the space of Borel probability measures p on P7 x mi

property 0 << fdue << = . where e is the marginal distribution of

k
R,

U on m& . We can give M the topology generated by sets of the form

{{u: ]| [ Fdp-af <8, deue-y] <68}, a, B, Y, SER, FeccP'xR‘i)} .
k

k
P&R+ ' R+

In other words, " =y if it converges weakly and fdu: + fdue .
B R
+ +
This topology is generated by a separable metric.

Definition. Given W€ M, we say p€ S is an equilibrium price for

p 1f there is a probability space (Q,B,P) and a measurable map

e : Q~-+P xn&_ such that u(A) = PoE_l(A) for all Borel subsets A of
P'x mi s» and such that p 1is an equilibrium price of the exchange economy

e, dl.e. 4 £f: 0~ Ri, éfdP = AedP , and f(w) € D(p,w) for almost
all w € @ . Notations such as e, D and so on defined for finite
exchange economies in Section 3 have the analogous meanings for exchange
economies with a measure space of traders.

We say u 1is dispersed if, for every equilibrium price p of 4,
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u({(>e) : D(p, (>,e)) contains more than one point}) = 0 . Let D

be the set of dispersed measures p € M .

Remark. We call measure yu € U dispersed because "few" traders have
multiple demands for any given equilibrium price. Of course, every trader
might have a multiple demand at some point. But our assumption says that
traders are not so much alike that a set of traders of positive measure
all have multiple demands at the same equilibrium price. This is thus
a natural dispersion notion.

A much smaller set, N = {ue M : pu({(>e) : D(p, (>,e)) contains
more than one point}) = 0 for all p € 8%} 1is a residual set in M ;
A set is called residual if it is the complement of a countable union
of nowhere dense sets. While "residual" is a weaker notion than "open
and dense," the Baire Category Theorem justifies it as a notion of a
large set, and it is frequently interpreted this way in analysis. Mas-
Colell and Neuefeind demonstrated {in a slightly different setting)
that M is topologically complete and N is residual in M ; their
proof can be adapted to our setting without difficulty.

Note finally that if p 4s concentrated on {(y,e) : » is strongly
convex} , then p € D ., We thus have three reasons to regard P as

a natural class of measures on P xIRI:_ : (1) they exhibit a natural
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dispersion property, (ii) they are a residual ("big') subset of M,
and (iii) they include all the measures which are concentrated on the

strongly convex preferences.
We can now state the main result of this section. If € : A+ P’ x:mi
is a finite exchange economy, we define uE(B) = ]e_l(B)’/]A| » for any

Borel subset B of P' x m&_. Note that ue e M.

Theorem 4.1, Let L A.n +P' x mi be a sequence of exchange economies

satisfying

(i) IAn| -+

€n

(1) w =+ 3y, for some pu €7D,

Then

— 1
1im 1im  sup inf-l— Y p(£ (a), D (p)) =0 .
§+0 n-~o deCa(en) peS Anr aEAh n a

In particular,

1
lim  sup inf Y p(f (a), D_(p)) =0 .
e £EC(e_) PES (4,1 ach " a

Proof. Suppose we're given Sn + 0 . Choose n € *N-N, and let € = e

A= Ah , etc. Select f € Cé(s) . Transferring Thereom 2.2, there exists

kM
p € *§ such that -T%rT z ¢(p,£,a) < 4 TK% + &1 . As in Hildenbrand
ach

£
[123, B . 4 implies the sequence of endowments of €, is uniformly

M
E M
integrable. Thus, in particular, 17r9r-+ 0, so -ijT_g 0 . Since
n

1
§~0, m,,éﬁ“"f’a’ ~0.
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A by-now routine argument shows °p >> 0 (see Anderson [2]). We
claim op i1s an equilibrium price for u . To see this, let v be the
normalized counting measure v(B) = |B|/|A| defined on the algebra A
of internal subsets of A, %  has a unique extension to a standard prob-
ability measure v defined on I', the o-algebra generated by A (Loeb
[16]). A 4s called the Loeb measure generated by v . Define
£ AN > P xRS by () = G, S(a) = (°»,, e(a)) . Since

E
n

v, ;(E_]'(B)) = u(B) for all Baire subsets B of P XIR:{_ {Anderson
and Rashid [4]). Since P' x R_I:_ is separable metric, all Borel subsets
are Baire sets (Billimgsley {5]).

Hence, €t is an exchange economy with a standard measure space of
traders, and the distribution of ¢ is y . Moreover, C f(a) € D(°p, t(a))

for v-almost all a . To see this, note [|%.(°f(a)-"e(a))|dv

A
1 o o o -
gﬁi |p<(£(a) -e(a))| (Anderson [3]1) v 0, so °p+°f(a) = %p-e(a)
A acA -
for v-almost all a . If 0p-.én(a) >0, xE€ Rl_:_ , X T’a 0f(a;) , and

o k o

pP*x < 01:»*73-(&) » then by continuity of ;a . E’ y e]R+ . pry < °p-E(a) ,
y;a C'f(a) . Hence, vy >:=,; f(a) , so ¢(p,a) ,;0 . Moreover, if

Dp-E(a) = 0, then either f(a) ~ 0 D(op, e(a)) , or else ¢(p,a) ;0 .
Thus we have either °f(a) € D(op, €(a)) , or else ¢(p,a) ; 0 . But
¢{(p,a) ~ 0 for v-almost all a , so °f(a) € D(%, &e(a)) for v-almost
all a . Thus, op is an equilibrium price for yu .

Since pe€ P, we know u({(r,e) : D(op, (»,e)) has more than one
element}) = 0 . Thus v({a : D(op, €(a)) has more than one element}) = 0 .
Since » € P', D(p, ¢(a)) # ¢ . Since e(a) n~ c(a) for v-almost all
a , and the demand correspondence 1s upper semi-continuous,

°D(p, e(a)) € D(op, t(a)) . We saw also c’f(a) € D(op, c(a)) . Since
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D(Op, €(a)) 1is a singleton for v-almost all a » f(a) » D(p, e(a))
for v-almost all a .
Since the endowment sequence is uniformly integrable, e is S-

integrable (Anderson [3]). For any internal E C A such that v(E) ~Oo o,

4M
£

prffdv < pefedv + + 8 npefedv v 0. Thus | ffav,
E E Ta E é
1

v 1
ain{p™, ..., p

m p-ffdv_g 0, so f 1s S-integrable. The demand is
}E
S-integrable for similar, but simpler, reasons. Hence

1

1 *o(£(a), D(p,a)) ~ [°(*o(f(a), D(p,a)))dv = 0 .
ma&A T A

sup inf T%T Z *o(£(a), D(p,a)) ~ 0, since Cd(s) is internal.
fec, (e) pe*S T lagp

Thus, by transfer,

lim 1im sup inf T%T z p{f(a), D(p,a)) = 0 .
&0 ne fECG(e) pes acA

5. Random Sequences of Economies

The purpose of this section is to show that strong core convergence
holds for almost all sequences of economies drawn at random. The key
observation in the proof is that sequences of economies drawn at random
from a given distribution of agents' characteristics converge in a stronger
sense than weak convergence. The proof is really an elaboration of the
original nonstandard proof of Theorem 3.1.

Suppose p € M, the class of Borel probability measures on P' x R&
with finite mean endowment, as defined in Section 4. We may think of
¥ as describing the underlying distribution of characteristics of "all
possible people," and construct sequences of finite economies by sampling

from u with replacement. Specifically, we take £ to be the countable

N
product (P'x R&) » with the countable product measure P = uN . Any
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w € Q 1is a sequence (wl, Woy +ee ), wy € P'x RE of characteristics.

Given such an w , we form a sequence of economies
W k
. = x
€ Ah P ]{+ .

w
where Ah = {1, ..., n}, sn(i) =uw o In other words, 82 is the

economy whose agents have characteristics Wiy Wos veey Wy -
Hildenbrand [12] notes that, for almost all w , the sequence of

distributions of characteristics converges weakly to u . However, it

converges to Y in a stronger sense, which we shall exploit in a critical

way.

Theorem 5.1. Suppose pu € M., Then for almost all w ,

lim 1im sup inf-%

p(f(a), Da(P)) =0.
§+0 now feca(e“) PES  a=1
n

[Nt}

In particular,

n
1im  sup inf = § p(f(a), D_(p)) = 0 .
n-o w, DPES n oa=1
féc(sn)

Remark. As we've indicated above, our proof will use Nonstandard Analysis.
A general metatheorem guarantees the existence of a standard proof, but

it could in principle be exceedingly complex. We know of no tractable
standard proof in the general case presented here. It is not terribly
difficult, however, to give a standard (though hardly elementary) proof

if there are only a finite or countable number of equilibrium prices for

B . Our first result is a result for Nonstandard exchange economies,

which implies both Theorem 5.1 and Theorem 3.1. The nonstandard core
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Co(s) we define in the theorem is egsentially the same as the Nonstandard

Core defined in Brown-Robimson [6].

Theorem 5.2. Suppose € : A+ *(P x R_l:_) is an internal exchange economy
and
(1) |al € = - N .
(i1) the induced measure v(B) = IE-I(B) |/n 18 standardly con-
centrated (Anderson [3, Section 8]).
(111) M_/|a]l ~ 0.

(iv) O(% 1 e(@) > 0.
acA

Let Co(e) = 6?0*06(5) - If f€& Cy(c) , there exists pe S such that
820
*p(f(a), D_(p)) ~ 0 for L(v)-almost all a . If in addition
(v) the endowment map e : A + *Rf_ is S-integrable (Anderson [3]),

and (vi) e : A+ *(P XRI_:_) s then
T}J ) *0(£(a), D_(p)) ~ O .
ach

Proof. Let u(B) = L(v) (st“l(B)) for Borel BC P x ]R:c_ , where L(v)
is the Loeb measure generated by v [16]. By Anderson [3, Proposition
8.4(4i)], yp 1s a Radon Probability measure. Given p&€ S, p > 0,
and 0 <¢, 6 E€R, define

e, - LOne)EP RS : 6(p, %, (re)) <& = o(x, D(p,(>e))) <e) .

For fixed ¢ and p , B
6>0 P

in the proof of Theorem 3.1. Thus, given € , there exists & such that

k
€8 " P x R, , by the same argument as
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- * -
“(Bp,s,d) > 1l-¢ . Therefore, v{ Bp,s,d) > 1-¢ .
Suppose f € Cy(e) . For all & 30, ] ¢(p,£,a) <4 +6[aD) ,
acA
for some p € *S , by transferring Theorem 2.2. Since ME/|A|‘3 0 and

8§ can be any noninfinitesimal positive number, -T%T E ¢(p,f,a) n 0 for
acA

some p € *S . Therefore, ¢{(p,f,a) » 0 for L{(v)~almost all a .

Yet again, we see °p >> 0 (Anderson [2]). If ¢(p,f,a) ~O0,

oe(a) << o, and (>, e{a)) € U *B , then ¢(op, f, a) ~ 0 and
a . o -
6%0 PsE, 6
so p(i(a), D(°p, 8)) <e . LMW(U *B )y =1, so p(f(a), D(°p, a)) <¢
6;’0 Pse,6

for L(v)-almost all a. Therefore, (f(a),D(op,a)):EO for L{v)-almest all a.
If e 1is S-integrable, then [D(op, a) | §.|e(a)|/min{pl, ...,pk} ,

and | } £(a)] §_| } e(a)| + 2¢ /min{pl,..., pk} , s0o f and D are
aes aes €

S-integrable. If all preferences are in *P' , D(op, a) is non-empty.

1 o o] o
Therefore, 'T*Tz*p(f(a), p(°p, a)) ~ [O(*o(f(a), D("p, a)))dL(v) = 0 ,
A T A

since the integrand is 0 almost everywhere.

Proof of Theorem 5.1, By the Streong Law of Large Numbers,

L(P) ({w : fedvﬁlg fedu for all infinite n}) = 1 . By Anderson [3,
Theorem 8.7(111)], L(P)({w : L(\Jz)st-1 = u for all infinite n}) =1 .
For any w satisfying these two conditions, e 1is S-integrable with

respect to vﬁ for all infinite n . Moreover, by Anderson {3, Theorem

-Vn
8.7(1)], there exists an intermal QACZQ* such that *P(Q;) >1 - 2ne n/4

and vg is standardly concentrated for all w € Qn .

Hence, given n € *N - N, we can find an internal set Qne *Q

such that *P(Rn)_g 1, and such that for all w€q , fedvx v fedu ,

1

L(vz)st_ = 3 (and thus e 1s S-integrable with respect to vi ), and

yz is standardly concentrated for all m > n . Hence, for all &§ ~ 0O,
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BUp Bup sup inf % z *»(£(a), D(p,a)) ~ O .
wel  w>n fG*Cé(e:;) pE*L “a€A

If v € (0,1) , then

sup sup sup inf 1 *o(f(a), D(p,a)) <y

xp M
mGQn m>n fé*cd(ez) pE*A aEAm

for all & ~ 0, and thus this statement is true for some ¢ € (0,1)

In other words, given vy € (0,1) we've found & € (0,1) such that

*P({w : sup sup  dnf = T *p(f(a), D(p,a)) <y} ~ 1.

*
m>n fe*%(ei) PE*L aeAm

Hence, given o € (0,1) there exists n € N such that

*P({w : sup sup inf % { *p (f(a), D(p,a)) < v}) > 1-0 .

€ *
R gexc, (b PO Ay

By Transfer,

P({w : sup sup inf 1 I p(f(a), D(p,a)) < y}) >1-0 .

A
m>n fECG(Ew) pEL at n
m

Thus,

VyHG(P({w : 1im sup inf% E p(£(a), D(p,a)) <y}) =1} .
n-e fGC6(em) pEA aeAn .
n

By considering a countable sequence of y's tending to 0, we get

P({w : vy_:js 1im  sup inf-rlT 7 p(f(a), D(p,a)) <y} =1.
n-+e feca(e“’) pEL aEAn
n



In other words,

P({w : 1im lim
§+0 ne

as was to be proven.

sup
w
fecé(en)

24

inf 2 7 o(£(a), D(p,a)) =0}) = 1,
pEA ae.Ah
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