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Abstract: We consider econcmies with preferences drawn from a very general
class of strongly convex prefereances, closely related to the class of
convex (but intransitive and incomplete) preferences for which Mas-Colell
proved the existence of competitive equilibria [13]. We prove a strong
core limit theorew for sequences of such economies with a mild assumption
on endowments (the largest endowment is small compared to the total endow-
ment) and a uniform convexity condition. The results extend corresponding
results in Hildenbrand's book [8]. .The proof, which is based on our
earlier result for economies with more general preferences [2], is

elementary.

*This paper is an outgrowth of Chapter V of the author's dissertation
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1. Introduction

In [2], the author showed that one could prove in an elementary
way that core allocations can be weakly decentralized by prices, given
only very weak assumptions on preferences. Roughly speaking, the theorem
asserts that any allocation in the core of an exchange economy is almost
competitive, in that there is a price vector so that on average the in-
dividuals' commodity bundles lie near the budget frontiers and any bundle
preferred to the one allocated does not lie far below the budget fromtier.
This result is closely related to an earlier paper of Dierker [71].

In this paper, we show that a strongef conclusion holds if one
assumes that preferences are strongly convex. Theorem 3 asserts that
the average deviation between the core allocation and the demand sets
tends to zero. If the preferences are "equi-spherical''--a non-differentiable
class of preferences analogous to the "smooth prefgrences" introduced
by Debreu in [5}-~Theorem 5 gives a rate of convergence of 0(1/#3) .
where n 1is the number of traders.

OQur result extends those given in Hildenbrand's book [8] in several
ways. First, the form of convergence (convergence in mean) is stronger
than the convergence in measure he proves. The importance of convergence
in mean is that it guarantees that supply nearly equals demand for the
price vector selected; this would not necessarily be true for the conver-
gence in measure stated by Hildenbrand. It should be noted, however,
that convergence in mean can be deduced without great difficulty from
Hildenbrand's main and auxiliary results.l Second, we are able to give

a rate of convergence result without invoking generic statements, as in

1This fact is noted in the May 1978 draft of his chapter in The Handbook

of Mathematical Economics [9].




{5]. Third, we are able to deal with sequences of economies in which

the endowment of the largest individual is only assumed to be small com-
pared to the number of traders. Hildenbrand considered uniformly integrable
endowments, a condition meaning that no class with a small proportion of

the population could possess a significant share of the total endowment.
Heuristically, we may say that the uniform integrability assumption excludes
economies with dominant classes, while our assumption only excludes
economies with a dominant individual. We prove convergence in measure

in this general situation, and prove convergence in mean on any sequence

of coalitions for which the restrictions of endowments to these coalitions
are uniformly integrable. Khan [10] and subsequently Trockel [16] gave
limit theorems for sequences without a uniform integrability assumption.

A difficulty in both papers is that preferences are rescaled. An equi-
convex or tight set of preferences may fail to be equi-convex or tight

after this rescaling. Thus, our result does not follow from theirs.
Moreover, we obtain a stronger form of price decentralization. A more
detailed comparison to the work of Khan and Trockel is given in the author’'s
dissertation [1]. Fourth, our preferences need be neilther complete nor
transitive. Indeed, the class of preferences we consider is very close

to that for which Mas-Colell [13] proved the existence of competitive
equilibria without completeness or transitivity. 1t is rather pleasing

that strong core limit theorems can be obtained in the same setting.

The proof relies critically on the simple core equivalence theorem
which we gave in [2}. The additional argument is completely elementary,
though possibly somewhat unmotivated. It arose as the translation of
a nonstandard argument. Since the original nonstandard proof is, to those

familiar with the methodology, more natural, we give it in an appendix.



This paper is an outgrowth of Chapter V of the author's disserta-
tion [1]. The dissertation contains a slightly weaker form of Theorem 3.
The proof given there relies in an important way on nonstandard analysis,
and was inspired by the work of Brown-Robinson [4], Khan-Rashid [11],
and Rashid {14]. A more detailed account of the extensive debt to those

papers is given in the dissertation.

2. Results
. . k k
We begin with some notation. Suppose x, y€ R , A, BCR .

:n:i denoteg the ith component of x

i ko4 |
x|l = max |x], x|, = 1§1ix |+ llall = inf{]ix]}| : x € &Y

I<i<k

i i
x<y if x <y (1 <1i<k)
x << y if xi‘:yi (1 <1i<k)
A+B={x+y:x €A, yve€ B}
con A is the convex hull of A
k k

B = {x €R

4 x> 0}, B(x,8) = {ye Ri : ly-xil < 8} .

Let P denote the set of preferences (i.e. binary relations on Ri )

satisfying the following conditions:
(i) dirreflexivity: x ¥ x
(ii) weak monotonicity: X >> y =2 x > ¥y
(iii) convexity: {y : y » x} 4is convex for all x
(iv) upper semi-continuity: {y : x >y} is relatively
open in R& for each x .
Let P' denote the set of preferences in P satisfying the following

additional condition



x+
(v) strong convexity: if x # y , then either "El > x

or E%Z_ > v .

Note that our preferences need be neither complete nor tramsitive.

Definition: An exchange economy is a map € : A+ P x RS

L where A

is a finite set. For a € A, let '>a be the projection of e(a) onto
P, and e(a) the projection of ¢e(a) onto Ri - >, is interpreted

as the preference of trader a , and e(a) his initial endowment. An

allocation is a map f : A - Rﬁ such that E f(a) = z e{a) . A coali-

atA achA
tion is a non-empty subset of A . An allocation, f , is blocked by a
coalition § 1f there exists g : S =+ Ri with Z gla) = Z e(a) such
aes aES

that g(a) >§ f(a) for all a £S5 . The core of e, €(e) , is the

set of all allocations which are not blocked by any coalition. A price

p 1s an element of B& such that l‘p"l =1 . Let S be the set of

all prices, S$° = {p€ S : p >> 0} . The demand of an individual at a

price p , Da(p) » 1s the set of all elements in{x : pex < pee(a)}

maximal with respect to >, » Let M = max{“e(a1)+-...i-e(ak)” P8ps eaes By

are distinect elements of A} (recall k is the number of commodities).

The following theorem asserts that if > EP, Da(p) is pnon-
empty, and if >E.E P', Da(p) contains a unique vector. Part (i) is
due to Sonnenschein [15], but the proof we give is taken from the author's

dissertation [1].

Theorem 1: Suppose p € S° .,
(1) 1f > €P, D(p)#34.

(ii) 1If >h,& P, Da(p) contains exactly one vector.



Proof: Let B = {z : pez < pref{a)} . B is compact and convex. Suppose
that, for all z € B, there exists x, € B, such that X, > Z -
Since > is upper semi-continuous, there exists Gz > 0 such that

X, >, B(z, GZ) . Since B 1ig compact, there exist 2ys +-+y 2 such

that B CB(zl, 51) |V B(zn, Sn) ., Wwhere Gn = 52 . Let X; =X

z
n 0 i
Let g (2) = max{0, & - |lz-2.||}, and £, (2) = gi(z)/(jzlgj(z))

Then each fi is continucus and } fi(z) =1 for all z € B ; moreover,

i
fi(z) >0 = z € B(zi, Gi) .

Let f(z) = § fi(z)xi . Since fi(z) >0 —= X, >z and >-a

is convex, f(z) > z . Moreover, f : BB is continuous. By Brouwer's
Fixed Point Theorem, there exists z such that f£(z) =z, s0 2z >z,
contradicting the irreflexivity assumption, Hence there exists z € B
s0 that x Yz => x ¢ B, i.e. xEDa(p).
Now suppose > € P' , and z, 4 z, € B . Since » is strongly
zl-!-z2 zl-‘I-z2
convex, ~=5—— >-z1 or —5— b z, , S0 at most one of zy and z,

can be maximal. Hence Da(p) contains a unique vector. This completes

the proof of Theorem 1,

Our central tool is the following special case of Andersom [2,

Theorem 1].

Theorem 2: Let € : A+ P x Ri be a finite exchange economy. If
f € C(e) , there exists p € S such that

(1) ] |pe(f(@) -e(a))| < 24 .
acA

(11) ] |inf{p-(x-e(a)) : x > f(a)} <2 .
ach



Proof: This result will be seen to be a special case of [2, Theorem 1]
if we can show that any »€ P patisfies the following condition, called

free disposal in [2]:
X>>y, yrz=x*»z,

let o> 1+ [“z”/minlxi-yi]] , W=y +a(x-y) . Since x >> y ,
i

w> z . Hence w >z . Since x=w/a + y(1-1/a) and > is convex,

x 7z . This proves Theorem 2.

In order to get control of how far individual demands are from
core allocations, we need to introduce a measure of how convex a preference

is. This is done in the following definition.

Definition: For x ¥y GRE , lJet ny(}) = sup{ﬁ : B[’—(-;:X, 6} ¥ B(x,8)

or 3(1‘22”1 a] >B(y,6)} . If PCP, let o, (P) = faflo (¥ : >€ P},

We say that P is equi-convex if crxy(P) >0 for all x # v € RE .

Remark: Note that since B(x,8) = 5'U53(x’ §') , we will have either
<

B[%i "xy(*)) > B(x, 0, (»)) or B[%i, cxy(:»)) > B(y, 0,(3)) . Note
also that ny(P) is a continuous function of x and vy , for all P .
Suppose >~ € P' , and in addition % is continuous (i.e. {(u,v) : u > v}
is relatively open in Rf_ ). Then given x ¥ y , either E;X >x or
3%1 >y ;3 in the first case, B[l‘%l, 6] > B(x,8) , while in the second
BI—X%X, 6] > B(v,8) for some & .

Thus, if > 1is a continuous preference in P' , ny(}r) >0 for
all x, y . PFinally, the reader familiar with the topology of closed
convergence on the space of preferences (see Hildenbrand [8]) will have

no difficulty verifying that any compact set of preferences which are



strongly convex in Hildenbrand's sense is equi-convex.

We can now state the first of our main results. The introduction
cf the sets En makes the result more general. It says that, provided
any part of the individuals have well-behaved preferences and endowments,
any core allocation will be well-behaved on that part. Imn order to under-
stand the statement of the theorem, however, the reader may wish to take
E = An at the first reading.

The most important part of the theorem is conclusion 2), which
asserts that core and demand are close in mean provided the endowments
are uniformly integrable. Since fn is an allocation this means that
supply nearly equals demand for Py ¢ Indeed, if only a part of the
sequence is uniformly integrable, we see that core and demand are close

in mean on that part, In any case, we see that core and demand are close

for most traders, by conclusion 1).

Theorem 3: Let e, ¢ A +P x Ri be a sequence of exchange economies

satisfying
(1 M /]Anl + 0
n
(ii) sup (ayfl7la | <= .
1) s IlaEZAnen 1714,

If fn € C(cn) , there exist prices {pn} , contained in a compact subset
of S° , so that for any collection {En} of subsets of {Ah} satisfying

(111) inf |E_|/]A | > ©
il

(iv) for all & > 0 there exists P equi-convex such that
[{fa€E :> € P}[/IED{ > 1-§ for all n

(v) there exists & > 0 such that {]a € E 3 en(.t:l):L > 6}/|Enl > 8
for all n and all 1

the following holds:



1) forall y>0, [{a€E : e @y -0 ()l > stj/]a_| ~o .
1f in addition we have

(vi) E'CE , [Ej/[a | 0= llanE'en(a) li/1a_| + o
n

then

2 || I f@-p 78l < 1 llE,@-p,@)l/]a]~0.

aEeE a€E
n n

The first step in the proof of Theorem 3 is the following lemma,
which says that for sequences of economies described in Theorem 3, the

sequence of prices determined by Theorem 2 stays within a compact subset

of S5° .

Lemma 4: Let €y ¢ An +P x RE be as described in Theorem 3, and assume

there exists a collection {En} with the properties described. If p_
is a price for € satisfying the conclusion of Theorem 2, then {pn}

is contained in a compact subset of S° .

Proof of Lempa 4: If the lemma is false, we can (by passing to a subsequence)

assume that P, > P € S ~ 8° . Assume without loss of generality that
p1 =0, p2 > 0 . There exists & > 0 such that p2 > 28 and, if

2
s ={a€E :e (" >s6}, Is {/{E | 5 8 for all n . Choose P
equi-convex so that [{a €E : » € P}/|E | > 1 - &§/4 for all n .

since sup || ) en(a)”IIAnl <w, sup || } fn(a)“llAhl < ® ., Thus,
n a&An n aeAn

there exists o € R so that
Haek : lleq@ll <o, e @I < ad7|E ] > 1 = 674

for all n .

Since z lpﬁ(féfa)-en(a))‘IIAnl 5_2ME /lAn| + 0 , there exist-
a€A n
n



B, * 0 such that {{a €E : lpn'(fn(a)-—en(a))l < Bn}l/[Enl > 1 - 6/4 ,
[{a € E ¢ ]inf{pn-(x-en(a)) I 34 fn(a)}l < Bn]|/iEn| >1-68/4, and
pi < Bn for n sufficiently large.
Thus, for n sufficiently large, there exists a € E; simultaneously
satisfying
@ e () > s
D e (a,

(i) > €rF
n

(1) le@@)ll <o, £ @)l <«

(iv) lpn-fn(an

)-p e (a)| <8
) Iinf{pn-x P x> fn(a)} - pn'en(an)l < By
Moreover, for n sufficiently large, pi > p2/2 >8, so pn-en(an}
il PﬁE(an)z > 8% .
Hence pn'fn(a) > 62 - Bn , 80 there exists j such that

pj-f {a

nat 3 n)j > (62-Bn)/k . Hence pi > (62-Bn)lka , and fn(an)j > (52-Bn)lk .

Since P is equi-convex, there exists X € (0, 6212k) such that

B[ﬁ—‘z*l, A] ¥, B(x,A) or n["—*z'l, A] > B(y,)) whenever [lx-y|l > 1/2
n

and [xl}, llyll < o+l . fn(an)j > (62-Bn)/k > 82/k as n e , hence
fn(an)j > A for n sufficiently large. Let w= (1, 0, ..., 0) ,

X = fn(an) +w, y= fn(an) + w/2 . Then B(y,A) >hn B(x,A) or

B(y,A) >h B(fn(au), A) ;3 we claim it can not be the first alternmative.
n

If B(y,A) » B(x,}) , then y % x+3(I, ..., 1) . Then
3 4n
A A
x +-7(1, ceey 1) 2>y >hn X +'E(1, i, ..., 1) , so
x +-%(l, I, ««.y 1 >h X +-%(1, 1, ..., 1) by free disposal (as defined in
n

the proof of Theorem 2.) We have thus contradicted irreflexivity.

Thus, B(y,}) )a'*B(fn(an), A) . Let z =y - (0, ..., A2, 0, ...,0) ,

n
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h

where the /2 occurs in the jt place. fn(an)J >Xx, SO >0,

A
hence z €B(y,A) , and thus z } fn(an) - Pt = P,Y — 3P

n
-p - 1 A3 . - X o
= pyfplag) ¥ ep/2 - gpy Sppre(a) By Baf2 = (8 -8 ) ka
] 3. _ a2, . oAy
= Pyreplag) + Bn[Z ¥ Zka} Tka®  Pn enay) - 3 - Henmce,

Pyt2 < pn-en(an) - Bn for an sufficiently large. But

inf{pn-(x-en(an)) P X > fn(an)} > B s contradiction. This proves
n

the lemma.

Proof of Theorem 3, 1f there is no collection {En} of subsets satisfy-

ing conditions {iii)-(v), then the theorem is vacuously true. Hence we
may assume that such a collection exists. Choose P, for € according
to Theorem 2. By Lemma 4, {pn} is contained in a compact subset of

S° . Hence C = sup{maxfllpi, vany llpz}} is finite.
n

We shall suppose at first that there is some equi-convex P such
that >h EP for all a€ E and all n, and that

e (a)|l =g < »,
owp mam (ol =0 < -

Fix ¥ » 0 . Since ny(P) is continuous in x and y , there
exists 6 € (0, v/2) , § < €, such that ny(P) > § whenever

lx-yl| >y and |lx|[, llyll

| A

C(a+l) . Suppose pn-fn(a) < pn-en(a) + &/C .
Then {lfn(a)ll‘i C(a+l) ; moreover, [lDa(pn)ll < Ca . 1If [IDa(pn)-fn(a)i] > Y,
then B(y,$) >h B(Da(pn), §) or B(y,8) > B(fn(a), §) , where

y = (Da(pn)-+fn(a))/2 . Since pn-fn(a) < pn-en(a) + §/C , there exists

z € B{y,8) such that P,z f_pn-en(a) . - Hence, we can't have z > Da(pn) .
Hence, we must have B(y,$) >h fn(a) . But inf pn-B(y,G) < PpY - s/c ,

unless 0 € B{y,$) , in which case the inf is 0.

P,y - 8/C = (pf _(a) +p e (a))/2 - 8/C < P, e (8) - 8§/2¢ . If
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0 €B(y,8) , then |lyll <6, so [Ip ()]l <28 and |If (&)l <25,
and hence |IDa(pn)-—fn(a)]| < 28 <y .

We have shown the following: if a€ E and [|Da(pn)-fn(a)|| > ¥,
then either pn-fn(a) z_pn-en(a) + &8/C or inf{pn-x Px o> fn(a)}
< pn-en(a) - §/2C . By Theorem 2, l{a € An : pn-fn(a) Z_pnoen(a)4-5/C}]/IAnl
+0, and [|[{aeA :inflp -x: x> £ (a)} <p e (a) -8/2c3|/|a ] » 0.
Hence |[{a € E : IlDa(pn)-fn(a)ll > Y}[llAnl +0 .

Now consider the general case for {En} . Fix vy,6 > 0. By the
assumptions, there exists an equi-convex P and o > 0 such that
H{a € E_ i €7P or ||en(a)|| > a}‘llAn] < §/2 . Applying the special case,
we see that |{a € E_ : HDa(pn)-fn(a)H > 1}|I|An‘ < § for sufficiently
large n . Since & 1is arbitrary, this establishes conclusion 1).

Now suppose hypothesis (vi) also holds. We know

Lol (£ (a) -en(a))l <22 . But fjf (@ < “en(a) |+ I£,(a) - e (a) I

aEAn n
< lle @} +clp (£ (a)-e (@] . also [ID ()| < Clle (a)|l . Hence
lig_(ay -D_(p ) || < lle (@) [[(a+c) + clp - (F (a) —e (a))] .

Let E! ={aek : {0 )-f ()l >v}. Then [E]|/IE]|~0,

and so ) ||en(a)||l‘An| + 0 . Thus I'llDa(pn)-fn(a)llllAnl +0.

1
a&En aEEn

Consequently, ] ||D(p ) -£f (a)|l/[A ] 18 eventually less than 2y ;
acE '
n

since vy 1s arbitrary, the sum in fact tends to 0, establishing conclusion

2) and concluding the proof of Theorem 3.

We can now state a theorem giving a rate of convergence. The

principal concept is the notion of an equi-spherical set of preferences.
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Definition: P C P is said to be equi-spherical if it is equi-convex
and, for any compact X €& Ri s there exists 8 > 0 such that

¥x, yEK ¥>e&P B x_—;z’ B”x—y”z} > x or B[%, B”x—ynz] Yy .

Remark: Equi-spherical preferences are essentially non-differentiable
analogues of Debreu'’s smooth preferences used in proving the rate of core
convergence [6]. The square exponent [I:i:—y”2 is essentially a curvature
condition analogous to Debreu's non-vanishing Gaussian curvature condition.
The following is a sketch of the relationship.

Debreu's preferences are defined only on the interior of Rl_:_ .
and don't extend continuously to R-l:_ s his indifference curves have closure
in the interior of R_l:_ » Wwhereas the analogues of indifference curves in
our setting {or at least some of them) are forced by the equi-convexity

condition to cut the boundary of Rf_ . However, Debreu's preferences

satisfy the equi-spherical definition, relativized to the interior of

k

R+ . In other words, if > 1is one of Debreu's preferences, oxy()-) >0

for all x, y >> 0 and for all compact K in the interior of RI_; ’
there is B > 0 such that ¥x, YE K B 3%1, B"x-y“z] Y x or
B[x—;l, BHx-yHZ] >y . To see this, one need only note (as Debreu does)
that, because of the Gaussian curvature condition, there is y > 0 such
that, ¥x €K, {y€ K: y »x} is contained in a ball of radius vy ,
with x on the boundary of the ball; the rest of the argument is analytic
geometry, which we leave to the reader.

The equi-spherical notion 1s closely related to the notion of sphero-

convexity, developed independently by Vial [7].
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Theorem 5: Suppose € : A ~ P x Ri satisfies

(i) sup maxle (&) = <o, Jao]+=
n aeA o H

(ii) there exists P equi-spherical such that >h € P for all
a € An and a2ll =n

(iii) inf 7§ en(a)illAn[ > 0 for each 1 .
n aeAn

Then for any fn.e C(sn) » there exist prices p_, contained in a compact
subset of S° , such that

I e @ -p ) 17]a ] = o/ /TA D

ach
n

Proof: Since an equi-spherical set is equi-convex, it is easy

to see that the hypotheses of Theorem 3 are satisfied. Thus, the constant

C (as defined in the first paragraph of the proof of Theorem 3) is again
finite. Accordingly, for any a € A, “fn(a)H ﬁ_ufn(a)-en(a)“-+ Hen(a)“
< Clp (£ (a) —e ()| + o < 2k + & = (20ktD) .

It is not hard to see that there exists B > 0 such that

Tl -l <8 I (b, (£ () e @]

aEA
aeAn n

. 1/2,
+ |inf{pn-(x-en(a)) X >h fn(a)}l ) I
the procf of this fact is similar to the third paragraph of the proof of
Theorem 3, but easier.

By the concavity of the square root fumction,
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- 1/2
aEEA 'Pn'(fn(a) —-en(a))ll/2 + lmf{pn-(x-en(a)) 1x >y fn(a)}] /

n

< TA TIC } lpn-(fn(a)-en(anl)m

aeAn
+ (] linflp - (x-e (@) 1x 5 £ @)D
aceh
n
< /]An[(r’?.ka+r’2ka) < brka /AT .
1
Hence AT ae& an(a)-Dn(pa) Il = O(l/Y[Anl) .

n

Appendix: The Nonstandard Proof

In this appendix, we give a single combined proof of Lemma 4 and
Theorem 3, using Nonstandard Analysis. The proof given in the body of

the paper was obtained by translating this proof.

Proof of Lemma 4 and Theorem 3: Let € : AL~ P x Ri satisfy hypotheses

(1)-(ii) in the statement of Theorem 3, fn € C(en) and let {En} be
a collection of subsets of {An} satisfying (iii)-(v). Choose n € *N-N ;

for simplicity of notation, let A = An » E T EL, f= fn s E=E

el k]

w=|A] . Let v be the normalized counting measure on E, v(S) = |S|/|E| ,

and p the associated Loeb measure ([221) .

By Theorem 2 and the Transfer Principle, there exists p & %S

such that

2M

Pl lp@ metan] < gE w0

1 ?'Ms
;aéA[inf_{p-(-x-e(a)) PX > £(a)}| <—220.
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since |E{/fw % 0 , prf(a) ~ pre(a) » infipx : x );a f(a)} for p-almost
all a€E.

We claim °p >> 0 . If not, we can assume without loss of generality
that p1 ~0, p2 % 0 . There exists 8 €R, &6 >0 such that, letting
S={a&E: e(a)2 > 8}, v(S) »8 . Choose P equi-convex so that

v({za € E : ¥, € *P}) i 1-8, Since I[ Z e(a)”/m is finite, so is
aeA

Bl f@l/fw, and °lle(@]l <=, °lf@)}]| <= for y-almost all a €E .
a€A

Hence, there exists a CE satisfying simultaneously e:(a)2 %0,

>a€ P, °llea)ll <=, °llf(a)]| <=, p-f(a) v peefa) v infip-x : x };3 f(a)l} .
p-e{a) > pze(a)“'Z % 0 . Hence, p-f{a) £ 0, so there exists j such that

pj %0, f(a)j %0 . Let x=£(a)+(, 0,...,0) , y the jth basis

vector.

Since P 1is equi-convex, there exists A > 0, A € R such that

if =z = f(a) + (L/2, 0, ...,0) , B(°z, 1) > B(°x, A) or B(®z, 1)

}a B(°f (a), A) . It can't be the first alternative, since that would

imply °x + O\/Z, cery A2Z) 5> %z >-a °x + (A/2, ..., A/2) , a contradiction
of free disposal and irreflexivity. Thus, B(®z, 1) )-a B(°f (a), A) .

If §=3gumi), £@3}, z-6y% £(a) , pr(z-8y) = pefa) + p/2 ~ &p]
i p-f(a) , contradicting pef(a) ~ infip'x : x e f(a)} . This shows

°p >> 0, and establishes Lemma 4 by Transfer.

Therefore, D(p,a) is a unique vector for all a € A by transferring
Theorem 1. uy-almost all a € E satisfy p+f(a) ~ p-e(a) ~ inf{p'x : x }a £(a)} ,
°lle(a)|] <=, and °|lf(a)]] < =, as shown above. Consider any such a .

If ea) ~n0, pef(a) 0, so0 f(a) ~0. p+D(p,a} »0, s0
D(p,a) ~ 0 ~ f(a) .

If e(a) £ 0, pre(a) £ 0. If f(a) £ D(p,a) ,
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B[o[f(a) +2D(p’a)), l) > B(£(a), 1) or B[o[f(a) +2D@’a)}’l] Yy BOD ), 1),

for some X % 0 . The second alternative violates the maximality of demand

in the budget set. 1In the first case, 3 x € B{ {f(a) +2D(P,a)], A]

(and so0 x > f(a) ) such that p-x b prf(a) . This contradicts
pef(a) ~ inf{p+x : x > f(a)} .

We have shown that for p-almost all ae E, °f(a) ~ D(p,a) .

For any YE€R, y>0, v(la€e E: ||[f(a)~D(p,a)|l < ¥}) ~ 0 . Trans-
ferring, we get conclusion 1).

Suppese now that assumption (vi) holds, so that the endowments are
uniformly integrable. By Anderson [3, Section 6], e 1is SL1 with respect
to v . For any internal S with v(3) ~0, p-fsfdv = fsp-fdv
< fsp-e.dv + M w/{E] ~ fsp-edv ~ 0, since e is S-integrable. Hence
ffdvgo » 80 f 4is S-~integrable. p+D(p,a) < p+e(a) , so D is S-

5

integrable. Hence f ID(p,a) - £(a) |]dv :\_:f °”D(p,a) -f(a)llau = 0., since
E E

the integrand is 0 almost everywhere. In other words,

I lIn(p,a) -£(a)|[/w v 0,
asE

so ] llote,a> -£¢a)|i/{a_| > 0 by Transfer.

aeE
n
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