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ABSTRACT

A basic theorem in n~person game theory due to
Scarf states that a balanced game has a nonempty core.
Scarf's proof presents a procedure to find a point in
the core of a discrete game, where every coalition dis-
poses of a finite number of alternatives. The proof
for a general game follows by passine to the limit.

In this paper we present a procedure which works
with the characteristic sets in original form, They
no longer need to be approximated. The procedure con-
sists in ftollowing a finite sequence of possibily non-~
linear paths.

The framework adopted for this paper is more
general than needed to treat the core problem. This
enables us to present a unified approach treating the
latter problem as well as related problems in linear
complementarity theory and fixed point computation.



A PATH FOLLOWING PROCEDURE FOR FINDING A POINT

IN THE CORE OF A BALANCED N-PERSON GAME

by

Ludo Van der Heyden*

I. Introduction

A basic theorem in n-person game theory due to Scarf (1967) states
that a balanced game without side payments has a nonempty core., Scarf's
well-known proof goes beyond the existence result. It first presents
an algorithm for the computation of a point in the core of a balanced,
discrete n-person game. A game is discrete when every coalition disposes

' Scarf's proof

of a finite number of possibilities or "utility vectors.'
continues with the observation that the set of vectors achilevable by a
coalition, the "characteristic set' of that coalition, can be approximated
to any desired degree of accuracy by a finite number of appropriately
chosen utility vectors. The proof for the general case then concludes
with a passage to the limit in the discrete game,

Scarf's algorithm is a search among a finite number of combinatorial

1"

objects called "primitive sets." These objects arise quite naturally

*I am grateful to Professor B. Curtis Eaves (Stanford University) and
Herbert E, Scarf (Yale University) for suggesting the problem to me, and
to Professor Carlton E. Lemke (Rensselaer Polytechnic Institute) for
extensive comments on an earlier version of the paper.
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in the core problem. Aside from the presence of primitive sets, the
other distinct feature of the procedure is the application of the Lemke
and Howson (1964) argument to guarantee that the search among these objects
is finite and terminates with a primitive set associated with a point in
the core of the discrete n-person game. The main point of the argument
is to show that, unless a solution is reached, a replacement operation
leading to a new primitive set can always be carried out, and that during
a sequence of such replacement operations a primitive set cannot be visited
twice. This prohibits the existence of a cycle of primitive sets which the
procedure is caught visiting forever and insures the finiteness of the procedure,.
Shapley (1973) has presented a second procedure to compute a point
in the core. His is also based on the Lemke-Howson argument, but the
combinatorial objects are the more familiar simplices in a triangulation
or simplicial subdivision.
Both approaches are combinatorial and solve a general n-person game
by first approximating it with a discrete n-person game and then solving
the approximate game precisely. If the approximation is good enough,
a point in the core of the approximate game will be close to the core of
the original game, if not in it already. In this paper, we present a
procedure which works with the characteristic sets in their original form;
they no longer need to be approximated. The procedure follows a sequence
of paths--usually nonlinear--which are the intersection of the boundaries
of characteristic sets of certain coalitions. The procedure is finite
module the existence of a finite procedure for following l-dimensional
paths. This is the nonconstructive part in our proof of Scarf's theorem.
It replaces the passage to the limit in the Scarf and Shapley proofs.

Instead of solving an approximate problem exactly, we solve the original



problem approximately. The approximation arises because we are generally
unable to follow a nonlinear path exactly.

It mav be worth pointing out that a "continuous" procedure can
be obtained by first reinterpreting Scarf's original procedure in terms of
path-following and then taking the limit. This limit operation leads
to a procedure distinct from the procedure exposited in this paper.

The reason we have opted for our approach is that it permits us to
present a unifying framework for the core problem, and for two earlier
naners on the related topics of fixed point computation and linear
complementarity (Van der Heyden, 1979 and 1980).

A general result is presented in Section II, The result is a con-
tinuous version of the main theorem in Scarf's monograph (Scarf, 1973,
Theorem 4.2.3). Section III contains a proof of our main result and Sec-
tion IV seeks to illustrate the procedure used in the proof. Section V
applies the procedure to the computation of a point in the core of a

balanced n-person game. We end with some concluding remarks in Section YI.

II. A General Theorem about Labelled Sets

We are going to state a property of a collection of closed sets in

R" when each set is assigned an n-dimensional vector label. Let

1 2 m

5, 87, ..., 8 be a collection of closed sets in n-space (m > n) ,

and let aJl be the label of S . These labels can be represented as
1 2

colums of an nxm matrix A = [a~, a°, ..., a°] . Given a right~hand

side vector b , we consider the linear system



(2.1) Ay=b, y>0,

where y = (yl, Yos =+ ym) is the vector of weights associated with
the sets in our collection. A collection of n sets

i 33 i
7,87, ..., 8 is completely labeled if the labels are associated

with a solution y for equation (2.1), i.e., if yj = () unless
=3y 3 vees 3

Qur interest lies with undominated points. A point is said to be
dominated if it lies in the interior of a set Sj (1 <3 j_m) , denoted
int (Sj) . The theorem we are about to prove asserts the existence of
an undominated point belonging to the boundaries of a completely labeled
collection of sets. The boundary of Sj iz denoted bdy (Sj) , and
we use the notation ext(Sj) for the exterior of set Sj .

Naturally, some conditions need to be imposed for the statement
to hold. We require four conditions. One involves the labels, a second

requires regularity in the intersection of these sets and their boundaries,

and the third and fourth conditions involve both the sets and their labels.

(2.2) (Assumption) The linear system Ay =b , y >0 Iis

nondegenerate and bounded.

The nondegeneracy assumption can be made without loss of generality as

a small perturbation of the right-hand side b eliminates degeneracy

when it occurs (for more details on linear programming, we refer to
Dantzig, 1963). The assumption implies that completely labeled collec~
tions contain at least =n sets. Given the boundedness condition, a
completely labeled collection of n+l sets contains exactly two completely

labeled collections of n sets each. The labels of n completely labeled



sets form a basis in the matrix A . Introducing the label of an (n+1)St
set, we use a standard linear programming pivot step to identify the

label which can be replaced in the current basis. The replacement of this
label with the incoming label results in a new basis matrix and, hence, in

a new completely labeled collection of n sets. This replacement operation
is one of the two operations central to our procedure; the other consists

in following l1-dimensional paths.

(2.3) {Assumption) The boundaries of the sets Sl, s, ..., S

meet nondegenerately:

a. No point belongs to the boundary of more than n sets.

b. Any bounded set contains at most a finite number of
points belonging to n boundaries,

¢. Consider a point belonging to the intersection of =n
boundaries, sav x € bdy(Sjk) for k=1, 2, ..., n .
For each k there exist two connected sets of points
belonging to bdy(th) for 1 <h# k <n but not to
any other bdy(sj) » 1 <3 <m, These sets are called arcs and

are homeomorphic to an open interval_with X as endpoint;
Iy Ik
one arc lies in ext(S ") , the other lies in int(s ) .
3
The second endpoint, if it exists, lies in bdy (57) for
some j , 1 <j<m . If x 4dis the only endpoint,

then the arc is unbounded.

Assumption (2.3, 1is illustrated in Figure 2.4. 1t imposes fairly
minimal regularity conditions on the sets and their boundaries. Apossibly more
elegant formulation of assumption (2.3) in terms of manifolds will be

given in Section V, but it involves more restrictive differentiability



z_ >
A z. =0
1 5
z, > 0 25 < 0 (4, at
2, = 024 < 0 infinity )
P
ﬂl -0
23 =
23 >0
22 > 0
22 < 0 Zy = 0
zl <0 zl >0
ZI.=0

2,4 (Figure) An example of 5 sets (m = 5) in 2-space (n = 2) whose
boundaries meet nondegenerately. The vector z describes the

position of a point relative to the sets sd .
> 0 ext(Sj)
zj(x) =0 for X E bdy(Sj)
<0 int(sj)

Point P belongs to the intersection of bdy(Sé) and bdy(SS) .

There are four ( = 2n) arcs leaving P . Three arcs lead to
bdy(Sl) . The arcs and their characterizing inequalities are:
PA1 N 0, 25 >0
PBl tz, = 0, 25 < 0
PA2 zé =0, z, > 0 ;
PB2 Pzg = o, z4 < 0.

The third arc (PA2) is unbounded.



conditions and may obfuscate the assumptions central to the procedure.
Point x belongs to the intersection of n 1lines, each representing
the intersection of the boundaries of n-1 sets. There are 2 ways to
leave x along such a line, one in the interior, the other belonging
to the exterior of the nth set. In total, there are 2n different

ares one can follow to leave x , It is clear from Figure 2.4 that two

of these arcs may lead to the same point.

(2.5) (Assumption) The first n sets are given by:

st = {X[xi <0} for i=1, 2, ..., n .

These sets are completely labeled,

This assumption implies a privileged role for the first n sets. It
allows the procedure to start at the origin, the only undominated point
among these sets. From there, other points will be generated, but they
will never be dominated by any of the first n sets, i.e., they will

all be points in the nonnegative orthant.

) ;32 In-1 .
(2.6) (Assumption) Let S ~, S 7, ..., § be sets whose boundaries

n-1 3 b h| J

intersect along L = 1 bdy(S . 1f s l, s 2, cve, 8 n
i=1

form a completely labeled collection and jn = max(jl, j2, ...,jn) ,

jn
then the intersection LS is bounded from above.

We will soon see that, when considered jointly with assumption 2,5, assumption
2,6 bounds the region in which a solution can be found, It is clearly satisfied
when the intersection of n completely labeled sets is bounded from above.
The latter condition is very natural for the core problem.

It may be worthwhile to point out that the principal assumptions



are the boundedness of the linear system (2.2), the upper-boundedness
condition related to a completely labeled collection of sets (2.6), and
the privileged role of the first n sets (2.5). The nondegenerate inter-
section property (2.3) imposes minimal regularity conditions on the sets
and their boundaries. We will show that in the discrete game, for example,
they can always be satisfied.

Having developed terminology and having presented our assumptions,

we now state the theorem we are about to prove.

(2.7 (Theorem) Consider a collection of closed sets Sl, Sz,..., s™

(m » n) whose boundaries meet nondegenerately and whose labels
are associated with a nondegenerate and bounded linear system.
If these sets and their labels satisfy assumptions 2.5 and 2.6,
then there exists an undominated point belonging to n completely

labeled sets.

The point whose existence is the object of Theorem 2.7 will be called
a solution. Since it is undominated it lies in the boundary of any set

to which it belongs.

ITI. A Proof for Theorem 2.7

Qur proof starts with the observation that assumption 2.5 causes
the theorem to be trivially satisfied when considering only the first
n  sets in our collection., Their boundaries intersect at the origin and
there is no other set to dominate the origin., Starting at the origin,
we will verify the statement in theorem 2.7 for an increasingly larger
collection of sets. The subproblem which finds an undominated point

2 h
belonging to n completely labeled sets among Sl, S, ..., 8 , and



thus verifies the statement in theorem 2.7 for the first h sets, is
called the h-problem. Solving the m-problem proves theorem 2.7. Notice
that the procedure is very dependent on the indexing of the sets, though
the indexing enters the statement of the theorem only marginally through
assumption 2.6. The indices determine the order in which the various sets
will be considered by the procedure.

Our procedure follows a special type of arc in a subproblem. Sets
in a subproblem meet nondegenerately so that subproblems have their own

collection of arcs, some of which may coincide with arcs in another sub-

problem.
(3.1) (Definition) A special arc is associated with n sets
g1 B2 &n i o .
S, 87, ..., S and meets the following conditions with
g, = max(gl, Bos wres gn)

a. the special are is an arc of the gn-problem;

b. points on the arc belong to the boundaries of

g g B, _
g l, g 2’ cee, S n-1 :
&n
¢. the first set which dominates points on the arc is § ;
81 By 24

d. 8, 8°, ..., 8§ " are completely labeled.

Following such an arc we reach one of its endpoints, if the arec is
bounded. We now argue that the endpoints of these arcs are of one of
two types. Moving along the special arc of definition 3.1, we are attempting
to solve the gn-problem since S " is the first set in the sequence which
dominates points on the arc. The endpoint of the arc is a candidate for

solving the gn-problem, and also the m-problem. If the endpoint belongs to
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bdy(Sgn) , we have solved the gn—problem. If no set in the m-problem
dominates the solution for the gn-problem,it is a solution (for the m-problem)
as well. If not, we have found a solution for the gn—problem which is not
a solution for a subproblem of size larger than g, - The procedure will

then be saild to be at a position of type 1. Instead of first meeting

24
bdy(S ®) , we could meet another boundary, say bdy(Sg) with g<g,-

g8

Continuation along the same line makes the first set to dominate

points along the line and brings us into a different subproblem, -

To avoid this, the procedure generally follows a different arc. If the

g B gno1 B
sets S 7, 87, ..., S s S are completely labeledwe have solved the
h-problem where h = max({g, gl, Bos .y gn_l) < B, * The procedure has
8 85 81 s
reached another position of type 1, If § 7, 8§87, ..., S s S are

not completely labeled, then the procedure has reached a different type

of position, called a position of type 2. We have established that solutionms,

positions of tvpe 1, and positions of tvpe 2 are the only endpoints special

arcs can have. As a wav of summarv, we formally define positions of type 1 and 2.

(3.2) (Definition) A position of type 1 is a point belonging to the

A g1 g2 &n
boundaries of n completely labeled sets S °, 5 , ..., §

undominated in the h-problem, where h = max(gl, Bys e gn) R

but dominated by a set Sgn+1 where m > g ., > h.
(3.3) (Definition) A position of type 2 is a point belonging to the
g1 B2 En
boundaries of n sets S, § 7, ..., S and undominated in

the h-problem, where h = max(gl, 8oy ees gn) . Consider the

En+
first set which dominates the point, say § - 1 (m L -SRI h) .

g g
The collection § 1, S 2, aesy S is not completely labeled,

€n+l
but becomes completely labeled by adding § .
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The "constructive" procedure--it is constructive modulo the existence
of a constructive procedure for following arcs--derives easily from the
incidence properties of special ares and positions. This incidence is
summarized in Figure 3.aland is now explained,

It is easier to first consider a position of type 2. Such a position

is associated with a point x belonging to the boundaries of n sets

S for i =1, 2, ..., n. These sets are not completely labeled, but

1

g
become completely labeled when joining the label of S n , which is

1 2 m

the first set in the collection S, S°, ..., S to dominate x . Any

special arc incident to x must be an arc in the gn+l—problem. From
standard linear programming theory, we know that there are two completely

g g g
labeled collections of n sets among § l, s 2, veey S n+l . Assume that

g g
these sets are obtained by deleting either § 1 or S 2 . It is then

clear that there are exactly two special arcs incident to x , one associated

g, 8 g g, 8 8 +
with the sets S 2, 5 >, ..., 8 ™ ‘the other with 51,53,54,...,38“1.

g B
The first arc belongs to ext(S l) + the second arc belongs to ext(S 2)

Assume now that x 1is associated with a position of type 1. The

g 8 E g
sets 5 l, s 2, ceey S T form a completely labeled set, and § ntl is

the first set to dominate x . Again from standard linear programming
theory, we know that there is exactly one other completely labeled set

B g g g
among § 1, S 2, ..y S8 ntl . Assume this set is obtained by deleting § 1 .

This identifies a special arc incident to x , namely the arc in the

gs g3 g

gn+1—problem associated with the sets S °, S 7, ..., § n

and lying in

g
ext (S 1) . This is the only arc which does not belong to the interior

g
of any of the sets § © (i = 1, 2, ..., n) . The arc which goes into



0 for j = 8128p5 e+ 38

z, = 0 for
J

< 0

> 0

n-1

=g,

S3S8, s 3t BBy cer 5 B

If x represents a position of type 1, then S l,S

gy B3 B+l
s 7, ...

*

completely labeled. We assume that 8§

a completely labeled collection of sets.

] = g29g39 L] ,8n
T Bl
J S By » 31 BgaBas oo 58 4

g g
If x represents a position of type 2, themn 8 l,S 2,

g g g
+
not completely labeled, but S l,S 2, ees 35 ntl are.

collection contains two completely labeled sets of n
g 4

12

j= 82383: tae oy gn

3= gn+l

Pt
A

< Entl °

Jtey8s

j = glsg3184s »8
- gn+l

AREIE-SURR I ISV P08

’gn+l

84, «an. ’gn+1

The latter

members, which

we assume are obtained by deleting S 1 and § 2 Tespectively,

Figure 3.4
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3.4 (Figure) The incidence properties of special arcs and positions. A

position is associated with a point x belonging to the intersection of
&1 82 &y

n sets-"S ,8 “, ...,5 . Let g_ = max(g,,8,s --. 58 ) . The first
n 1°=2 n

g
+
sét among Sl,Sz, - ,Sm to dominate x 1is S mrtl (gn+l>gn) . The

vector z , as defined in 2.4, describes the position of a point relative

to the sets Sl,Sz, ee s s™ . Point x's position relative to the sets
of the 8 41 - problem is given by
Zj(x) =0 for j = glsgzs v ’gn
<0 i= gn+l
>0 1< <8 0 3T BBy ee s By
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g
int (S i) forsome i, 1 <i<n, can be a special arc only if

gy < max(gl, Bos «tes gn) . This identifies the second special arc in-
cident to x .

We have thus shown that every position is incident to two special
arcs. T#e procedure we will apply for the proof of theorem 2.7 should
now become clear. The procedure consists in following special arcs,

The special arcs in the procedure are all bounded so that an endpeint

of the special arc is always reached, If this endpoint is a solution,
the proof of theorem 2.7 is complete. If not, a new position is reached,
which the procedure leaves by following-the other arc incident to the
position. To insure that the procedure terminates with a solution, we
need to show that leaving a position along a special arc we always reach
another position or a solution, and next that we never return to the same
position twice. To verify the first statement we only need to show that

every special arc followed by the procedure is bounded, since we already
know that an endpoint is either a position or a solution.

The starting point for the procedure is the originm, which is a position
of type 1 associated with the first n sets, Unless the origin is a solutionm,
there are two special arcs incident to it. One of them coincldes with

a negative coordinate axis:
(3.5) x, = 0 for i=1, 2, ..., n~1,

< 0 =n .

Note that this is the only unbounded special arc. This follows from two
facts. First, points on a special arc belong to n completely labeled
sets, and hence are bounded from above (assumption 2.5). Next, points

on a special arc different from arc 3.5 do net belong to int(Si) for

i=1, 2, ..., n , which bounds these from below by the origin. Eence,
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all special arcs used by the procedure are bounded and have two endpoints.
We already showed that when an endpoint of a special arc is neither

a position of type 1 nor one of type 2, then it is a solution and the

procedure terminates. At a position, the procedure proceeds by following

the other special arc incident to the position. The familiar Lemke-Howson

argument applies to show that the procedure never returns to a position

visited earlier. We repeat the argument for it is both clever and brief.

Let (xl]i > 0) be the sequence of positions visited by the algorithm,

i . - : . . "k i .
and let x° be the first position visited twice, i.e., x = x* with
i<k . If 1>1, x~ has two neighboring positions, xl-l and x1+1
which cannot coincide with xk since this would make xl_l oT xl+l

the first position visited twice. But then there are three ares incident

at x* » contradicting the incidence properties summarized in Figure 2.4,
The only possibility left is i = 0 . There is, however, only one bounded
. 0 . . . k=1 1 .

arc incident at x~ , which implies that x = x . This contradicts

the fact chat xo is the first position visited twice.
Having shown that every special arc, and hence its endpointg lie
in a bounded set, we invoke assumption 2.3.b to conclude that there are
at most a finite number of positions. Since we also know that no position
is visited twice, the procedure must terminate at a solution. This com-

pletes our proof of theorem 2,7.

IV. Algorithmic Statement and Illustration of the Procedure

The procedure used in the proof of theorem 2.7 can easilv be stated
algorithmically as consisting of successive iterations of four steps.
In describing these steps, we use the vector 2(x) to indicate the posi-

tion of point =x relative to the sets {81} . The notation =z(x) was
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first introduced in 2.4. The index set JO is used to identify the sets
whose boundaries a position (of type 1 or type 2) belongs to, while jdom
is the index of the first set in the sequence {S°} that dominates the

position.

Step 0. 1Initiazlize x = 0 so that zj(x) =0 for =1, 2, ..., n .

Set 3o = {1, 2, ..., n} . The feasible basis matrix B consists

of the labels of the first n sets: B = [al, a2, L

Proceed to step 1.

Step 1. If 2z(x) >0 then x is a solution and the procedure terminates.
Otherwise x 1is a position of type 1. Determine the first set 8
which dominates x (zj(x) >0 for 1<3j<g-1, zj(x) <0
for 3 =g ). Set both jdom = g and jin = g . Proceed

to step 2.

jin jin

Step 2. Pivot label a into current basis matrix B . Say a

replaces aqOUt

If jout = jdom , go to step 4. Otherwise,
set Jg = Jg - {jout} and proceed to step 3.

Step 3. Follow the special arc

zj(x) =0 for jelJ

0 3
<0 for j = jdom ,
>0 for j=1, 2, ..., jdom , j £ Jg U {jdom} ,

until endpoint x' is reached. Say 28(x") = 0

with g ¢ Jyg ¢+ Set jin =g and J, =J

0 \J {jin} . 1If

0
jin = jdom , proceed to step 1.
If jin # jdom , proceed to step 2.

Step 4. Set jdom = max(j|j e JO) and Jo = J, - {jdom} . Proceed to
step 3.
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Steps 1 and 4 correspond to changes in the size of the subprobler
being considered. Step 1 is a progression to a subproblem of larger size,
while step 4 is a regression to a subproblem of smaller size, The former
step corresponds to a movement along the special arc appearing to the
right of the position in figure 3.4.a, while step 4 corresponds to a move-
ment along the special arc appearing to the left of the position. The
following example exhibits an instance of nonmonotonicity in the sizes of
the successive subproblems considered by the procedure.

To illustrate the procedure, we present a 3-dimensional example where
the sets and their labels take a particularly simple form (figure 4.1).
The sets Sl ’ 82 s 83 are determined by assumption 2.6, while S4

SS . 86 . S7 are of the form:

b

s = [x|x < x'} for j =4, 5,6, 7.

The labels are, again for simnlicity, assumed to be unit vectors and b is

a positive vector. To simplifyv, we  assign the scalar label i (1 <i < 3)
to Sj if its vector label is the ith unit vector. Scalar labels are
indicated in parentheses in figure 4.1. Three sets are completely

labeled if they jointly bear labels 1, 2, 3.

Applied to the problem of figure 4.1 the nrocedure follows a broken

line and generates the following positions:



Sets whose

boundaries First set to  Special arc leading
intersect dominate to subsequent position
at the position the position {notation introduced
Position Type (with labels) (with label) in Figure 2.4)
a - 1 st, 2@, 3 s*(1) 2, =0 for i=2,3

>0 for i=1
< 3 for i=4

b 1 84(1), 52(2), 33(3) 55(2) z, =0 for i=3, 4
>0 for i=1, 2
<O for 1 =5

c 2 sty, sy, 3 5 (2) z. =0 for i=1, 3
> 0 for i=2, 4

<0 for 1=5

d 1 2@, st s s7(3) 2z, =0 for i=1,5

>0 for i=2, 3, 4, 6

< 0 for 41i=7

e 1 522y, st), ste3) s7(3) 2, =0 for i=1, 5

>0 for i=2, 3, &4

< 0 for i =26

£ 2 2@, stay, s s (3) z, =0 for i=4,5

>0 for i=1, 2, 3

< 0D for i =

g (solution)s>(2), s%(3), s*()



4.1

I
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x7 (3)

b i

~
-

e e e e e - — -

(Figure) The path of our procedure consists of a finite union of
broken lines and line segments. The point a is associated with
the starting position, the point g with a solution. The points
b, @, and e represent the positions of type 1 visited by the
procedure before reaching a solution, while ¢ and £ represent
positions of type 2.
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V. An Application: Finding a Point in the Core of a Balanced n-Person Game

Consider an n-person game in characteristic form. Let N={1, 2, ..., n}
be the set of players and let l: (80) be the set of (proper) coalitionms,
namely the collection of all nonempty (and proper) subsets of N . A

coalition C 1is associated with an n-dimensional set of achievable utility

vectors V(C) which satisfies the following conditions:

(5.1) a. V(C) 1is a nonempty closed set in Rn; if = ¢ V(C)
and vy < Xy for all 1 ¢ C then ye V(C) :
b. {if x e V(C) and y < x then y & V(C) ;
c. V({{i}) = {xlxi <0} for ieN;

d. V(N) 1is bounded from above.

These are standard conditions in game theory and need not be discussed
here (see e.g., Scarf (1973)). An important solution concept in game
theory is the notion of the core. A utility vector x belongs to the
core if it is a feasible allocation for the grand coalition and if no
coalition has an incentive to depart from it. The mathematical form of
these conditions is that the core consists of_all allocations in the set

V(N) = U 1int(V(C)) .,
cel

A fundamental result In cooperative game theorv due to Scarf (1967)
asserts that every balanced game has a nonempty core. To define balanced-
ness for a game, we first introduce the notion of a balanced collection
of coalitions. The collection {B} of coalitions is said to be balanced
if there exist nomnegative weights {yB] verifying

Z Yg = 1 for each i e N .
{B:1eB}
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A game is balanced if, for every balanced collection {B} ,

(5.2) N V(B) C V(N) .
{B}
We now show how our path-following procedure applies to determine a point
in the core of a balanced game.
We start with applying our procedure to the solution of a diserete

n-person game, In such game, each characteristic set contains a finite

number of possibilities

v(c) = U Vk(C)

ksKC

k
where C e (¢ , K = {1, 2, ..., kc} , and Vk(C) = {x|xc < x.} . The

C
notation used to describe the latter set is x, = (xi|i g C) . These
sets are the product of R]N-C| with a set in R|C1 which is similar
to the ones appearing in figure 4.1. Note that k{i} =1 and x}i}= 0
for i e N .

The collection of sets {Vk(C)|C e, ke KC} are the sets
{Sl, Sy wees Sm} on which the procedure operates. In this application
m = CEE kC . We recall that the procedure depends on the ordering (or
“~0

indexing) of the sets. The ordering is arbitrary except for the require-
ment that the first n sets coincide with the l-person characteristic
sets: S{i} = Vl({i}) =V({1i}) for i=1, 2, ..., n . The label of

set Sj = Vk(C) with ce ., ke KC is the indicator of coalition C :

- 1 if ie C,
1]

o
I

]

0 otherwise.

We set b= (1, 1, ..., 1) . Given the resulting linear system Ay =b ,
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vy 20, a collection of sets is completely labeled if the corresponding
coalitions form a balanced collection,

Let us now verify the assumptions needed to apply the path-following
procedu;q. The linear system is clearly bounded and can be made nonde-
generate by perturbing the ith component of b (bi =1) to bi = 1-+ei ’
where ¢ 1is a small, positive number (Dantzig, 1963). This verifies
assumption 2.2. Assumption 2.5 is met by virtue of statement 5.1.c.
Assumption 2.6 follows directly from the balancedness property (5.2) and
from the upper-boundedness of V(N) (5.1.d). This leaves us with as-
sumption 2.3.

One can verify that the nondegeneracy assumption is met when the
sequence of ith coordinates (x§|i e C, ke KC, Ce C%) comprises entries
which are all different. This assumption can be made without any loss
in generality since a small perturbation of some of the coordinates
eliminates ties in the sequence should they occur. Alternatively, the
lexicographic ordering can be used to break ties as in Scarf (1973). We
argue that if the latter condition holds, then statement 2.3.a is true.

If x ¢ bdy(Sj) where Sj = Vk(C) for C ¢ C% , ke KC , then at least
one coordinate of xq is equal to a coordinate of xg and the other co-
ordinates are less than or equal to the corresponding coordinates of xg .
Since all ith coordinates in the sequence (x?|i e C, ke KC’ Ce Cb)
differ, the requirement that x belongs to n different boundaries
determines the n coordinates of x . Hence, x cannot belong to more
than n boundaries. Note that =X ¢ bdy(Vk-(Ci)) for i=1, 2, ..., n
implies that :

k

x = min(xcl|i =1,2, ..., n)
i



where min{(x, v, ...) denotes the vector whose ith compenent is
min(xi, Yy «e+) . This verifies 2.3.b. The argument needed to verify
statement 2.3.c can be found in Van der Heyden (1979).

The discrete case theﬁ meets all the necessary assumptions for the
application of the procedure. A path consisting of broken and- straight
line segments--similar to that appearing in figure 4.1--leads to an
undominated point x belonging to a balanced collection of proper coali-
tions, hence to V(i) . There exists an index k ¢ Ky such that
X E Vk(N) and x; undominated in V(N) . The point x§ belongs to the
core of the discrete pgame.

The reader familiar with Scarf's original procedure will noticea

difference with the procedure exposited here. Our path is interior
to at least one characteristic set until a solution is found, while
no point of the path generated by Scarf's procedure is ever interior
to any characteristic set., For more details, we refer to Van der Heyden
(1979).

Having described the solution to the discrete case, we now turn
to a continuous version of the problem. One purpose of the remainder
of this section is to indicate that additional differentiability assump-
tions--which as shown in our treatment of the discrete case are not
intrinsicto the procedure--permit us to restate assumption 2,3 in terms
of manifolds. The reader may find the latter formulation more elegant.

In a continuous version of the problem, the characteristic sets

are assumed sums of sets

v, (C) = {x]gh(x) < 0

23
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where gg(-) is a scalar function with domain RICI . One way to meet

nondegeneracy assumption 2.3 in the continuous case is to impose smoothness
conditions on the functions gz(-) . If gz(-) is a smooth function,

i.e., a function with continuous partial derivatives of all orders, then

the set Vk(C) is an n-dimensional manifold with boundary given by
bdy(V, (C)) = Ix|g(x,) = 0)
k C*C

for more details on manifolds we refer, e.g., to Guillemin and Pollack,
1974). 1In case 0 is not a regular value of the mapping, the above state-
ment cannot be made. However, the statement is genmeric in that small
perturbations of Q0 to O+c , € being an arbitrary small number, yields
regular values. The boundary bdy(Vk(C)) itself is an (n-l)-dimensional
manifold without boundary. Nondegeneracy assumption 2.3 will be met if

the boundary manifolds meet transversally. Again this is a minor re-

quirement because transversality just as regularity, is a generic property
Baving described the manifolds in terms of inequalities, the transversal-
ity condition takes the familiar form that the pradients associated with
the functions gg(.) vanishing at x are linearly independent.

The procedure can then be applied and determines a point x undominated

by any proper coalition, and belonging to V(N) if the game is balanced.
Any point x' > x and in V(N) belongs to the core of the game. The pro-

cedure is illustrated in figure 5.3.
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Figure 5.3.

The path following procedure applied to the seclution of a 3-
person game (n=3, m=6, k, =1 for all i ). The

set Si (i =1, 2, 3) is the i h coordinate plane. The

other sets are S4 = V(12) , 55 = V(23) , 86 = V(13) . Point

a represents the starting position. Point b 1is the only
other position of type 1. Points ¢ and d represent posi-
tions of type 2, point e is associated with a solution.
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VI. Concluding Remarks

This paper has exposited a path-following procedure for proving =
general theorem (2.7) "constructively." The quotes are due to the fact
that thé-method assumes the existence of a constructive procedure to
follow l-dimensional paths. Although the statement of the theorem does
awot, in any major way, take account of the indexing of the
sets, the procedure does, The indices determine the order in which the
various sets are considered by the procedure. Different orderings may

lead to the discovery of multiple solutions.

The procedure links subproblems of different sizes and starts with
a solution for one subproblem when attempting to solve a subproblem of
a different size. The subproblems are linked so as to apply the Lemke-
Howson argument and avoid cycling. This idea can be traced back to
Shaplev (1973). An interesting feature of the procedure is its occasional
regression to a subproblem of smaller size considered earlier in the
comnutation. This nonmonotonic behavior occurs whenever in solving a
given subproblem, a2 new solution is found for a subproblem of smaller size,
one already solved earlier. Several regressions may follow each other,
but the Lemke-Howson argument ensures that eventually the procedure

returns to a forward mode.

Nenmonotonicitv is directly related to uniqueness of solutions, as
multiple solutions for a subproblem are found every time the procedure
regresses to a subproblem solved earlier. Index theoretic arguments,
similar to the ones appearing in Van der Heyden (1979), can identify
conditions sufficient for monotonicity and uniqueness (see also Scarf

and Eaves, 1976).
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A second distinet feature of the procedure is its interpretation

as a refinement procedure. Starting with a solution for the n-problem

the procedure generates--sometimes in nonmonotonic fashion--one or several
solutions for subproblems of size larger than n . Each solution can be
interpreted as an approximate solution for the main problem (the m-problem).
The accuracy of this approximation increases with the size of the subproblem.
Once a subproblem is solved, the problem is refined through the introduction
of one or more sets, the last of which is the first set in the sequence

to dominate the solution for the former subproblem. The procedure then

uses the solution for the old subproblem as its starting point for

the solution of the new subproblem. Note that until the h-problem is

solved for the first time, the sets Sh+l’ Sh+2’ ... need not be specified.
In certain applications, the sclution for the h-problem will be a satis-
factory approximate solution for the main problem and further computations
will be unnecessary.

We have illustrated the procedure by applying it to determine a point
in the core of an n-person game., We have done this both for the discrete
game, where every coalition has the choice over a finite set of alterna-
tives, and for the case where every coalition is characterized by a
continuous set of alternatives. There is a natural link between both.

The procedure for the continuocus game can be seen to be the limit of the
procedure for a discrete version of the game when the number of discrete
alternatives used to approximate each continuous characteristic set becomes
increasingly large.

There are other problems to which the procedure can be applied. One
is the computation of fixed points of certain mappings (Van der Heyden,

1979); the other is the linear complementarity problem, which includes
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2-person nonzero sum games (Van der Heyden, 1980). Both papers present
algorithms which can be seen to be applications of the general procedure
outlined in this paper. The reader may wish to refer to the first paper
for a discussion of the relationship between the procedure developed here

and other existing fixed point procedures.
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