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EXTENSION OF A DYNAMICAL MODEL

OF POLITICAL EQUILIBRIUM™

by
Gerald H., Kramer

July 3, 1980

This paper extends an earlier analysis [4] of the dynamical behavier
of a competitive two-party political process. The underlying framework
is essentially that of the Hotelling-Downs model, generalized to a multi-
dimensional Euclidean space of alternatives. In multidimensional spaces
it is well known that the classical static or pure strategy Hotelling-
Downs equilibrium will not exist, in general; the approach taken here
is explicitly dynamical in character. The two political parties are assumed
to compete repeatedly for votes, over an infinite series of electioms,
by advocating alternative policies or alternatives to the electorate.
In each period, the party whose policy is preferred by a majority is
elected; it is assumed to enact the policy it advocated, and to defend
this same policy in the next election against the opposing party. The
"out" party may adopt any policy it wishes, to maximize its prospects.
In general, the incumbent's policy will always be defeated, and the two
parties will alternate in office. As the process is repeated over time,
a sequence of successively-enacted "winning' policies is thus generated.

Our analysis focuses on the behavior of these sequences, or trajectories,

of policies.

*This work was supported by the National Science Foundation, under grant
S0C-77-03278.



In [4] it is shown that when voter preferences are "Euclidean,”
i.e., have indifference surfaces which are concentric hyperspheres in
RK » the trajectories generated by this process will converge on a
specific subset of the policy space, the minmax set. To give a rough
idea of the nature of the minmax set, consider a collection of n voters,
each with a preference ordering defined on a set A of alternatives,
v(x,y) the vote for x over vy, is the number of voters who strictly

prefer x to y . By varying x over the feasible set, we define wv(y) ,

the maximum vote against y : v(y) = max v(x,y) . If ¥(y) <n/2, y
XEA

is a Condorcet alternative or majority winner in the usual sense; typically,

however, no such alternative exists when the alternatives are drawn from

- , i.e., Ww(x) > nf2 for all x . The function v nevertheless does
.. K R e s —=
have a minimum on R . The set of alternatives which minimize v con-

stitute the minmax set; they are the alternatives which, in a sense, are
"elogest" to being Condorcet points., This minmax set is a typically small
subset of the policy space, and moreover can be shown to get progressively
smaller as the number of n of voters increases, becoming a single point
in the limit as n + = [5].

Thus, at least for Euclidean preferences, these results suggest the
minmax set as the natural dynamical generalization of the classical
Hotelling-Downs equilibrium. As McKelvey has shown, however, convergence
is not assured with arbitrary quasi-concave voter preferences [6]. Thus
the robustness of the convergence result with respect to assumptions on
voter preferences, and the extent to which it can be generalized beyond
Euclidean preferences, is an important issue.

In this paper we extent the analysis to, essentially, the family

of intermediate preferences introduced by Grandmont [2]. 1In particular,




we consider a class of preferences which can be represented by utility
functions of the form ua(x) = fo(x) + alfl(x) + ....+-aLfL(x) linear in
parameters a;, 85, ..., a; 3 this family is a large one, and contains
close approximations to any smooth utility function on RK . In Section

2 we show that if voter preferences are of this form, there exists an
analog of the minmax set, denoted by M[R] , on which the vote maximizing
trajectories tend to converge. M[A] is thus the natural dynamical equi-
librium for this class of processes.

In general the set M[i] , while typically a small compact subset
of RK , is nevertheless larger than the minmax set itself. Moreover,
unlike the minmax set, M[i] need not necessarily shrink to a point as
n- . In Section 3 we explore the relation between the minmax set and
M[3] , and show that the minmax set coincides with M[A) 4if L <K,
where K is the dimension of the alternative space RK , and L the
dimension of the parameter space RL which characterizes the voter utility
functions. When this dimension condition is satisfied, competitive vote
maximization then leads to convergence to the minmax set.

Some of the results obtained here also have a social choice-theoretic
jnterpretation, In particular, for any a ¢ [1/2, 1) we can define the
ao-majority preference relation Pa by xPy <= v(x,y) > a . Within
this family of possible social preference relations, particular interest
focuses on the acyclic Pa , and on the Pa which have maximal elements.
In Section 4 it is shown that the minmax and A parameters characterize

these sets.



1. Definition and Preliminary Results

1.1. We shall be concerned with societies composed of individuals

whose preferences can be represented by utility functions of the form

u (x) = £,(x) +af) (x) +a2f2(x) fotaf @,

where each fi : RK - R1 is a continucus function on RK , and

a5, «.., 2y are parameters. In vector notation,

ua(x) = fo(x) + f(x)a ,

where f(x) = (fl(x), fz(x), vany fL(x)) is 1 xL and a = (al, Byy ens aL)'
is an Lx1 column vector. (All subsequently introduced vectors are
understood to be column vectors unless explicitly defined otherwise.)

The parameter vector a e RL varies from voter to voter, but the
functions fo, cuay fL are the same for all. RK is the policy or
alternative space; all points in K are assumed feasible. The parameter

vector a is chosen from a convex body A in RL , the parameter space.

The functions fo, caey fL and the set A are taken as given and fixed
in all that follows. We denote by U the class of utility functioms

obtained as a ranges over A . U thus defines a family of intermediate

preferences, in the sense of Grandmont [2]. (Various interpretations of

this family can be suggested. For example, we can think of f f

gr teve fp
as alternative criteria for evaluation; all voters use the same criteria,
but weight them differently in arriving at their final overall assessments.
Alternatively, we can think of Xys +evy X a5 A vector of policy
instruments which lead to a set Zys vres 2y of possible outcomes or

target variables, where 2z = f(x) . 1If voters have additively separable

preferences with a common structure on the outcome space, their implied



preferences for different policy vectors x € RK will again be represen-
table by utility functions belonging to the family U .)
We note in passing that the Type I or Euclidean preferences belong

to this family. Euclidean preferences are representable by a utility

function of the form

K
u{x) = —||x—s||2 = - Z (xi--si)2 ,
i=1

where s is the point of satiation of the voter in question. This can

be rewritten as
2 2
—ZXi + ZZSixi - ZSi ’

2
and since the constant zs has no effect on the location of the indif-

ference surfaces, this is evidently equivalent to

K o, K
- Dxp 4 1sy2

i=1 i=1
K
= fo + z aifi(x) = ua(x) ,
i=1
where the parameters a, = s, are the components of the satiation point,

and fi = 2xi for i=1,2, ..., L =K . Clearly the usual "spatial
modelling" utility function wu(x) = (x-s)'A(x-s) , where A is a positive
definite matrix of parameters, can also be rewritten as a second-order
polynomial in the X, 80 also belongs to U . Indeed, since any smooth
function on RK can be approximated by a polynomial of sufficiently high
order, the family U (in the absence of further restriction on L oT on

the form of the fi ) contains approximate representations of almost



every representable preference ordering.

We note the following useful property of U :

Comment 1: For any X, y ¢ R , the set {a ¢ RE : ua(x) > ua(y)} is

an open halfspace in RL

Proof: ua(x) > ua(y) implies

0 <u (x) - u(y) = [f5(x) +f(x)a] - [fo(y) +f(y)al

fo(x) - fo(y) + [£(x) - £(y)]a ,

i.e., that h'a > ¢ , where
h' = £(x) - £(y) ¢ R* and c = Eo(y) - f,(x) e R .
Q.E.D.

As a matter of notation, we henceforth dencte by ny the set

ny = {a ¢ RL : ua(x) > ua(y)} .

by HO (resp. H® ) the set of open (resp. closed) halfspaces of RL ,

and by

H=tH Ui

the set of open or closed halfspaces of RL . H, H', H', ... denote

arbitrary (open or closed) halfspaces.

1l.2. A society is a probability distribution wu on (the Borel sets
of) A, which we assume to be a2 discrete distribution with finite support.

We denote the support of uw by



supp [u] = {aj :J e N},

where N is the index set N = {1, 2, ..., n} . Thus there are n voters
in the society, each voter 1 with parameter vector a; .

Given u , we now define wv(x,y) , the vote for x over y

as the proportion of the electorate who strictly prefer x to vy , i.e.
as v(x,y) = u{a e A : ua(x) > ua(y)} = u[ny] {from Comment 1).

v(x) , the maximum vote against x , is defined by v(x) = max v(y,x)
K
yeR

(since u 1is a discrete distribution with finite support, the range of
v is finite, so this maximum necessarily exists; this justification also
applies to the other maxima and minima referred to below). We denote

by M(+) the level sets of the maximum-vote function v o:

M(r) = {x ¢ Y : v(x) <rr, forall re Rl

The minmax number v* is the minimum value of v ,

v¥ = min v(x) ,

stK

and M(v*) is the minmax set.
Recall that supp u = {ai : i e N} . For any coalition CC N
of voters, we define its Pareto set P(C) by P(C) = {x ¢ RK : for no

y is u, (y) > u_ (x), all i e ¢}, and denote by u[C] the quantity
i i
u{ai : 1 e C} . For future reference we note:

Comment 2: If r <1,

M(r) = N P(C) .
{CceN:u[Cl>r}



Proof. Obvious.

Turning now tco the parameter space RL » we define the function

A on A by

x(a) = max  u[H] ,
{HEHO:aéH}

and

A = min A(a) ,
achA

the minimum of )X . We denote by A(r) the set
A(r) ={acA: i(a) g1},
and note the following:
Comment 3: i < 1 always. Moreover if r <1 , then

A(x) = N H .
{HeH:u[H]>r}

Proof: If a = aj for some aj g supp [u] , clearly a ¢ H implies

ulH] <1, whence A(a) <1, whence 3 < a(a) <1, giving the first

assertion.

Suppose a # H and y[H] > r . H open would imply
xa) > u[H] > r, i.e., a ¢ A(r) ;

or, if H dis closed, then there exists a plane P which separates a
from the closed set H , which itself defines a new open halfspace,

H'2 H, such that

a ¢ H and ufH') > (] > ¢,



again implying a ¢ A(r) .

Conversely, since HOC: H, act N H implies
{HeH:u[H])>r}
ac N H whence a ¢ H e HO implies wu[H] < r , whence
{HEHO:U[H]>r}
Afa) <r.

Q.E.D.

1.3. There is clearly a close parallel between v¥* , the minimum
of the function v defined on the alternative space RK , and ) , the
minimum of an analogous function ) defined on the parameter space RL .
But while the minmax set M(v¥*) is necessarily non-empty, some additional
structure on U is required to ensure the nonemptiness of M(a) . 1In
particular, if all voters' utility functions are monotonically increasing
in Xps eees X and the entire space RK is feasible, M(r) will be
empty for all r <1 ; the minmax set M(v*) will consist of all of
RK , with v* =1 , This will be true irrespective of the distribution
of preferences; e.g. even if all preferences are identical, tﬁe majority
preference relation is transitive, but there still exists no
Condorcet alternative (and in fact no Pareto-optimal alternative) in the

unbounded feasible set RK .

These anomolies do not arise if the utility functions are satiated,®

*Alternatively if the utility functions are monotonic but the set S of
feasible points is compact, each u will have a maximum in the "frontier

set" B={xe8S:y>x = y¢ S} . Any non-frontier point 2z e S-B
will be Pareto-dominated, so the Pareto optimal sets P(C) and hence the
sets M(-) (by Comment ) all lie in B . Clearly both parties will wish
to avoid non-boundary points, which make them vulnerable to defeat by a
unanimous vote in the following election, so there is no serious loss of
generality in confining attention to points lying in B . But B itself

*
is homeomorphic to a lower-dimensional subspace RK ,» K¥ <K-1, sowe

*
can take RK itself as the alternative space with the utility functions
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in the following sense:

Satiation: For every a € A and q € R , the set {x e RK : ua(x) > ql

is compact.

Clearly this condition implies v, is satiated in the usual sense,
. ; K
i.e., hasamaximumin R . We note the following consequences of the

satiation assumption:

Comment 4: If wu 0 is satiated at 0 , then ';(xo) < A(ao)

a

Proof: Let y be a point satisfying 'V(xo) = v(y, xo) , i.e.,

uld 1 = v(x% . since u o has a maximum at X0 , clearly
yX a
0 \ 0 0
u O(Y) Su O(X >, i.e., a ¢H 0 * Hence X(a'} = max ulH]
a a 0 yx {HEHO:aotﬁ}
> u[H 0] = v(x) .
yx
Q.E.D

More importantly, we also have the following:

Comment 5: Assume satiation. Then v* < A always, and moreover M(r)

is compact for all r < 1.

Proof: Let & be an element which minimizes Ai(-) , 1i.e. A@a) = &,

and let x be a point which maximizes wu, . Then v(x) < r(a) from

W) = u () = £ + £&THa

*
(where g : RK - RK is the homeomorphism in question) are now satiated,

*
in the sense given above, in the unbounded set RK . Under this inter-
pretation the dimension condition in Proposition 2 (Section 3 below) refers
to K% , the dimension of the boundary manifold itself, rather than that

of the original space RK .
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Comment 4, so from the definition of v* it follows that

vk < v{x) ia) = 2 , Wwhich proves the first assertion.

It A

To show M(r) compact, recall from Comment 3 that

M(r) = M P(C) . Since the number of coalitions C is finite,
{ceN:u[C]>r}

it suffices to show that each of the sets P(C) is compact, i.e., bounded
and closed.
Bounded: For each 1 € C let 8 be a point which maximizes

u (+) , and define

a.
i
v, = ?in ua.(s.)
jeC i
and
K
W. ={xeR :u (x) >w}.
i a, = i

1

Each Wi is compact, from the satiation assumption, and C is finite,

so the set W= UW, is bounded, Let x* =s for some arbitrary

*
ieC i
i* ¢ C. For any y ¢ W it then follows from the definitions of v,
and W that

< uy (x*) for all ie C,

+ i

ua.(y) < v,
i

and therefore that vy ¢ P(C) . Hence P(C)C W, so P(C) is bounded.
Closed: Suppose the contrary, that P(C) 1is not closed. Then

there must exist a sequence of points xj e P(C) converging to a limit

(xj)-)'i which does not belong to P(C) , i.e. for which there exists

a ye¢ RK such that

u (y) > u (x) for every i e C.
i i
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Let yJ = xJ + (§:§) . Since xI ¢ P(C) , for each j there must exist

a voter ij £ C for whom

a, .
1, 1

u () o, G
3 3

and since C 1is finite there must be a subsequence (j') on which i,

] _
is constant, i.e. ij' = i%* ¢ C for all j' . Clearly (y' ) -y and

A
[
—~
>
.
—

] — 2 !
(xJ ) + % ; hence, since u (*) is continuous and u, (yJ ) =
i* i%* =

it follows that

=1 sy
0> lim[u (yW)-u X )l=u & -u & .
=t . % 3% a, % a

This is impossible, since by hypothesis u (y) > u, (x) for every
i i

i e C, a contradiction which proves the result.

Q.E.D.

1.5. With these preliminaries, we can now establish two fundamental

results. First, we have

Theorem 1: If a e A(r) then for any X, y ¢ X , Vv(x,y) >r implies

u (%) > ualy) .

Proof: From Comment 1, v(x,y) = u{ny] , where ny € Hoc: H, and
p[ny] = v(x,y) > r ; hence, from Comment 3, a ¢ ny , 1l.e.
ua(x) > ua(y) by the definition of ny .

Q.E.D.

Theorem 1 implies, in particular, that if (xt) is a vote-

+1

maximizing sequence of alternatives (i.e. v(xt s xt) =';(xt) for all



13

t ) which lie outside the set M(}) » then there exists a function

u- a €A, which is strictly increasing on the sequence; thus no
such sequence can cycle. To show that such sequences in fact converge
to M(}) » we need a somewhat stronger version of Theorem 1. One addi-

tional rather weak assumption on U is required:

Weak Independence: There exists an o* > 0 such that for every

X, ¥ € Rk s

£ - £ |} > e*lx-y| .
We now prove the following,

Theorem 2: Assume Weak Independence. Then, if A(r) is a body, there
exists an a0 € A(r) such that for every € > 0 there exists 6 > 0

such that v(y,x) > r and |ly-x|| > ¢ dimplies u o) = u y(x) > 8.
a a

Proof: If A(r) 4is a body, there exists aU e A(r) and p > 0
such that A(r) D{a e A : ||a-a°|| <o} = Np(ao) . For any ace¢ A and
zZc RK we can write ua(z) =u o(z) + f(z)(a-—ao) ., 80 in particular

a
we have

5 - a0 =u () - 8 o0+ [EW) - f(x) 1(a-2a% .



If wv(y,x) » r this quantity will be positive, implying

b () - u g0 > I8 - £ 1(a-a))
a a

for any a ¢ Np(ao) . If |ly-x|| > ¢ , then from Weak Indenendence
we have IIf(y)-f(x)H > g%t . Hence define
ak = a0 [f(y) - f(x)]'

TP T -t T]
so that

_ - 00 Tfy) - f() 1)) - [ECa]!
[f(y) - f(x)}(ax-a") = p HOEEION|

o ltm -t 2
TE( = £ ]

> po¥e
Hence, taking 6 = pa%*e >0 , we have

s - u () > -lEGy) - £ 1 ax-a)) > 6,
a a

u

which proves the result.

14

Q.E.D.
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2. Competitive Vote Maximization on RK

2.1. We now return to the competitive political process described
in the beginning. Two political parties are assumed to compete for votes
by proposing alternative policy packages, or points in the alternative
space RK , 1in each of a series of electoral contests. Voters are assumed
to have no loyalties to parties as such, and to vote solely on the basis
of their preferences for the current policies offered by each., Since
there are only two alternatives available in each election, there is no
incentive for strategic voting, and the party whose policy vector is pre-
ferred by the greatest number of voters will win a majority and take
office. Each party is assumed to be consistent, in the sense that upon
winning office it proceeds to enact the policies it advocated in the
election, and defends these policies in the next election. The "out"
party, however, having lost the previous election, is free to adopt a
new policy platform in attempting to regain office in the next election,
and in making this choice is assumed to choose a point which will maximize
its vote against the incumbent. Since the potential policies are drawn
from a multidimensional space RK , 1in general there will be no Condorcet
alternative or majority-dominant policy, so the incumbent's policy can
always be defeated, and the two parties will alternate in office. As
they compete repeatedly over a series of elections a sequence of successively-
enacted winning policies will be generated. We focus here on the behavior

of these sequences, or trajectories.

To fix terminology, a vote-maximizing trajectory is a sequence

+1

(xt) of points xt € RK , such that v(xt . xt) = ;(xt) for all t > 1.

A trajectory is non-degenerate if there exists an ¢ > 0 such that for

t'+ ! .
every T > 0 , there exists a t' > T such that [x Lyt | > e, i.e.



16

the parties occasionally differentiate themselves by at least € . 1In
all that follows, trajectories are understood to be vote-maximizing and
non-degenerate.

There is considerable indeterminacy in the short-run behavier of
these trajectories {(for any xt » the set of potential vote-maximizing
xt+l constitute an open set in RK ), so we shall concentrate on their
long-run or asymptotic behavior. There are a variety of equilibrium
concepts which can usefully characterize the long-run behavior of this
type of dynamic process, but the following three seem to capture most
of the relevant characteristics of interest:

First, we can look for the possible steady states, or rest points,
of the process., In the usual definition, x* would be said to be a
rest point if there exists a trajectory (xt) for which x= = x* for
all t >T , for some T . But such a trajectory would be neither non-
degenerate nor vote-maximizing (since v(x*, x*) = 0 ), so clearly rest
poeints in this exact sense cannot exist. However, if we relax the defini-
tion to admit trajectories which remain arbitrarily close to x* , there
will exist rest points in this approximate sense. Thus, we shall see
x* 1is a potential rest point, or equilibrium, if for every € > 0 there
exists a trajectory (xt) and number T such that xt' £ NE(x*) for
all t' > T . We denote by £ the set of such equilibrium points.

The definition of a rest point ensures the existence of some tra-
jectories which remain in its vicinity indefinitely, but of course there
also exist other trajectories which are not so well behaved. Thus to
characterize the asymptotic behavior of arbitrary trajectories, we introduce

the idea of a point of recurrence, or limit point. Thus we shall say a

point x* is a limit point if, for every e > 0 , there exists a
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. t!
trajectory (xt) which contains a subsequence (x ) such that

xt'a NE(xt') for all t . The set of limit points is denoted by L .
Clearly every equilibrium point is a limit point, so E © [ .

Equilibrium and limit points are points which are potentially
sustainable {in the sense of their respective definitions), if the proper
trajectory 1s chosen, but no such point is necessarily sustained if other
trajectories happen to be generated: there is no assurance that any
particular trajectory will tend toward any particular limit or equilibrium
point, Thus, to characterize a set of points which are necessarily

sustained, by any trajectory, we introduce a third and final concept,

s K .
that of a region of recurrence. A set S C R 1is a region of recurrence

if for every trajectory (xt) and ¢ > 0 , there exists a subsequence

(xt') such that xt' £ NE(S) for all t' . A region of recurrence §

is minimal if none of its proper subsets is also a region of recurrence.

We denote by R the minimal region of recurrence. It is clear that the
set L is itself a region of recurrence, and that any region of recurrence
must contain every equilibrium point; hence L DR DE . (L and R

are nonempty and unique, from general considerations, and the set E can

also be shown to be nonempty under the assumptions of Section 1.}

2.2, It will now be shown that under the structure described in
Section 1, these equilibria are all located in or near the set M(R) .
Proposition 1 below is conditional upon one further premise--that the set
A(r) 1is a body in RY  ——but for large n this condition is not restric-
tive and will be satisfied by almost every society u . {(In particular,

we conjecture that A(}) 1is a body whenever n > L+l , if the a, are

1

in general position in RL .) In any event Proposition 1 remains valid
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if A is replaced by r throughout, with any ) <r <1 for which
A{r) 1is a body.

We now have:

Proposition 1: Assume satiation, Weak Independence, and that A(}) is

a body. Then M(A) > RDOE . Moreover there exists & > 0 such that

N, (MDD L.

Proof: We first show that M(X) 4s a region of recurrence. Suppose the
contrary, i.e. that there exists a trajectory (xt) such that for some

ex >0, T >0, xt { Ne*(M(i)) for all t > T . Since (xt) is non-
degenerate, there must exist an ¢ > 0 and a subsequence (xtj) such that
tj > T and |[xtj+l-xtj|| >e for all j ; hi?ce,from Eheorem 2, there
exists a e A(i) and 6 > 0 such that ua(xtj ) - ua(x j) > & for

all j . For any j we can write
t,+1
j + t+l t
uw(xd ) = ua(xT Ly + ) [ug 7)) —usx)]

{t:Te<t<t }
=]

Since by hypothesis t > T dimplies x" ¢ M(3) , the quantity in square

brackets is always non-negative, from Theorem 1, so

+1

[-] » i fus( T e b1 56
2.4 us(x - ug(x :

{t:T<t<t,}
=]

t.+l T+1 t,+1
hence ua(x ] ) > ué(x } + j§ , dimplying that ua(x J Y 1increases

without bound as j + « , which is impossible since usy is satiated.
Hence no such traijectory can exist, i.e. M(L) 1is a region of recurrence.
From the definitions, it clearly follows that R<C M(X) and that E &R,

which prove the first part of the result.
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To prove the remainder, let Sx ={y : v(y,x) = v(x)} , for any
x , and note that

S = U . Nz : u_ (2) > u (x)}
{ceN:u[Cl=v(x)} ieC - ay = 3

is a finite union of finite intersections of compact sets (from satiation),

so is itself compact. Let ac A(i) . Since ua is continuous,

p(x) = min ué(y) is defined and continuous at all x , so has a minimum
veS
X
E = min p(x) on the compact (Comment 2) set M(3) . The set
{xeM(X)}
Q= {x:ua(x)_35? is also compact, and evidently contains M(X) ; 1i.e.
Q ®M(3) . From the proof of the first part of the Proposition it follows

that on any trajectory (xt) . xT e M(X) for some T , whence xT e G.

If xt £ Q for any t > T , there are two possibilities:

(i) xt e Q- M(A) . Then q(xt) > A, so v(xt+l, xt) = ;(xt)

implies ua(xt+l) > ua(xt) > p from Theorem 1 and the fact that
t t+1 .
x € Q; hence x e Q also. The only other possibility is
(ii) xC ¢ M(Z) . Then xt+l E S - i.e. ué(xt+l) > p(xt) .
X

+1, | —

and since x € M(R) , p(xt) 2 P . Hence ua(xt ) >p, i.e.

xt+l € Q also. Thus by inductionmn, xt € Q for all £t>T, sol © Q.
Since Q is compact, there clearly exists ¢ s.t, Né(M(X)) >Qo L.

Q.E.D.

The second part of Proposition 1 is not very strong as stated,
since ¢ may be quite large (even so, it still shows that the vote maxi-
mizing trajectories are much better-behaved than are the simple majority
rule trajectories, for example, which in general are not confined to any

proper subset of the alternative space [7]). It can be shown, however,
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that as the number of voters increases (in the proper, but rather general,
way) this & tends to zero [5]. Hence in large societies the all limit

points will be found in or near M(}) .

3. The Relation between M(%) and M(v*)

Proposition 1 shows that the trajectories generated by competitive
vote maximization will eventually converge on the set M(1) , and remain
in or mear it indefinitely thereafter, M(X) is thus the natural dynamical
generalization of the Hotelling-Downs equilibrium. But this set M(X) ,
while typically a small compact subset of RK , 1s nevertheless larger
than the minmax set itself, in general (cf. Comment 5). The minmax set
is of some intrinsic normative interest as a natural generalization of
the Condorcet criterion; moreover as the number n of voters increases
(in the proper fashion), the minmax set can be shown to become smaller,
shrinking to a single point in the limit as n -+ [ ]. This is not true
of the M(}) set; hence it is of some interest to find the conditions
which ensure convergence to the minmax set itself,

Clearly the relation between M(X) and M(v*) depends in part on
the distribution u ; e.g., if voter preferences are all identical, or
single-peaked, these two sets will coincide. The condition given below
is distribution-free, however, thus allowing for the possibility of evolu-
tion or change in voter pfeferences.

In developing this condition it will be convenient to assume the

1

fi functions are differentiable, i.e. C° . As a matter of notation,

we denote by Vi the gradient vector of fi s
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afi(x)
afl
afi(x)

L %

V(0 = (£, () =

and by D(x) the derivative of f , i.e. the matrix

D(x) = [V, () V,(x) ... Y (0]
Clearly the u_ are also C1 , with gradients Va given by
=0 -
Va(x) = ax(ua(x)) = Vo(x) + D(x)a , for all a e A .

Voter preferences until now have not been assumed to be convex;

henceforth, however, we shall assume

K
Pseudoconcavity: ua(x) pseudoconcave for all x e R and a e A, i.e.

Va(x)(y—x) < 0 implies ua(y) < ua(x) for any vy ¢ RK .

We note without proof two obvious properties of pseudoconcavity:
first, every critical point is a point of satiation, i.e. Va(xo) =0
implies ua(xo) > ua(y) , all y . Secondly, if Va(xo) > 0 there exists
an e > 0 such that |ly-x|} < e and Va(xo)(y-x) >0 imply ua(y) > ua(xo)

We also have:

0 K
Comment 6: Assume Satiation and Pseudoconcavity. Then for any x e R,

there exists a society u for which ;;(xo) <1 1if and only if there

. 0
exjists an a* £ A such that ua* is satiated at x

Proof: If: Take u such that supp [p] = {a} . From pseudoconcavity
all voters are satiated at xo , BO ;u(xo) <1.

Only if: From Comment 2, ;(xo) < 1 dimplies x0 e P(N) . From



22

the standard first-order condition for a Pareto Optimum, there must exist

non-negative multipliers o, 2 0, 14N, not all zero, such that

) aiva_(xo) =0

ieN i
Let
Z Qa,
i1
a* = ——Z— ;
ieN | aj
jeN

then a* is a convex combination of points a; € A, so a* e A, and

evidently the utility function u

% satisfies
a

<]
—~
o
~r
It

Vo(xo) + D(xO)a*

]

o.a,.

v (xo) + D(xo) z =1

0 Lo o
ieN

ot 0 0
v + D .
igN TalT0) + DGa,]

i%[ ¥ o, Y, «NH1=0.

ieN i

Q.E.D.

This result gives some insight into the structure of the function
v , and in particular shows that the nested level sets M(r) , r <1,
must be confined to S , the set of satiation points generated as a
ranges over A . This set S 1is typically a K-dimensional subset of
RK when L >K . TIf L <K, however (and if each u is uniquely
satiated), S will be a subset of an L-dimensional manifold in RK .
For any society u the M(r) sets will all be confined to this manifold;

moreover, as we will now show, the minmax and M(i) sets will coinecide

To establish this, we require one further condition on the component fi
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functions, a strengthening of the earlier Weak Independence condition.

We now assume

Strong Independence: The matrix D(x) is of full rank at all x e S .

We now prove the following:

Proposition 2: Assume Satiation, Pseudoconcavity, and Strong Independence.

~

Then L <K implies X = v* .

Proof: Let x* be a minmax point, i.e. v{(x*) = v* , TFrom Comment 6,

there exists a* £ A such that

0 = v ,(x%) = Vy(x*) + D(x¥)a* ,

Vo(x*) = =D{x*)a* , (1)

By definition of A(+) , there must exist an open halfspace
H=1{ac RL : (a,h) > (a*,h)} such that u[H] = A(a*) (where h # O
and a* ¢ H, clearly). Strong Independence and L < K imply that

D(x*) 1is of rank L , and hence that the equation
d'D(x*) = h' (2)

has a solution 4 ¢ Rk . For any a £ A, evidently

(V,(x%), ) = a'7_(x%) = d'[T,(x*) +D(x¥)a)

d'[-D(x*)a* + D{x*)a] from (1)

-h'a* + h'a from (2).

Hence (Va(x*), d) > 0 implies h'a > h'a* , and therefore a e H ,
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for any a £ A . Since the v, are pseudoconcave, for sufficiently small

a >0 the point y = x* + ad will satisfy (Va (x*), d) > 0 = u, {(v)
i i
>u_ (x¥) for all a, e supp [u] , so0 v(y,x) > ulH] . Hence, from the
i 4

definitions of v, v* and & and choice of x* and H we have
vk = v(x*) > vy, x*) > p[H] = A (a%*) 2 5o,

which from Comment 5 shows that wv% = } .

Q.E.D.

4. Consistent Majority Rules on RK

4.,1. We conclude with a brief voting-theoretic interpretation of
Theorem 1. For any society we can define the family of social preference
relations Pa for 811 o e [1/2, 1) , by xPay iff v(x,y) > a . These
relations are nested, in the sense that o' > o implies P.CP ,
and range from the simple majority rule, P1/2 , to the unanimity rule
or weak Pareto-dominance relation, Pl_E (for sufficiently small ¢ > 0 ).
Within this family of relations, the Pa of potential interest as possible
bases for social decision are the ones which are "consistent," in some
appropriate sense.

In particular, one natural class to focus on are the Pa which
possess maximal elements, i.e. those for which the choice set
Cu = {x : for noy is yPux} is nonempty. Conditions for this type of
consistency have been studied by several authors; i.e., for the case where
the alternatives belong to a multidimensional space RE , Slutsky [8]

gives necessary and sufficient conditions for x ¢ Cu for given yu ,

and Greenberg [3] gives conditions on o which ensure Cu # ¢ for all u .
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a > vk . 50

if and only if

In the present context, clearly Cu + ¢
characterizes the

for a given society or profile the minmax number v*
Pa which are "consistent" in this weak sense,
For gome purposes however, we may be interested in finding the
Pa which are consistent in the stronger sense of yielding a ranking or
consistent ordering of the entire set of alternatives. The broadest
family of such relations will be the Pa which are acyclic, in the
usual sense that there exists no finite sequence xl, xz, “eey xr s
xi+lPaxi for 211 i =1, 2, ..., ,

of alternatives such that
%A parameter gives a char-

r > 1
2 1 . .
and x = x It is readily seen that the
acterization of the acvclic Pa
is acyclic if o > iu

”’Pa
. If L <K

Proposition 3: For a given society
if o > L/LH1 <

P is acyclic in every society

Moreover H
s ]
and the other conditions of Proposition 2 are satisfied, we can replace

"if" by "if and only if" in both assertions. ( a being understood as
in the first,)

restricted to the range of v
1 2 r - ,
Proof: Llet 2", z, ..., 2 be any finite sequence of alternatives for
. i+l i . . .
which =z Paz . If a > X, then by Theorem 1 there exists a function
, . T i
u_ which is strictly increasing on 2~ , whence ua(z ) > ua(z ),

a
1 T
so z # 2z , 1.e. the sequence cannot be a cycle.
To prove the second assertion, consider a society 3 whose members
have utility functions u, , a, £ supp [v] C ACRL defined on an
i
We can always interpret these parameter vectors

alternative space RK .
as also defining another society with Euclidean preferences on a different
j )

alternative space R , K =1L , by taking fo(x) = x"x and %5(x) = x
"y
i=1, ..., L= ﬁ , for all x ¢ RK The conditions of Proposition 2
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are satisfied by these %j , 50 the minmax number 3* in this hypothetical
alternative space R must satisfy vE o= &L Moreover, from Theorem 2

of Greenberg [3] it must also be true that v < K /K+1 ; hence, since
A=vk and R =1L , it follows that & < L/L+l . This holds for any
distribution yu defined on RL ; hence, from the first sentence of

Proposition 3, «a

[[AY)

L/L41 dimplies POL acyclic for every u
Let X be a large compact set containing P(N) . For any x

the set {y : yPax} = U Nz : u, (z) >u_ (x)} is clearly
{oeN:u[C)>al} ieC i &1

open, so from a standard result on acyclicity (e.g. [1], Theorem 7), if
Pa is acyeclic it has a maximal element on X ; i.e., if a is restricted
to the range of v , Pa acyelic === o > v*¥ . As shown above,
x> A= Pa acyclic, and if the conditions of Proposition 2 are satisfied
vk = %, implying Pa acyclic iff a > A= v,

Theorem 1 of Greenberg shows that the bound L/L+1 1is sharp, i.e.
for any B8 < L/L+l there exist societies p for which ip > B and hence
in which P ecycles for B < a < Xu .

Q.E.D.
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