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FULL INFORMATION ESTIMATES OF A NONLINEAR MACROECONOMETRIC MODEL®

by

Ray C. Fair and William R. Parke

1. Intreduction

The purpose of this paper is to report on results of estimating
the model in Fair [10] by full information maximum likelihood (FIML), non-
linear three stage least squares (35LS), and nonlinear two stage least
squares (2SLS). Ordinary least squares (OLS) estimates are also presented
for comparison. Although it has in the past been difficult to compute
FIML and 3S8SLS estimates of large—gcale nonlinear models,1 an algorithm
has recently been developed by one of the authors (Parke [20]) that now
makes this feasible. The computation of these estimates is discussed in
the first part of the paper.

There are a number of ways in which one can examine the differences

*The research described in this paper was financed by grant S0C77-03274
from the National Science Foundation. The authors are indebted to Jerry
Hausman for helpful comments.

1We know of no previously successful attempts to estimate a nonlinear model
of the size considered in this study by FIML or 3SLS. An attempt was made
in Fair [10, Chapter 3], using traditional algorithms, to estimate the
present model by FIML, but the "FIML" estimates presented in [10] are not
the true FIML estimates. Since these numbers were published, a much larger
value of the likelihood function for this problem (and different coeffi-
cient estimates) has been obtained using the algorithm considered in this
paper. In Fair [9] a 19-equation model (11 stochastic equations) with

61 unknowm coefficients was estimated by FIML using traditional algorithms.
This model is not, however, in the category of a large~scale model, and
only the recursive part of it is nonlinear. Further results of estimat-
ing this model by FIML and 35LS, again using traditional algorithms, are
presented in Belsley [3]. This is the largest model considered by Belsley
in both [3] and [4]. The algorithm presented in Dagenais [7] appears
capable of estimating only medium-size nonlinear models (about 50 coeffi-
cients) by FIML.



among the four sets of estimates once they have been obtained, and the
second part of the paper is concerned with this topic. On a strictly sta-
tistical level, one can compare the 3SLS and FIML estimates via the Hausman
test [17] to test the hypothesis that the error terms are normally dis-
tributed, In the same vein, one can compare the 2SLS and FIML estimates
via the Hausman test to test the hypothesis that the model is correctly
specified. There are, however, as will be discussed, some practical
problems that arise when trying to use the Hausman tegt in the present
context, and the current application of the test has only been partly
successful. On a more informal level, one can examine the sensitivity

of the dymamic prediction accuracy of the model and the sensitivity of
policy effects in the model to the alternative astimates. The results

of these comparisons are also presented below.

The model and estimation techniques are described in Section II,
and the computation of the estimates is discussed in Section III. The
coefficient estimates are then presented and discussed in Section IV.

The results of the Hausman tests are also discussed in Sectiom IV, and
the prediction and peolicy results are presented in Sections V and VI res-
pectively. BSection VII contains a summary of the main conclusions of this

study. The algorithm is briefly described in the Appendix.

I1. The Model and Estimation Techniques

The Model

The model in Fair [10] has been updated since [10] was published,
and the version that has been used in this study is presented in Fair [12].
This version consists of 97 equations, 29 of which are stochastic, and

has 182 unknown coefficients to estimate, including 12 first order serial



correlation coefficients. The estimation period is 1954I-1978II (98 ob-
servations). The model is nonlinear in variables and, as is discussed

next, nonlinear in coefficients because of correction for serial correla-
tion of some of the error terms. There is also one nonlinear restriction
on the coefficients of two of the equatioms, which means that there are only

181 freely estimated coefficients.

The Treatment of Serial Correlation

By treating the serial correlation coefficient as a structural coef-
ficient, it is possible to transform an equation with a serially correlated
error into an equation without one. This introduces nonlinear restrictions
on the coefficients, but otherwise the equation is like any other equation
with a non-serially correlated error.2 This transformation has been made
in this study for the relevant equations of the model, and so the model
should be thought of as one with nonlinear coefficient restrictions and
no serlally correlated errors. All references to the covariance matrices
of the coefficient estimates in the following discussion are for the coef-
ficient estimates inclusive of the estimates of the serial correlation

coefficients.

The Notation

The notation in this paper follows closely the notation in Amemiya

[2]. Write the model as

1l

(1) fi(yt’ X, 0.} = u (i

e %4 it * 1, ..., n), (=1, ..., T) ,

where is an n-dimensional vector of endogenous variables X ig a
t ) 4 t

2See, for example, the discussion in Fair [10, Chapter 3]. This procedure
results in the "loss" of the first observation, but this loss has no effect
on the asymptotic properties of the estimators.



vector of predetermined variables, and ay is a vector of unknown coef-
ficients. Assume that the first m equations are stochastic, with the

remaining Uje (L = mHl, ..., n) didentically zero for all t . Assume

also that (ult’ vens umt) is independently and identically distributed

as multivariate N(O,Z) . The other assumptions regarding (1) are as in
Amemiya [2].

Let Jt be the nxn Jacobian matrix whese 1ij element is

afilayjt , (i, j =1, ..., n) , and let S be the mxm matrix whose

T

ij element is s,. , where s,, = % Z

ij Ly (i, 3 =1, ..., m)

YieYye 0
Also, let u, be the T-dimensional vector (uil’ cea, uiT)' , and let

L] o 3 '
u be the m*T-dimensional vector (ull’ Cees Ugpy sees Upas oeee mT)

Assume for now that there are no constraints among the ai's , - and let

¢ denote the k-~dimensional vector (ai, ey a&)' of all the unknown coef-
ficients. Finally, let G; be the kiX’T matrix whose tth column is

, . . '
Bfi(yt, X, » ai)laai , where ki is the dimension of a; and let G

be the kxm*T matrix

M ]
Gg 0 ... 0
1
0 G
0 G!
— m—

m
where k= ] k., .

Two Stage Least Squares (2SLS)

~

25LS estimates of ay (say a, ) are obtained by minimizing

-1
T ' T = t
(2) uizi(zizi) ZTu uiD

u
ii ii



with respect to o, where Zi is a T><Ki matrix of predetermined

variables. Zi and Ki can differ from equation to equation. An estimate

of the covariance matrix of &, (say V... )
i 241

is

(3) V... =05..(&'D

where G is G evaluated at &, and J,, =
i i i ii

-3 [

a.) .
t’ 1)

T
z ﬁ? , u, = f.(y., x
£=1 it it 1t
The 25LS estimator in this form is presented in Amemiva [1].

If an equation is nonlinear in variables only, standard linear 2SLS
packages can be used to obtain &i by merely redefining the variables.
If, on the other hand, an equation is nonlinear in coefficients, then in
general a nonlinear optimization algorithm must be used to minimize (2).
A special case of coefficient nonlinearity occurs when the nonlinearity
arises only because of the presence of the first order serial correlation
coefficient. In this case (2) can be minimized by an iterative technique
like the Cochrane-Orcutt technique [6]. This technique is discussed in
Fair [8], and it is the technique that has been used in this study to mini-

mize (2) for those equations that are estimated under the assumption of

first order serial correlation of the error term.

3In Fair [8, p. 514] it was suggested that the covariance matrix of the
coefficient estimates inclusive of the estimate of the serial correlation
coefficient be estimated by ignoring the correlation between the latter
estimate and the other coefficient estimates. Fisher, Cootner, and Baily
[14, p. 575, fn. 6], however, have pointed out that one need not ignore
this correlation. 1In terms of the notation in [8], their suggested esti-
mate of the covariance matrix is

- ~ ~ -~ -~ -l
QQ Qqug

-1
(i) 91y .

(continued)



In the discussion of the Hausman tests in Section IV reference will
be made to the covariance matrix of all the 25LS coefficient estimates,
i.e., to the kxk covariance matrix of & , where a = (&i, cee, &é)'
For the standard linear simultaneous equations model this covariance matrix
is presented in Theil [22, pp. 499-300] for the case in which the same
set of first stage regressors is used for each equation. For the case
considered here, a noﬁlinear model and a different set of first stage re-
gressors for each equation, it is straightforward to show that this matrix

(say V2 ) 154

Vaur o Vorm
(4) Vo =i o ,
\'i  ae
| 2ml V2mm
It can be easily seen that this matrix is the same as ﬁZii in (3). 1In
other words, if in the first order serial correlation case one minimized
(2) using some general purpose algorithm and then computed V... in (3),

2ii
the same numbers would be obtained (aside from rounding error) as would
be obtained if one used the iterative technique in [8] to get the esti-
mates and then computed the matrix in (i). (This is assuming that the
exogenous, lagged exogenous, and lagged endogenous variables in the equa-
tion being estimated are included in the Zi matrix. If this is not

done, then the technique in [8] leads to inconsistent estimates, whereas
minimizing (2) using some general purposge algorithm still results in con-
sistent estimates.) For the results in this study the Fisher, Cootner,
and Baily suggestion was followed: the estimated covariance matrix in
(i) was used.

The derivation in Theil can be easily modified to incorporate the case

of different sets of first stage regressors. Nonlinearity can be handled
as in Amemiya [1, Appendix 1], i.e., by a Taylor expansion of each equa-
tion. The formal proof that V2 is as in (4), (5}, and (6) is straight-

forward but lengthy, and it is omitted here. Jorgenson and Laffont {18,
p. 636] incorrectly assert that the off-diagonal blocks of V2 are zero.



where
— l _,_l
- '
(3 Voig = Oy [P 606
L —-1 -1
- '
{6) VZij G:Lj plim iD Gl_ El lDlDJGJ:[ E)llm J 3 3:[ .
An estimate of VZii is v2ii in (3). An estimate of VZij (say VZij )
is:
$ = 0 1 o X ' 'y A yTL
(7) VzlJ UlJ(GiDiGl) (GiD1DJGJ)(G DJGJ) .
T
1 A oA
where o,, = —-E U, u,
ij Tt=l it jt

Three Stage Least Squares (35LS)

35LS estimates of o (say @ ) are obtained by minimizing

(8) w7l @z 2y 2 = o

~

with respect to a , where Z is a consistent estimate of Z and Z
is a TxK matrix of predetermined variables. An estimate of the covari-
ance matrix of a (say ¥

3 ) is

~

PRI |
= r
3 = @08

(9}
where G is G evaluated at 4§ . Z is usually estimated from the 2SLS
estimated residuals. This estimator is presented in Jorgenson and iLaffont
[181. See also Amemiva [2].

The 3SLS estimator as discussed in [18] and [2] and as presented in

(8) uses the same Z matrix for each equation. In small samples this



can be a disadvantage of 3SLS relative to 2SLS. It is possible to modify
(8) to include the case of different Zi matrices for each equation, and
although this modification was not used in this study, it is of interest

to consider. This estimator is the one that minimizes

' ~ =11,
Z1 .o O 0112121 ‘e clmzlzm Zl .. 0
(1) u'|| . . . . ilu = u'Du
0 ... Z {|lo . 2'z G z'z 0 ... 2z
m ml™m 1 mm m m
L. _

with respect to & . An estimate of the covariance matrix of this esti-

mator is (@'EA)—l . (10) reduces to (8) when Zl = ... = Zm = Z . The

computational problem with this estimator is that it requires inverting
m

the middle matrix in brackets. This matrix is of dimension X% = Z Ki .
i=1

which is gemerally a large number. In the present application K* is
350, and it did not appear feasible to invert a matrix this large. 1In
some applications, however, it may be feasible to invert this matrix.
This estimator has the advantage that it is the nmatural full information
extension of 25LS when different sets of first stage regressors are used.
The consistency of this estimator can be proved along the lines of the
proof (Jorgenson and Laffont {18, pp. 626-628]) that the estimator that

minimizes (8) is consistent.

Full Information MaximumLikelihood (FIML)

FIML estimates of o are obtained by maximizing

T
(11) L= - logls| + [ logl|s |
t=1



with respect to o . An estimate of the covariance matrix of these esti-

mates (say %4 Yy is

. 82L -
(12) V4 T Tl 5asa’ ’

where the derivatives are evaluated at the optimum. FIML is, of course,

a well known estimator. See, for example, Chow {5] for a recent discus-

sion in the nonlinear case.

Ordinary Least Squares {(OLS)

OLS estimates of a, are obtained by minimizing {(2) for Di = 1.
For purposes of this study, the estimated covariance matrix of the OLS
estimates was taken to be (3) for Di = I . The discussion in the second
paragraph under the 2SLS heading is relevant here also. In particular,
note that the Cochrane-Orcutt iterative technique can be used to minimize
(2) if the nonlinearity in coefficients is due solely to the presence of

the serial correlation coefficient.

ITII. The Computation of the Estimates

As noted in the previous section, the iterative procedure in [8]
was used for the 2SLS estimates of the equations that were estimated under
the assumption of first order serial correlation of the error terms.

Otherwise, a standard 2SLS package was used.” The 2SLS technique has been

5The TSCORC and INST options in the TSP regression program were used for

these estimates. It should be noted, however, that the TSCORC option was
modified to use the formula in (1) in footnote 2 to compute the covariance
matrix. The standard TSCORC option assumes that lui is zero when

-1

computing the covariance matrix. Also, both the TSCORC and INST options

{continued)



10

the primary method used to estimate the successively updated versions of
the model, and the estimates of the 182 coefficients of the current version
presented in [12] are 2SLS estimates. This set of estimates is the starting
point for the present study. For this set a different Zi matrix was

used for each of the 26 equations estimatéd by 25LS. (Three of the 29
stochastic equations have no right-hand-side endogenous variables and so
were estimated by OLS.) The variables used for each Zi matrix are pre-
sented in Table 2-5 in [12], The number of variables in a given matrix
varies from 11 to 31.

Although there are 182 unknown coefficients in the model, only 107
were estimated by 35LS and FIML in this study. The other 75 coefficients
were set equal to their 2SLS estimates. This was done partly to ease the
computational burden and partly because, as discussed below, it is not
clear that 98 observations are enough to estimate all 182 coefficients
by FIML. The 75 non-estimated coefficients include all the coefficients
in 13 equations and the coefficients of strike dummy variables in 5 of
the remaining 16 equations. It should be noted, however, that even though
the structural coefficients of 13 equations were not estimated by 3SLS and
FIML, these equations were not dropped from the model. TFor example,

) and S were still taken to be 29 x 29 matrices, and J. was still taken
to be 97 x 97. This procedure allows the correlations between the error
terms in the 13 non-estimated equations and the error terms in the 16 esti-

mated equations to have an effect on the coefficient estimates of the 16

divide the sum of squared residuals by T - ki when computing the esti-
mated variance, where ki is the number of coefficients estimated, whereas

for present purposes all sums of squares have been divided by T .



11

estimated equations.

The 3SLS estimates were obtained using the algorithm that is de-
scribed in the Appendix. 58 variables were chosen for the Z matrix. This
set of variables was chosen to correspond roughly to the union of the sets
of variables in the 16 relevant Zi matrices, although not every variable
in this union was chosen. (Had every variable in the union been chosen,
the number of variables in the Z matrix would have been close to the
total number of observations.) A list of these variables is available
from the authors upon request. The 2SLS residuals were used to compute
j .

The matrix D in (8) is 2842 x 2842 ( m+T = 29.98 = 2842) , and
so computing u'Du once for a given value of o requires a large number
of calculations. Fortunately, however, only a small fraction of these
calculations need to be performed most of the time that the algorithm re-
quires a new value of the objective function corresponding to a new value
of o . In particular, most of the time the algorithm is changing the
coefficients of only one equation between evaluations of the objective
function, and recomputing u'Du when only one equation has been affected
requires many fewer calculations than are needed when all equations have
been affected.

The results of computing the 107 3SLS estimates are presented in
the first half of Table 1. The cost of computing wu'Du once varies from
0.40 seconds when only one equation has been affected to 2.94 seconds when
all equations have been affected. The approximate number of function eval-
uations per iteration of the algorithm is 432. The algorithm was allowed

to run for 28 iterations, starting from the 2S5LS estimates., and took

about 106 minutes on the IBM 370-158 at Yale. It is clear from the results
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TABLE 1

The Cost of the 35LS and FIML. Estimates

107 coefficients estimated
1 nonlinear restriction across 2 equations
16 stochastic equations estimated
13 stochastic equations not estimated
58 identities (97 total equations)
98 quarterly observations (1954I-19781I)

3SLS

F=u'Du in (8)

F at start (25LS estimates) = 1898.63
F after 28 iterations = 1850.30
Total AF = =48.33
Iter. Iter. Iter.
No. |aF|  #>1% No. |aF{  #>1% No. [aF|  #>1%
1 21.90 67 11 0.72 32 21 0.20 16
2 9.52 63 12 0.55 29 22 0.19 17
3 3.79 56 13 0.56 28 23 0.21 10
4 1.89 51 14 0.37 23 24 0.20 18
5 1.85 47 15 0.39 20 25 0.22 10
6 0.86 38 16 0.27 20 26 0.25 10
7 0.63 31 17 0.36 21 27 0.09 6
8 1.11 34 18 0.23 14 28 0.14 10
9 0.72 25 19 0.25 27
10 0.63 30 20 0.23 15
Approximate number of function evaluations per iteration = 432.

0.40 - 2.94 seconds.
106 minutes.

tonow

Approximate cost per function evaluation
Approximate total cost of 28 iteratioms
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TABLE 1 (continued}

FIML

L =1Lin (11).
L at start (25LS estimates) = 2465.95 (two Jacobians), 2569.73 (six Jacobians)

L after 28 iterations = 2508.16 (two Jacobians), 2613.09 (six Jacobilans)
L after 43 iterations = 2508.67 (two Jacobians), 2614.14 (six Jacobians)
Total AL = 42,72 (two Jacobians), 44.41 (six Jacobians)
Two Jacobians Two Jacobians Six Jacobians

Iter. Iter. Iter.

No. AL #>1% No. AL #>1% No. AL #>1%

1 19.66 74 15 0.17 21 29 0.22 23

2 8.16 66 156 0.07 26 30 0.08 22

3 3.31 38 17 0.16 30 31 0.04 19

4 1.91 58 18 0.19 33 32 Q.04 L7

5 1.11 57 19 0.21 32 33 0.04 21

6 1.56 65 20 0.13 36 34 0.06 31

7 0.91 58 21 0.13 32 35 0.08 36

8 0.90 68 22 0.1l4 35 36 0.07 24

9 0.65 60 23 0.10 30 37 0.07 26

10 0.50 50 24 0.06 22 38 a.07 36

11 0.79 58 25 0.04 22 39 0.06 31

12 0.61 63 26 0.05 21 40 0.06 23

13 0.36 40 27 0.03 17 41 0.05 23

14 0.25 35 28 0.05 19 42 .03 16

43 (.04 14

Approximate number of function evaluations per iteration = 432.

Approximate cost per function evaluationm = 0.20 - 0.64 seconds (two Jacobians),
0.37 - 0.85 seconds (six Jacobians).

Approximate total cost of 43 iterations = 121 minutes.

Notes: #>1% = number of coefficients that changed by more than 1.0 percent
from the previous iteration.
Approximate cost of one minute = $12.48 without discounts.
80% discount given for large overnight jobs.
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in Table 1 that the algorithm had not found the exact optimumafter 28 iterations,
although the objective function and coefficient estimates were not changing
very much by this time. The estimates at this point were taken to be the
35LS estimates,

With respect to the 3SLS covariance matrix, the algorithm does not

~

compute G , and so extra work is involved at the end to obtain the co-
variance matrix. For present purposes G was computed numerically and then
(é'Dé)-l was obtained. The total time involved in these caleulatiouns

was about 3.2 minutes.

The FIML estimates were obtained using the same algorithm. Comput-
ing L in (11) once for a given value of « also requires a large number
of calculations, but there are again cost savings that can be made. These
savings are as follows. First, when the coefficients of only one equation
are changed by the algorithm, which is most of the time, only one row and
one column of § are affected. The average cost of computing S is thus
much less than it would be if all the rows and columns had to be computed
anew each time a new value of L was needed. Second, the Jacobian matrix
Jt is very sparse (333 nonzero elements out of 9409), and so considerable

saving can be achieved by using a sparse matrix routine to take its deter-

minant. Third, it turns out, as reported in Fair [10, Chapter 3], that a

T
fairly good approximation to Z

10g|Jt| is %{log|J1|-+log!JT|) . This
t

1

approximation obviously saves an enormous amount of time, since only 2
determinants have to be computed instead of 98. Unlike the first two
savings, however, this third saving does require that an approximation
be made. The exact value of L is not being computed by the algorithm,

and the hope 1s that the error imvelved in this approximation is nearly
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constant for different sets of coefficient values. As will be discussed,
this seems to be the case from the present results.

The results of computing the FIML estimates are presented in the
second half of Table 1. For the first 28 iterations two Jacobians ( Jl

and J98 ) were computed per evaluation of L , and for the remaining

15 iterations six Jacobiamns J

(Jl, J20’ J39, J59, 78° J98) were computed.

T
When six Jacobians were computed, z log|Jt| was approximated by first
t=1

computing the six values of 1og[Jt| , t =1, 20, 39, 59, 78, 98 , and
then interpolating in the appropriate way between pairs. When two Jaco-
bians are used, the cost of computing L once varies from 0.20 seconds
when only one equation has been affected to 0.64 seconds when all equations
have been affected. When six Jacobians are used, the corresponding numbers
are 0.37 seconds and 0.85 seconds. The total time for the 43 iterations
was about 121 minutes. Again, the algorithm had not quite found the opti-
mum at the time it was stopped, but it seemed fairly close. The estimates
after the 43rd iteration were taken to be the FIML estimates.

With respect to the Jacobians, the results of switching from two
to six Jacobians after iteration 28 suggest that little is lost by using
only two. The change in L when the six-Jacobian approximation replaced
the two-Jacobian approximation, while about 100 points, merely reflects
a different bias of the six-Jacobian approximation. The stability of
the bias is more important than its absolute value because adding a con-
stant bias has no effect on the likelihood maximization. The close agree-

ment of the two- and six-Jacobian results can be seen in the small change

(only 0.22 points) on iteration 29, the first using six Jacobians. If the
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change to six Jacobians were important, the likelihood change would have
been larger and the coefficients would have changed much more.

The second derivatives that are needed for the FIML covariance
matrix in (12) were computed numerically. The total time involved in this
was about 52.6 minutes. Computing the second derivatives turned out not
to be a straightforward task, and the exact way that this was finally done
is explained in the Appendix.

Before concluding the discussion of the FIML estimates, the identi-
fication issue should be mentioned. For a linear model Sargan [21] has
proved Klein's [19] conjecture that the FIML estimator is unidentified
if the number of observations is less than the number of endogenous plus
predetermined variables. For a nonlinear model the exact conditions for
identification are not known, but in the present case it seemed unlikely
that 98 observations were enough to estimate the complete model by FIML.
In the 29 stochastic equations there are 140 different variables (endo-
genous plus predetermined}, counting different nonlinear functional forms
of the same variable as different variables.& In the restricted version
of the model, on the other hand, there are only 83 different variables;
and it seemed likely in this case that 98 observations were enough for
identification. This is the main reason for cutting the problem down from
182 te 107 unknown coefficients.

In order to make the OLS results comparable to the 3SLS and FIML

results, only the 107 coefficients were estimated by OLS. This means that

6For the serial correlation coefficients only one extra variable was counted
per coefficient. 1In other words, the additional lagged variables that
serial correlation introduces (after the transformation mentioned in Sec-
tion II) were only counted as one extra variable.
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the values of the other 75 coefficients are the same across all four sets
of estimates.

Two further points about the estimates should be noted. The first
concerns the treatment of the nonlinear restriction across the two equa-
tions. For the 3SLS and FIML estimates the restriction is easy to handle.
One can merely solve for one of the coefficients in terms of the others and
then substitute this solution for the coefficient wherever it appears.

The dimension of the optimization problem is then reduced from 107 to 106.

Likewise, ¥ in (9) and ¥

3 in {12) are reduced from 107 x 107 to 106 x 106.

4
For the 2515 and OLS estimates the restriction is less straightforward to
handle hecause it is across two equations. It was handled in these two
cases by first estimating one of the equationsg (the price equation) unre-
stricted and ghen using these coefficient estimates and the restriction to
eliminate one of the coefficients from the other equation (the wage equa-
tion). This way of accounting for the restriction, which is discussed iIn
more detail inm Fair [12, pp. 11-13], affects only the coefficient estimates
of the wage equation. The dimension of the optimization problem for the
wage equation was reduced from 6 to 5, and the estimated covariance matrix
was reduced from 6x6 to 5x35.

The second point to note is that even though all 181 unrestricted
coefficients were estimated by 2SLS, the relevant covariance matrix to
compare to the 3SLS and FIML matrices is 106 x 106, not 181 x 181. There~
fore, V2 in (4), and likewise V1 for the OLS estimates, should be
considered for present purposes to be 106 x 106. In particular, note that
although the coefficients of strike dummy variables in 5 of the 16 equa-
tions were estimated by ZStS, these coefficient estimates were taken as

fixed for purposes of computing the covariance matrices of the remaining

coefficient estimates in the equations.
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IV. The Coefficient Estimates and the Hausman Tests

The estimates of the 106 unrestricted coefficients and their esti-
mated standard errors are presented in Table 2. The coefficient estimates
in Table 2 are not in themselves very useful for descriptive purposes be-
cause they require knowledge of the model, and an explanation of the model
is beyond the scope of this paper. Of more interest for present purposes
are the last three columns in Table 2, and these will be discussed along
with the discussion of the Hausman tests.

The Hausman m-statistic provides a useful way of exmaining the dif-
ferences among the estimates, although, as will be seen, there are some
problems with applying the Hausman tests in practice. Consider two esti-
mators, EO and él » .where under some null hypothesis both estimators
are consistent, but only EO attains the asymptotic Cramer-Rao bound,
while under the alternative hypothesis only él is consistent. Let

~

a = él - BO , and let ﬁO and ﬁl denote consistent estimates of the

asymptotic covariance matrices ( VO and Vl ) of éO and él

tively. Hausman's m-statistic is a'(ﬁl-—vo)-l& » and he has shown that

respec-—

it is asymptotically distributed as xz with k degrees of freedom, where

k is the dimension of q . Note that under the null hypothesis, Vl-VO

is positive definite.

Consider now comparing the FIML and 3SLS estimates. Under the null
hypothesis of correct specification and normally distributed errors, both
estimates are consistent, but ounly the FIML estimates attain the asymptotic
Cramer-Rao bound, while under the alternative hypothesis of correct spe-
cification and nonnormality, only the 3SLS estimates are consistent. (See

a(3) &(4)

Amemiya [2].) Let denote the 3SLS and FIML estimates

of o respectively, and let a = &(3) - &(4)

and

The m-statistic in this
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The Four Sets of Coefficient Estimates
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2
23L8 3ISLS FIML oLs SE; SE;  (Coef,-Coef,)
SE, 3g, ™ 7 .32
Coef2 SE2 Coef3 SE3 Coef4 SEh Coefl SEl 3 4 (SEZ-SE3)

0.9761  0.0273  0.970%  0.0217  0.9617  0.0266  0.9689  0.0267 1.26 0.82 0.10
0.01493 0.00898 0.01529 0.00740 0.01753 0.00902 0.01341 0.00873 1.21 Q.82 9.00
0.02114 0.01368 0.02300 0.01087 0.02735 0.01288 0.02289  0.01340 1.26 0.34 0.05
-0.008177 0.006024 -0.009434 0.004818 -0.008162 0.006071 -0.007532 0.005746 1.25 0.79 0.12
-0.007056 0.002167 -0.005478 0.001702 -0.005760 0.002051 -0.005046 0.002003 1.27 0.83 1.38
0.04045 ©0.02963 0.02569  0.02379  0.02746 0.0328L 0.03050 0.02782 1.25 0.73 0.70
0.08526 0.09583  0.06206 0.07606 0.03387 0.09352  0.03405 0.09262 1.26 0.81 0.16
0.4678  0.0894  0.4851  0.0628  0.5131  0.0724  0.3419  0.0783 1.42 0.37 0.07
0.07293  0.02585 0.06464 0.02015 0.08469  0.02735 0.05137  0.02449 1.28 0.74 0.26
-0.1321  0.0534 -0.1263  0.0377 =0.1152  0.0492 -0.2165  0.0465 1.42 0.77 0.02
0.1672  0.0560  0.1719  0.0393  0.1862  0.0545  0.2513  0.0491 1.42 0.72 0.01
0.62145 0.02370 0.02704 0.0L740 0.03602 0.02193  0.03444  0.02232 1.36 0.79 0.12
0.02352  0.02607 0.01038 0.01945 -0.03087 0.02768 0.01210 0.02478 1.34 0.70 0.57
0.1890  0.0911  0.2224  0.0711  0.3308  0.0030  0.2294  0.0879 1.28 0.7 0. 34
0.2981  0.0692  0.2969  0.0508  0.2720  0.0588  0.3711  0.0594 1.36 0.86 9.00
-0.003556 0.003143 ~0.003061 0.002322 =0.004077 0.002575 =0.000250 0.002785 1.35 0.90 0.05
23,553 0.722  -3.513 0.502  -3.402 0.599  —4.690 0.626 1.44 0.86 5.01
0.9702  0.0296  0.9704  0.0229  0.9796  0.0256  0.9550  0.0283 1.29 0.89 9.00
-0.04037 0.01863 =0.02871 0.01385 -0.01116 0.01453 =~0.03382 0.01505 1.35 0.95 0.87
0.05463  0.02134  0.04901 0.01602 0.0366L 0.01758 0.05829 0.01840 1.33 0.91 9.16
-0.02697  0.00506 -0.02892 0.00387 -0.02983  0.00508 -0.02029 0.00458 1.31 0.76 9.36
0.1382  0.0274  0.1304  0.0188  0.1076  0.0261  0.1333  0.0216 1.45 0.72 9.15
0.007843 0.007031 0.009893 0.005545 0.015904 0.006437 0.009826 0.006349 1.27 0.36 0.22
" 0.04311 0.03853  0.03740 0.03059 0.04053 0.03850 0.05578 0.03883 1.26 0.79 0.06
0.6132  0.0860  0.6630  0.0697  0.6586  0.0863  0.6761  0.0917 1.23 0.8l 0.98
-0.1408  0.2243 -0.1219  0.1682 -0.0238  0.1866 -0.2384  0.2039 1.33 0.30 0.02
0.9431  0.0265  0.9514  0.0158  0.9482  0.0140  0.9431  0.0265 1.67 1.13 0.15
~0.004101 0.006797 -0.004706 ©.005109 -0.006757 ©.005363 -0.004101 0.006797 1.33 G©.95 0.02
0.01966 0.01083 0.01855 0.00753  0.02044  0.00752 0.01866  0.01083 1.44 1.00 0.02
-0.006385 0.002875 -0.006470 0.002133 -0.006215 0.002275 -0.00638¢ 0.002875 1.35 0.9 0.00
-0.004142 0.002568 -0.004618 0.001897 -0.003912 0.002131 -0.004142 0.002568 1.35 0.39 0.08
0.02636 0.01071 0.01270 0.00785 0.00333 0.00919 0.02636 0.01071 1.36 Q.85 3.52
0.4489  0.2527  ©0.3440  0.1916  0,3218  0.2046  0.4489  0.2527 1.32 0.94 0.41
0.004538 0.003833 0.002663 0.003005 0.002642 0.003721 0.004538 0.003833 1.28 Q.81 09.62
5.827 0.0841  0.7585 - —0.0457  0.6818  0.0516  0.827%  0.064L 1.40 0.89 2,23
-0.2765  0.1400 -0.2381  0.0911 -0.2602  0.0812 =0.2765  0.1490 1.64 1.12 2.10
n.5902  0.0878  0.5814  0.0722  0.5261  0.0817  0.5970  0.0871 1.22 0.88 0.03
0.01379  0.00835 0.01452 0.00702 0.01873 0.00829 0.01269 0.00816 1.19 0.5 0.03
-0.006225 0.005111 -0.006585 0.004309 ~0.008833 0.004998 -0.005630 0.005020 1.19 0.36 0.02
0.08245 0.02069 0.08289 0.01743 0.00176 0.01885 0.08155  0.02064 1.10 0.92 0.90
-0.063%7  0.05318 ~0.06806 0.04481 ~0.09176 0.05213 -6.05765 0.05220 1.19 0.36 9.02
0.8757  0.0433  0.9167  0.0257  0.9325  0.0332  0.8796  0.0425 1.68 0.77 1.25
-0.04097 0.01476 =-0.02318 0.00841 -0.01690 0.01126 =0.03991  0.01449 1.75 0.75 2.15
0.06103 0.02009 0.04039 0.0L157 0.03190 0.01542 0.05883 0.01970 1.74 0.75 1.38
0.1318  0.0340  0.1071L  0.0224  0.1033  0.0276  0.1402  0.0325 1.52 0.81 0.9
-0.3288  0.1111 -0.2027  0.0627 =0.1537  0.0849 -0.3187  0.1088 1.77 0.74 1.89
0.8578  0.0584  0.3456  0.0674  0.8286  0.0511  0.7950  0.0545 1.23 0.93 0.13
-0.01535  0.00539 -0.01649  0.00626 =-0.01730 0.00693 -0.01620 0.00484 1.26 0.86 90.12
0.1945  0.0838  0.1898  0,0717  0.2026  0.0817  0.2945  0.0825 1.24 0.88 0.01
-0.001233 0.000799 -0.001067 0.000646 -0.001114 0.000765 ~0.002143 0.000744 1.24 0.8 0.12
0.4300  0.2860  0.3043  0.2320  0.2771  0.2867  0.7330  0.2688 1.23 0.81 0. 36
0.8299  0.0199  0.8190  0.0127  0.8092  0.0l48  ©0.3323  0.0194 1.36 0.36 0.51
0.06139 0.00476 0.06516 0.00310 0.06718 0.00378 0.06112  0.00474 1.54 0.82 1.99
0.06183 0.01307 0.06161 0.00823  0.06494 0.0083¢  0.06013 0.01208 1.59 0.98 0,90
0.007898 0.005385 0.012312 0.003370 0.013473 0.003451 0.008249 0.004393 1.50 0.38 1.10
-0.003349 0.001335 -0.002581 0.000855 -0.002431 0.000880 -0.003249 0.001278 1.36 0.97 8.36
-0.005097 0.001063 -0.004051 0.000727 -0.003395 0.000903 -0.005211 0.001027 1.46 0.80 1.32
0.1899  0.0993  0.1008  0.0647  0.081%  0.071L  0.1760  0.0984 1.53 0.91 0.84
-0.1505  0.0212 -0.1471  0.0142 =0.1513  0.0163 =-0.1498  0.021% 1.34 0.87 0. 04
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.\E:g: Cﬁif 25L% 3518 FIML oLs SE, & . (Ccefz-caef3)2
LiZJ {;2] Coet, SE, Coet, SE, Coef, SE, Coef | SE, SE;  SE, (ssg-szg)
10 69 0.2393  0.0769  0.2398  0.0402  0.2520  0.0465  0.2337  0.0490 1.91 0.8 3.00
10 70 0.8811  0.0832  0.9060  0.0436  0.8848  0.0514  0.8874  0.0505 Ll.91 0.85 9.12
10 71 -0.1476  0.025¢ -0,1796  0.0222 -0.1680  0.0318 -0.1484  0.0248 1.17 0.70 5.71
0 73 0.3961  0.1163  0.4319  0.0811  0.40649  0.1133  0.4001  0.1012 1.41 0.72 0.20
10 68 0.1693  0.0358  0.2086  0.0316  0.1934  0.0405  0.1700  0.0351 1.13 0.78 5.42
11 76 =-0.005246 0.001770 -0.005301 0.00L499 -0.005319 0.001668 -0.006426 0.001629 1.18 0.90 0.00
11 77 0.08609 0.02057 0.10261 0.01378  0.09850 0.01736 0.11382 0.01634 1.43 0.79 1.17
11 78 0.04443 0,01655 0.05466 0.01346  0.05871 0.01748  0.03294 0.01514 1.23 0.77 1.12
179 0.05132  0.01592  0.04251 0.01361 0.04287 0.01813  0.04388 0.0l557 1.17 0.75 1.14
Il 80  0.05555 0.01607 0.05329 0.01352 0.03986 0.01833 0.04976 0.01549 1.19 0.74 0.07
11 81  -0.02291 0.01298 -0.02790 0.01133 =0.02266 0.013646 <-0.01931 0.01261 1.15 0.83 0.52
12 85  -0.09550 0.03535 -0.06001 0.02053 =-0.05265 0.02019 =-0.09710 0.03567 1.72 1.02 1.52
12 86 0.0001700 0.0000522 0.0001283 0.0000321 0.0001153 0.0000310 0.000172% 0.0000527 1.62 L.04 1.03
12 a7 0.2919  0.0499  0.2795  0.0209  0.2225  0.0292  0.3033  0.0353 2.38 0.72 0.07
12 88 0.1776  0.0620  0.1835  0.0231  0.1747  0.0309  0.1767  0.0419 1.82 0.75 0.03
12 29 0.04297 0.03810 0.04208 0.02035 0.04449 0.03040 0.04178 0.03800 1.87 0.57 8.00
o0 0.4187  0.1066  0,3809  0.0580  0.2685  0.0914  0.4248  0.1057 1.84 0.63 0.18
12 8  -0.6013  0.2212 -0.3792  0.1285 -0.3324  0.1263 -0.6l14  0.2232 1.72 1.02 1.52
13 94 -0.2770  0.0695 -0.2957  0.0356 =0.3193  0.0417 ~-0.3177  0.0711 1.95 0.85 0.10
13 95  =0.05756 0.01349 =-0.06238  0.00943 -0.06677 0.01113 -0.07002 0.01842 1.96 0.85 3.09
13 96 -u.0002309 0.0000379-0.0002420 0.0000310~8.0002621 0.0000361-0.0002591 0.0000597 1.37 0.35 .05
13 97 0.1552  0.0288  0.1580  0.0124  0.1499  0.0166  0.1119  0.0225 2.32 0.75 9.01
1338 -0.2999  0.1121 -0.3172  0.0553  -0.3309  0.0863  =0.253 0.1181 2.03 0.83 5.03
13 93 1.379 9.344 1.466 0.182 1.586 0.212 1.356 0.355 1.89 0.86 0.09
15 103 0.7976  0.0397  0.7867  0.0236  0.7811  0.0272  0.7%4  0.7330 1.69 .87 0.12
15 104 0.001673 0.000295 G.00167%9 0.000178 0.001703 0.000211 0.001639 0.000278 1.66 0.84 9.00
15 106 =0.002194 0.001709 -0.002087 0.001084 -0.002478 0.001466 -0.002262 0.001669 1.58 0. 74 9.01
15 180  -0.313&  0.1075 ~-0.3795  0.0581 -0.4003  0.0693 -0.2991  0.1006 1.85 0.84 9.53
15 102 0.1681  0.0353  0.1828  0.0208  0.1885  0.0236  0.1706  0.0342 1.70 0.88 0.27
16 108 0.8637  0.0537  0.3928  0.0636  0.8565  0.0500  0.8648  0.0533 1.23 0.87 0.86
16 105  0.09192 0.03197 0.07605 0.02599 0.09847 0.02967 0.08670 0.03152 1.23 0.38 0.73
16 110 -0.01515 2.00838 -0.01643  0.00684 -0.01903  0.00787 -0.00856 0.00770 1.23 0.87 0.08
16 107  0.09830 0.06536 0.06613 0.05412 0.09843 0.06089 0.11278  0.06455 1.21 0.89 0.77
24 146 -0.2212  0.0711  -0.2266  0.0562 =0.2514  0.0942 -0.2226  0.0703 1.27 0.0 0.02
2% 147 0.5064  0.1600  0.5441  0.1281  0.60l4  0.2165  0.5078  0.1582 1.25 0.39 5.17
26 148 0.5245  0.1452  0.5368  0.1107  0.5186  0.1196  0.4967  0.1303 1.31 0.93 6.02
2 186 0.6322  0.0726  0.6011  ©.0603  0.5918  0.0917  0.6426  0.0681 1.20 0.66 5.59
5. 136 9.2513  0.1263  0.2510  0.1090  0.1948  0.1766  0.2397  0.1225 1.16 0.62 3.00
26 145 0.09979 0.63898 =0.10178  0.47863 -0.29390 0.61388  0.00962 0.39560 1.31 0.78 9. 24
9 172 0.8379  0.0578  0.8335  0.0486  0.8189  0.0516  0.8395  0.0553 1.19 0.9 9.02
90 173 0.04318  0.02794 0.05329 0.02384 0.06121 0.02863 0.04129 0.02719 1.17 0.83 0.48
3¢ 174  0.04085 0.01201  0.04033 0.00865 0.0350L 0.01163 0.03248  0.00946 1.39 0.74 0.00
90 175  0.04989 0.02387 0.04159 0.01137 0.02818 0.01363 0.02953 0.0L186 2.10 0.73 0.16
90 176  0.,01343 ©0.01305 0.02188 0.01104 0.02635 0.0l413 0.01677 0.01263 1.18 0.18 1.48
90 177  0.03456 0.01188  0.03472 0.01026 0.03568 0.01232 0.03603 0.01160 1.16 0.83 9.00
30 178 0.2644  0.1201  0.2294  0.1045  0.2119  0.1153  0.2489  0.1166 1.15 0.91 0.35
36 171 -12.94 3.82 -12.78 2.71  -11.01 .71 -10.19 2.97 1.41 0.73 0.00

=
=
[32]
]
>
<3
o]
[]

1,44 0.83
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case is a'(§3-§4)_1& » Wwhere the estimated covariance matrices ﬁS

and VA are defined in (9) and (12) respectively. In principle, there-
fore, the hypothesis of normality can be tested by computing =n and com-
paring it to, say, the critical xz value at the 95 percent confidence

~

level. 1In the present case, however, ﬁB'-Vﬁ is not positive definite.
This can be easily seen from the second to last column in Table 2. Each
number in this column is the square root of the ratio of a diagonal ele-
ment of 63 to the corresponding diagonal element of %4 . A necessary
condition for 93-94 to be positive definite is that all these numbers
be greater than one, and this is clearly not the case. In fact, only 5

of the 106 numbers are greater than one, with the average value of all the
numbers being 0.83. In other words, on average the 3SLS standard errors
are less than the FIML standard errors.

There are at least two possible explanations for this somewhat puzzl-
ing result. One explanation is that the error terms are in fact not nor-
mally distributed, in which case there is no presumption that V3--V4
is positive definite. The other explanation is based on a small sample
argument. As noted above, 58 variables were used in the Z matrix for
the 3SLS estimates, which with only 98 observations means that quite good
fits are obtained in the first stage regressions. In other words, the
predicted values of the endogenous variables from the first stage regres-
sions are quite close to the actual values. 1In the case of the FIML esti-
mates, on the other hand, we know from Hausman's [16] interpretation of
the FIML estimator as an instrumental variables estimator that FIML takes
into account the nonlinear restrictions on the reduced form coefficients

in forming the instruments. This means that in small samples the instru-

ments that FIML forms are likely to be based on worse first-stage fits
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of the endogenous variables than are the instruments that 3SLS forms.
In 2 locse sense this situation is analogous to the fact that in the 2SLS
case the more variables that are used in the first stage regressions the
better is the fit in the second stage regression. If this second explana-
tion is true, then the present results indicate that many more observations
are needed before the 3SLS and FIML estimates can be used to test the nor-
mality hypothesis.7

Consider next comparing the FIML and 2SLS estimates. Under the
null hypothesis of normally distributed errors and correct specification,
both estimates are consistent, but only the FIML estimates attain the asymp-
totic Cramer-Rao bound. Under the alternative hypothesis of normality
and incorrect specification of some subset of all the equatioms, all the
FIML estimates are inconsistent, but only the 2SLS estimates of the incor-
rectly specified subset are inconsistent. The Hausman test can thus be
applied one or more equations at a time to test the hypothesis that the
rest of the model is correctly specified. If for some subset of the equa-
tions the m-statistic exceeds the critical value, then the test would indi-
cate that there is misspecification somewhere in the rest of the model.
Unfortunately, however, in the present case many diagonal blocks of Vz-ﬁh
are not positive definite, as can be seen from Table 2, where many of the
25LS standard errors are less than the corresponding FIML standard errors.

It is thus not possible to use the Hausman test in this case.

The situation is more favorable for comparing the 3SLS and 2SLS

7We are not the first to find the FIML standard errors on average larger
than the 3SLS standard errors. Although Hausman does not discuss this,
for 10 of the 12 estimated coefficients of Klein's Model I in Table 1 in
Hausman [15, p. 649], the FIML standard error is larger than the corres-
ponding 35LS standard error.
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estimates, where every diagonal element of 62 is greater than the cor-
responding diagonal element of 63 - This can be most easily seen from
the third-to-last column in Table 2. 1In this case, however, because of
the use by 2SLS of some first stage regressors not used by 38LS, 3SLS is
not necessarily asymptotically more efficient than 2SLS. The Hausman test
is thus not, strictly speaking, applicable, and in fact ¥V -ﬁB is not

2

positive definite in the present case. For 4 of the 16 estimated equations,

2~

the relevant diagonal block of V2-V3 is not positive definite, and so
the entire matrix is obviously not positive definite.

In spite of the above problem, we have used the 2SLS and 3SLS esti-
mates to compute the m-statistic for each of the 106 coefficients one at
2 time and for each of the 12 equations for which the diagonal block of
Vz—-ﬁ3 is positive definite.’ The m-values for the 106 coefficients
are presented in the last column of Table 2. The critical x2 value at
the 93 percent confidence level for these numbers (one degree of freedom)
ig 3.84, and as can be seen from the table, only two of the numbers exceed
this value. The null hypothesis of correct specification is thus accepted
in 104 of the 106 cases. (Remember that the alternative hypothesis in
each of these cases is that there is misspecification somewhere in the
model other than in the particular equation that includes the coefficient.)

Similar results were achieved when the test was applied one equation at

a time (rather than one coefficient at a time). In none of the 12 cases

%Note that none of these tests require that the off diagonal blocks of

V2 be computed. Since we knew from examining the diagonal blocks alone
that @2-ﬁ3 and 62-&4 were not positive definite, no purpese would

have been served by computing the entire V2 matrix in (4).
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was the m-value greater than the critical xz value at the 95 percent
confidence level. These results are thus encouraging regarding the spe-
cification of the model, but because of the above problem, they must

be interpreted with considerable caution. It appears that many more ob-
servations are needed before the Hausman test can be used with much con-

fidence for models like the present omne.

V. Dynamic Prediction Accuracy

Since macroeconometric models are used to make predictions more
than one period ahead, it is of some interest to examine the sensitivity
of the dynamic prediction accuracy of the model to the four sets of esti-
mates. ' For present purposes both static and dynamic predictions for the
four sets were made for two periods, the estimation period (1954I-197811)
and the last 10 quarters of the estimation period (19761—197811).9 The
root mean squared errors (RMSEs) from these predictions for 6 selected
variables are presented in Table 3.10 As can be seen from the table, the
results differ very little across estimators for the static predictions.

The results are also fairly close for the dynamic predictions, although

9Becaus.e of the possible small sample problem for the FIML estimator dis-
cussad in Section III, no observations were excluded from the estimation
period to be used for outside-sample predictions. Therefore, all the RMSEs
in Table 3 are for within-sample predictions.

lOInEhir[IJJ an alternative procedure to the RMSE procedure is proposed
for estimating the predictive accuracy of a model. This procedure has
certain advantages over the RMSE procedure, such as accounting for the
fact that variances of forecast errors are not constant across time, but
because it requires successive reestimation of the model, it was not used
in this study. This procedure also provides a quite different way of ex-
amining the effects of misspecification than does the Hausman test, and
given the problems encountered in this study in applying the Hausman test,
the procedure in [11] may turn out to be more practical.



19541-197811I

Root Mean Squared Errors

TABLE

3
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(98 obs.) GNFR GNPD UR RBILL ML WEF
Static: 25818 0.64 0.31 0.27 0.45 0.84 0.58
38LS 0.66 0.31 0.27 0.44 0.84 0.58
FIML 0.66 0.32 0.27 0.45 0.85 0.59
_0OLS 0.66 0.31 0.28 0.44 0.85 0.58
Dynamic: 25L8 2.05 1.62 1.19 0.92 3.41 2.13
3818 2.16 1.61 1.19 0.93 3.69 2.12
FIML 2.07 1.53 1.13 .95 3.49 2.09
OLS 2.02 1.77 1.24 G.95 3.42 2.26
19761-197811
(10 obs.)
Static: 25LS 0.70 0.39 0.36 0.21 0.78 0.38
38LS 0.73 0.43 0.35 0.21 0.73 0.40
FIML 0.68 0.45 0.33 0.21 0.72 0.40
OLS 0.70 0.39 0.37 0.21 0.81 0.38
Dynamic: 28LS 1.38 0.57 0.57 0.65 1.68 0.51
38LS 1.53 0.65 0.46 0.56 1.51 0.71
FIML 1.32 0.70 0.48 0.52 1.29 0.72
OLS 1.57 0.58 0.58 0.67 1.30 0.53
Notes: GNPR = real GNP
GNPD = GNP deflator
UR = unemployment rate
RBILL = bill rate
Ml = money supply

WEF wage rate

The RMSEs for GNPR, GNPD, M1, and WFF were computed from percentage errors.
A percentage error for a given quarter is defined to be the absolute error
divided by the actual value of the variable.

The RMSEs for UR and RBILL are in the natural units of the variables (per-

centage points).

The simulations were deterministic, with all error terms set equal to zero.
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there is somewhat more variance across estimators in this case. Even in
this case, however, there is no obviously superior estimator.

The fact that the results in Table 3 do not discriminate between
the 2SLS and 3SLS estimates is consistent with the Hausman test results
discussed in the previous section. The one perhaps surprising result in
Table 3 is that the OLS RMSEs are so close to the others. In spite of
some fairly large differences between the OLS coefficient estimates and
the others in Table 2, this has little effect on the errors in Table 3.
The main conclusion from this exercise thus appears to be that RMSE re-—
sults like those in Table 3 are not good at discriminating among alterna-

tive estimators.

VI. Policy Effects

Since macroeconometric models are also used for policy purposes,
it is of interest to examine the sensitivity of policy effects in the
model to the four sets of estimates. Results that pertain to this issue
are presented in Table 4. The numbers in this table were constructed
for each set of estimates as follows. First, a base forecast was made
for the 1978IV-19821V period, with guessed values used for the exogenous
variables. The same exogenous values were used for each set of estimates.
From this base path the real value of government purchases of goods (XG)
was increased by 10 billion dollars at an annual rate and a new forecast
was generated. The effects of this change on two variables, real GNP and
the GNP deflator, are presented in Table 4. Each number in the table is
the difference between the predicted value of the variable after the change

11
and the predicted value before the change.



Effects of a Permanent

1979
IIT

1978

IV I II IV I

GNPR (Real GNP) {(billions of 1972 dollars

TABLE 4

Increase in

2L 9.4 12.2 12.9 13.0 12.3 11.4
3SLS 9.8 12.8 13.4 13.2 12.3 11.1
FIML 9.5 12.6 13.3 13.2 12.4 11.4
OLS 9.9 12.9 13.8 14.1 13.6 12.7
GNPD (GNP Deflator) (1972 = 100)

2515

35LS

FIML
OLS

0.069 0.129 0.183 0.231 0.271 0.305
0.068 0.125 0.174 0.218 0.255 0.287
0.060 0.107 0.147 0.183 0.214 0.242
0.070 0.134 0.194 0.248 0.292 0.330

XG of 10.0 Billion Dollars at an Annual Rate

1980 1981 1982
II ITI IRY I I1 11T IV I II ITI IV
at an annual rate)
10.3 9.2 8.3 7.4 6.7 6.1 5.6 5.2 4.9 4.7 4.5
9.9 8.8 7.8 7.1 6.4 5.9 5.5 5.2 5.0 4.8 4.6
10.3 9.4 8.6 7.9 7.3 6.8 6.4 6.1 5.8 5.5 5.3
11.7 10.7 9.8 9.0 8.3 7.6 7.1 6.7 6.3 6.0 5.7

0.330 0.350 0.362 0.372 0.378 0.382 0.383 0.384 0.
0.313 0.334 0.350 0.363 0.374 0.384 0.391 0.397 0.
0.266 0.286 0.303 0.318 0.332 0.344 0.354 0.364 0.
0.361 0.384 0.401 0.414 0.424 0.430 0.434 0.437 0.

383 0.383 0.381
403 0.408 0.412
373 0.381 0.389
438 0.439 0.438

Sum over
the 17
Quarters

36.0
36.0
37.9
41.5

Notes:
value before the change.

The number in the last column for

Each number is the difference between the predicted value of the variable after the

GNPR for each row is the sum of the other numbers

change and the predicted

in the row divided by 4.

L7
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The OLS results for real GNP im Table 4 are more expansionary than
are the results for the other three estimators. The sum of the real GNP
increases over the 17 quarters is 41.5 billion dollars for OLS, compared
to 36.0, 36.0, and 37.9 for 2SLS, 3SLS, and FIML, respectively. The OLS
estimates of the real GNP multipliers thus appear to be biased upwards,

a conclusion that is consistent with simple textbook examples of the simul-
taneity bias of OLS estimates. Although not shown in the table, a similar
result shows up for the predictions of the money supply (Ml) . The sum

of the Ml increases over the 17 quarters was 42.8 for OLS, compared to
23.3, 19.2, and 22.5 for 2SLS, 3SLS, and FIML, respectively. With respect
to the results for the GNP deflator in Table 4, the OLS results are slightly
more inflatiomary than are the others.

Since the OLS estimates are the only inconsistent estimates of the
four sets (assuming correct specification and normality of the error terms),
it is encouraging that the policy effects from the OLS estimates differ
more from the others than do the others from themselves. In other words,
the results in Table 4 do appear to discriminate against OLS, something

which was not true of the RMSE results in Table 3.

VI. Summary and Conclusion

This study has demonstrated that it is feasible to obtain full in-
formation estimates of a fairly large nonlinear model. As can be seen

from Table 1, these estimates are still not cheap, but the algorithm that

11See Fair [13] for a more detailed discussion of this experiment. The
2SLS results in Table 4 are the same as the XG results in Table 2 in
[13] except that the results in J13] are based on stochastiec rather than
(as in Table 4) deterministic simulation of the model. It should also
be noted that although the simulation period used for these results is
outside of the estimation period, this need not have been the case. The
experiment in Table 4 could have used a within-sample period.
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has been used in this study does appear to have greatly increased their
computational feasibility.

Due possibly to small sample problems, the present attempt to use
the Hausman test to examine the differences among the 2SLS, 3SLS, and FIML
estimates was at best only partly successful. Neither the difference be-
tween the 3SLS and FIML estimated covariance matrices nor the difference
between the 2SLS and 3SLS estimated covariance matrices was positive definite.
The former result was possibly due to better first-stage fits for 3SLS than
for FIML. The latter result was due to the fact that the sample size pre-
vented all the variables that were used in the first stage regressions for
the 28LS estimates from being included in the one regressor matrix (the
Z matrix) for the 3SLS estimates. It is possible, as noted in Section
II, to modify the 3SLS estimator to use a different set of regressors for
each equation, but for the present model this estimator was not computa-
tionally feasible. It thus appears that more observations are needed be-
fore the Hausman tests can be applied with much confidence in situations
like the present ome.

The RMSE results in Table 3 did not reveal important differences
between the OLS estimates and the others, but the policy results in Table
4 did. Judging from the results in Table 4, the OLS estimates do appear
to show some simultaneity bias.

We hope that the results in this study will encourage further work
on the full information estimation of models. Given the recent theoreti-
cal interest in nonlinear full information estimators and the computational
results in this paper, the time for full information estimators may have

finally arrived.
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APPENDIX

I. The Algorithm

Since the algorithm that was used to obtain the 3SLS and FIML es-
timates is described in detail in Parke [20], it will only be briefly dis-
cussed here. It belongs to the class of relaxation (no derivative) al-
gorithms. It takes advantage of two characteristics of macroeconometric
models that we have observed to exist in practice. The first and most
important is that the 3SLS and FIML estimates of each equation almost
satisfy the property that the means of the estimated residuals is zero.
For OLS and 2SLS this property is true exactly, and so it is not surpris-
ing that it is almost true for other estimators. The second characteristic
is that the correlations of coefficient estimates across equations are
generally less than the correlations within equations. General purpose
algorithms do not take advantage of this specifie structure of the 35LS
and FIML optimization problems, and this appears to be the reason they
have not been successful when applied to large problems.

Many different directions are searched per iteration of the algorithm.
A quadratic interpolation is used to find the maximum for each direction.
The directions are generated in four basis ways: (1) For each equation
the objective function is maximized by changing one coefficient at a time.
For coefficients that are not constant terms or serial correlation coef-
ficients, the constant term is at the same time adjusted so that the mean
of the equation's residuals is unchanged. (The restriction across the
two equations in the present model requires an adjustment to both equa-

tions' constant terms for the coefficients of these two equations.)
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(2) After step (1) has been completed for a given equation, the vector
of beginning coefficients is subtracted from the vector of ending coef-
ficients, and the difference vector is taken as the next direction. This is a
likely direction of increase for the whole equation. (3) After steps (1) and
(2) have been completed for all the equations, the coefficient vector at
the start of the iteration is subtracted from the current coefficient vec-—
tor, yielding the direction of total change through the iteratiom. This
direction, a likely direction of increase for the whole model, is then
searched. Similarly, the 2SLS coefficient vector is subtracted from the
current coefficient vector, and this direction of long-run change is searched.
The changes since other past coefficient vectors may also be used for further
searches at this point. (4) The directions from steps (2) and (3) are re-
peated. This completes the calculations for one iteration.

Note that the algorithm spends much of its time in steps (1) and (2),
i.e., in examining one equation at a time. As alluded to above, this turms
out to be an efficient use of the algorithm's time. Note also, because

the constant term is changed by itself in step (1), that the algorithm

deces not force the estimates to satisfy the property of zero residual means.
This would, of course, be wrong. With respect to step (3), the use of
directions from past coefficient vectors, such as the starting vector,

has in practice been of considerable help in increasing the rate of con-
vergence of the algorithm., This type of searching is usually not done

by other algorithms. Finally, note from Table 1 that the algorithm has

the characteristic of increasing the objective function by a large amount
in the first few iterations. This allows one to get very cheaply a good

idea of what the final estimates will be like.



32

II. Estimating the FIML Covariance Matrix

The procedure we used to obtain the estimated FIML covariance
matrix arose from an unexpected difficulty. In taking the second partial
derivatives of L 1in (12) numerically, we found that the resulting matrix
was not positive definite, in spite of several tests of alternative dif-
ferentiation strategies. To avoid this problem, we instead calculated
the covariance matrix for a transformed set of coefficients, using a trans-
formation equivalent to the directions in step (1) above. This covariance
matrix was positive definite, and it was also not sensitive to alternative
differentiation strategies. Solving back through the transformation yielded
a positive definite covariance matrix for the original coefficients. Com-
paring the inverse of this matrix with the unsuccessful second-derivative
matrices confirmed that the straightforward approach is very sensitive to
slight errors in the second derivative approximations. Again, this tech-

nique and its motivation are discussed in detail in Parke [20].
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