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SUBJECTIVITY IN THE VALUATION OF GAMES

Robert James Weber
Yale University
New Haven, Connecticut U.S.A.

The recent axiomatic study of probabilistic values of games has
clarified the relationship between various valuation methods and
the players' subjective perceptions of the coalition-formation
process. This has important bearing upon the increasingly-common
use of the Banzhaf value in measuring the apportionment of power
among the players in voting games. The incompatibility of the
players' hypothesized subjective beliefs {under the Banzhaf val-
uation scheme) leads to the strange phenomenon of "pitfall" points
(points of value discontinuity) in weighted majority games with
several major players and an ocean of minor players. Such results
argue against the use of the Banzhaf value (or indeed, of any
value other than the Shapley-Shubik index) in the measurement

of power in weighted voting systems.

Introduction. Let N be a finite set of players. A simple game v 1is a
(0-1)-function on the subsets (coalitions) of N , which satisfies v(@) =0
and v(S) » v(T) for all S>T . The collection of all simple games on N s

1]

denoted SG{N) . We often think of a simple game as representing the decision
rule of a political body: coalitions S for which v{(S) =1 are said to be
winning, and those for which v(S} = 0 are said to be Josing.

The weighted voting game [q: w1,...,wn] is a simple game defined on the player
set N = {1,...,n} , in which a coalition S 1s winning if and only if

w(S) = Bi oWy 24 - The quantity q 1is the quota of the game, and wy,...,w,
are the players' voting weights.

Many organizations are formally administered as weighted voting games. {The
stockholders of a corboration, for example, are traditionally accorded voting
weights equal to the number of shares they own.) Other institutions use decision
rules which, while not explicitly formulated as weighted voting games, are never-
theless equivalent to such games. (The United Nations Security Council passes
measures with the approval of at least nine of its fifteen members; each of the
five permanent members has the right to veto any measure. This situation is
fully represented by a weighted voting game in which the quota is 39 , the
permanent members have voting weights of 7 each, and the remaining ten mem-
bers have weights of 1 each.)



Legislative bodies in which the Tegislators represent districts of unequal popu-
lations are frequently organized as weighted voting games. How should the voting
weights of the various legisiators be determined? An obvious approach is to make
the weights proportional to the district populations. However, this can lead to
highly unsatisfactory results. For example, assume that four districts respec-
tively contain 30, 30, 30, and 10 percent of the total population. An assignment
of weights yielding a game such as [51: 30,30,30,10] will leave the residents

of the fourth district without effective representation; their legislator will
never be an essential member of a winning coalition. Again, assume that three
districts respectively contain 45, 45, and 10 percent of the population. Although
the third district is much smaller than the other two, the proportionally-weighted
voting game [51: 45,45,101 is actually symmetric; all coalitions of two or more
legistators are winning.

Situations analogous to those just given (although perhaps a bit more subtle)
have arisen in a number of municipal legislative bodies in the United States (for
example, see [5]). The courts have generally ruled that such situations violate
the "equal representation” principles of the U.S. Constitution, and have required
that voting weights be reallocated in order to provide a more equitable distribu-
tion of influence.

These same courts have shown a willingness to accept the idea of a measure of
“power" of the players in a simple game. If the relative power of the legis-
Jators in a weighted-voting legislative body is roughly proportional to the pop-
ulation of the legislators' districts, then the situation is deemed satisfactory.

In order to facilitate comparisons among various measures of power, we shall
present several properties which might be desired of such measures. Two par-
ticular measures, the Shapley-Shubik and Banzhaf power indices, have received
much attention. We will find that both of these reside within a common axiomatic
framework which provides a natural interpretation of them in terms of the
players' subjective perceptions of the process of coalition formation.

Probabilistic values. As a fixed player 1ieN varies his attention over the

games in SG{N) , he will perceive himself as having greater influence in some
games than in others. A value for i on SG(N) is a real-valued function
TP SG(N) » R which indicates the subjective assessment, by player i , of
his power in the various games.

For any 1i.N , consider the simple game on N in which the winning coalitions
are precisely those containing 1 . Player 1 1is a dictator in this game; it
is difficult to imagine him in a more powerful position. On the other hand,
since all games in SG(N)' are monotonic (if S=T and T is winning, then 5

i

is also winning), player i's membership can never hurt a coalition. Therefore,



his weakest position arises when he cannot contribute anything to any coalition.
In this case, when v{Sui) = v(S} for all ScN|i , we say that i is a zero-
dummy of v . (For notational convenience, we will often omit the braces when
indicating one-element sets.) Generally, if v{Sui) = v(S) + v{i) for all
SeN|i , then 1 s a strategic dummy in v ; both dictators and zero-dummies
are strategic dummies.

Combining these observations, we impose the following normalization requirement

upon a value LE

(P1) For any veSG(N)} , Ogyi(v)gj . If i 1is a strategic dummy in v , then
so{v) = v(i) .

j
A simple game on N is completely characterized by its collections of winning
and losing coalitions. Hence, a particularly elementary measure of player i's
power in a game would arise from simply tallying the winning and losing coali-
tions to which he belongs. This idea is embodied in the next requirement.

(P2} There are constants {a;:TeN} , {bT:TcN} such that for

every veSG{N) , “i(v) =L ap*t by,

T‘w1ns T loses
in v in v

There are a number of equivalent formulations of this requirement, some iess
transparent than others. For example, for any games u and w in SG(N)
define the games uw and uaw by (uvw)(S) = max (u(S),w(S)) and
(uaw) (S) = min (u(S),w(S)) . These two new games are also in SG(N) . Recently,
attention has been given to the requirement that a value satisfy
”i(“) + ui(w) = ui(uvw) + ui(UAw) for all games u and w under consideration;
this is a lattice-theoretic analogue of linearity. In essence, this says that
the transfer of winning coalitions from one game to another does not affect the
total value of the two games. (P2) is a direct consequence of this.

A probabilistic value is a value satisfying (P1) and (P2). These two properties
together imply that probabilistic values have a very special form.

Theorem. A value . for i on SG(N) 1is a probabilistic value if and only
if there is a collection {PT:TcN|i} of nonnegative constants satisfying
Pr =1, such that for every veSG(N) ,

ui(v) = LoPlv(Tui)-v(T)T .
TeN|1



Proof. It follows from (P2) that for any v ,

) ar + ) by = Y (aT'bT)V(T) + 3 by .
T

Hi(v) =
v(T)=1 v(T)=0 TeN TN

For any TeN , Tet GTeSG(N) be the game in which the winning coalitions are

precisely those S for which SFT . If T s nonemptysA1Et v7eSG(N) have as
winning coalitions those S for which S$5T . The game N is identically zero.
Player i is a zero-dummy in this game; it follows from (P1) that zb=0 . For

T
every TcN , define ¢ = aT-bT . Then “i(v) = Zch(T) .

let T be any nonempty coalition in N|i . Player i is a zero-dummy in V-
Therefore, “1(VT)=O=ETcScN|i(CSui+CS) . By induction, beginning with T=N|i
and proceeding to successively smaller coalitions, it follows that CTU1+CT=O .
Define PT = Cryi = "C1 and also define PG = ¢. . Then

-PT[V(Tui)-V(T)] . 1

uylv) = ZTCN|1

i

From (P1), it follows that 2Py = u,(v;) =1 . Furthermore, for any TeN|1 ,
A

Pr = u;(vp) >0 . This establishes the formula in the theorem. It is easily

verified that any value defined in this manner indeed satisfies both (P1) and

(P2). O

Qur principle concern is with an interpretation suggested by the representation
in the theorem. Player i can view the coefficients P, as subjective proba-
bilities. Coalitions form through a process of accretion. At some point, a
coalition in N|i will approach i and invite him to join; the probability
that he is approached by T is P . The quantity ui(v) is then the proba-
bility that i 1is pivotal, converting the coalition he joins from losing to
winning. Hence, the normalization and simplicity assumptions lead directly to
a subjective model of coalition formation, in which a player's sole concern is
with his marginal contribution to the coalition he joins. We shall hold this
model in mind throughout the remainder of this paper.

Semivalues. When developing a measure to compare the influence of the various
players in a game, it seems reasonable to adopt a symmetric point of view. In
addition, it is desirable that the measurement method be applicable to all
finite-player games {rather than merely to games on a fixed player set).

Let U be an infinite set, the universe of players. A simple game v on U

is a monotonic (0,1)-function on the subsets of U which satisfies vi@) =0 .
Any NcU  such that v(S) = v{SoN) for all ScU is a carrier of v . A finite
simple game is a simple game with a finite carrier; the set of ail such games
is SG(U) . A value v, for icU is a real-valued function on SG(U) . For
any finite NcU , SG(N) can be embedded in SG(U) by treating the players in
U[N as zero-dummies. A value V¥, is said to satisfy (P1) and (P2) if its



restriction to each SG(N) satisfies these conditions. A permutation w:U-U
is a one-to-one onto mapping. For any permutation = and game v:SG(U) ,
define =v « SG(U) by (nv){S) = v(nS) for all S<U . A semivalue v = (v
is a collection of values satisfying (P1), (P2), and the following symmetry
condition:

ViU

(P3) wi(ﬂv) = Wﬂi(v) for all ieU , all permutations = of U,

and all games ve«SG(U) .

Let £ be a probability distribution on [0,11. The value ¥> on SG(U) is
defined for all veSG(N) and i<NcU by

¥i(v) = T PD Cv(Sui)-v(S)] ,
ScN|'i
n _ . l,s n-s-1 .
where Po = St (1-t) ds(t) . (Here, n and s generically denote the
cardinalities of N and S .} Note that the definition of w%(v) is inde-
pendent of the selection of a carrier N of v . It is not difficult to verify
that ¥° is a semivalue. The following result is derived in [3].

Theorem. Let ¥ be a semivalue on SG{UY) . Then there is a probability
distribution £ on [0,1] such that w=y> .

Adopting the interpretation of probabilistic values given in the previous
section, we can view a semivalue in the following manner. Given veSG{N) ,

the players in N|i are assigned random positions on [0,1] which are chosen
independently and uniformly. The position of 3§ 1is chosen according to the
distribution & . Then wg(v) is the expected marginal contribution of i

{or equivalently, the probability that i is pivotal) when he joins the coali-
tion of players whose positions precede his.

A semivalue wg

gives each player in turn a distinguished treatment when his
value is computed. A fully-symmetric treatment arises when & is the uniform
distribution on [0,1].  This yields the Shapley value [g8,9], with

Pg = s'(n-s-1)!/n! . On the other hand, if & 1is the probability distribution
concentrated at the point '; then the i-subjective viewpoint associated with W%
is highly idiosyncratic; i considers himself Tikely to hold a central position

among the players. This yields the Banzhaf value [1], with Pg = 1/2n_T

Consistency. The use of a semivalue ¥ to compare the relative influence of
the players of a game is not affected by rescaling. Hence, one may work instead
with the normalized value ¥ , defined for all veSG(U) by ¥(v)= W(v)/zwi(v) .
Historically, most appiications of the Banzhaf value have employed this normali-
zation.



A conceptual difficulty with this approach is that the sum in the normalizing
factor combines the subjective probabilities of different individuals, a proba-

bilistic analogue of adding apples and oranges.

Theorem. The Shapiey value is the only semivalue v for which Zwi(v) =1
for every nonzero veSG(U) .

This characterization of the Shapley value in the context of simple games first
appeared in [2]. For an alternative derivation, Tet X denote the Lebesque
measure on [0,1] and let &£=x be any other probability measure. Select
xe[0,1] such that (D£)(x)>1 , or such that x 1is in the support of the com-
ponent of & singular with respect to A . Let Vi be a k-player game in
which all coalitions of more than xk players win. Then for x=1 , suffi-
ciently large values of k can be found so that zw?(vk)>1 . {(If x=1, the
same result holds when vy is a k-player unanimity game.)

The theorem provides a particular distinction to the Shapiey value: it is the
unique semivalue arising from consistent expectations. The effect of incon-
sistency on normalized values is discussed in the next section.

Games with many minor players. We consider weighted voting games consisting of

aset M={(1,2,...,m} of "major" players, and a large number k of "minor"
players of total voting weight o>0 . Let Vi = Eq:w],..., m’%3'°"%i , and

let v) = (qiwp.. oW ygu-.ap) 5 a coalition wins in the latter game if it has
total weight strictly greater than q . The following results concern the semi-
values (unnormalized and normalized) of the major players when k 1is large.

Let ?t denote the semivalue associated with the probability distribution con-
centrated at t . Define 2z, = [g-taiwy,....w T and z! = (q—ta:w],...,wm) ;
if g-ta<@ then Zt:O ,» and if qg-ta<® then z£=0 .

Theorem. For all O<t<l and icM,
Tim W?(Vk) = Tim w?(vk) =1y

Theorem. For all O<t<l and ieM |

O

-t o
Tim ¥: (v, ) = 1im ¥.
1k i 0 if teP |

where P = {t: for some S<M , w(S)+ta=q}

Both of these results follow in a straightforward manner from the central Timit
theorem, or from a few judicious applications of Stirling's formula. As k
becomes Targe, each major player considers the total weight of the minor players
in the coalition he will eventually join to be equally Tikely to be slightly



more or slightly less than ta ; the first theorem is an immediate consequence
of this. Fix a minor player j , and let L be the (binomially-distributed)
number of other minor players in the coalition which j eventually joins. If
w(S)+ta=q , then wg(vk)its(1-t)m'sPr(L<tk§_L+1) ; this probability is asympto-
tically proportional to k~ On the other hand, if ¢ = min{|t-t'|:t'«P}>0 ,
then wg(vk) < Pr(L;(t-e)k or (t+e)k<L+1)} ; this probability is asymptotically
proportional to k2K , where r = exp(-ez/[Zt(l-t)])<1 . Conseguently, in one

te

case the sum of the values of the k minor players increases without bound, and
in the other case the sum approaches zero. Hence, the normalized semivalues
behave as indicated in the second theorem. (The cases t=0 and t=1 require
separate treatment, because the distribution of L is degenerate. However,

1

this degeneracy makes direct computation of the values ?0 and ¥ trivial.)

For any probability distribution ¢ on [0,1]1, and any veSG(U) and ieU ,

??(v) = fév?(v)da(t) . Since the integrand is nonnegative and bounded, the

first 1imit theorem carries over to general distributions in an obvious manner.
The possible behavior of normaiized values, as indicated in the second theorem,
is best iliustrated by an example. Let g denote the normalized Banzhaf value,

and consider the games Vi ® [55: 4O+5,30,20,19i53...,]Oiej for various values

of « . If «=0, (81,82,83)(vk)+(0,0,0) ; that is, the minor players share

essentially all the influence in the game. For any small <=0
311 . . .. .. .
(81,82,83)(Vk)*(53535J . This discontinuity may seem unsurprising, since the
voting weight of a major player has been increased at the expense of the minor
111, .
§'9§s§) ’
according to the normalized Banzhaf value, a sacrifice in voting weight can

3

players. But for any small e<0 , we have (8],82,53)(vk)+(

benefit the major players. (It can be shown that for a general distribution

g and a game veSG(U) , the occurrence of this type of "pitfall discontinuity"
is related to the existence of a tePn{0,1) such that dg/dx either does not
exist or is unbounded in every neighborhood of t .)

0f course, this strange behavior results from the inconsistency of the players'
subjective expectations. If <=0 , each minor player considers himself rela-
tively more likely to be pivotal than any of his fellow minor players; for

<~#0 , the opposite situation holds. And the normalized values of the major
players depend critically upon this collective optimism or pessimism of the
minor players.
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