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COMPETITIVE VALUATION OF COOPERATIVE GAMES™

by

Martin Shubik and Robert James Weber

1. Introduction

In many applications, it is important to be able to assess the rela-
tive "value'" of playing various roles in a game. Previous approaches to
valuation in cooperative game theory have involved axiomatic structures,
7n-person bargaining models, and a variety of probabilistic considerations.
In this paper we take a new approach, similar to that taken by Shubik and
Young in [1]. We consider the 7 participants of a given cooperative
game as independent units, control of which is sought by two opposing
forces (one supporting change, the other supporting the status quo). The
optimal allocations of resources by the opposing forces indicate the rela-
tive values of the players in the original game.

The competitive game for control of the players has a natural inter-
prcetation in terms of lobbying for votes, and in a different context may
be viewed as an extension of the "Colonel Blotto" games of the theory of

warfare [2]. There are several different ways in which the "purchase"

*This work relates to Department of the Navy Contract N000l4-77-C-0518
issued by the Office of Naval Research under Contract Authority NR 047-006.
However, the content does not necessarily reflect the position or the
policy of the Department of the Navy or the Governmment, and no official
endorsement should be inferred.

The United States Government has at least a royalty-free, nonexclu-
sive and irrevocable license throughout the world for Govermment purposes
to publish, translate, reproduce, deliver, perform, dispose of, and to
authorize others so to do, all or any portion of this work.



or "capture' of players can be modelled. An earlier study [l] was concerned
primarily with voting games, and with a simple mechanism whereby fractions
of the players were "bought" in proportion to the amounts bid for them.

We more broadly concern ourselves with general games, and with a variety of
mechanisms which determine the probability with which the support of a
player is obtained. Our results demonstrate a relationship between the
"competitive" values, and a family of values, characterized axiomatically
by Dubey and Weber [3], which include the classical Shapley [4] and Banzhaf

[5] values.

Z.  The Competitive Supergame
Consider a fixed n-person cooperative game with characteristic func-
tion » , played by the members of the player set & = {1, 2, ..., nt .
We shall construct a competitive two-person game based on v . There are
two related interpretations which can be given to the competitive game,
each of which involves the idea of two "'superplayers" playing a "supergame."™
In the first interpretation, we view the players in N as political
actors. For any coalition SC N , v(5} measures the extent to which the
players in S can affect the current state of public affairs. We hypothe~
size two opposing superplayers, named [ and II . I has the goal of
bringing about change, while [/ seeks to protect the status quo. Hence,
each will allocate the resources available to him among the players in
N (for example, will make campaign contributions, or exert pressure through

lobbying), in such a way as to gain the support of a coalition of influen-

tial politiciams.

*We deviate from the tradition of defining a supergame as the sequentially-
repeated play of a single game.



The other interpretation is related to a classical military model.
Each of the elements of N corresponds to a military objective (such as
the winning of a particular battle, or the destruction of a missile silo),
and ©v(5) represents the worth of achieving the objectives comprising
5 . Superplayer I 1is the attacker, attempting to attain these objec-
tives. II has the role of defender, and the goal of minimizing I's
achievements. Each superplayer has a limited supply of strategic resources,
and seeks an optimal allocation of these resources. Assume, for example,
that an objective is won (with certainty) by the superplayer who commits
the greater amount of resources to it. Then this interpretation of the
competitive game closely corresponds to the class of "Colonel Blotto™
games.

We continue our discussion within the framework of the first inter-
pretation. The supergame takes place in twe stages. First, the super-
players independently (and simultaneously) allocate their respective initial
resource holdings among the x5 players of the underlying game. Assume
that J allocates the amounts (al, ey an) , and 17 the amounts

(b RN bn) . Each player in & then (independently) decides whether

l’
to support [ or not. The probability that player k gives his support

to superplayer I 1is pk(ak, bk) , which depends only on the amounts

allocated to %k ; the collection {pk}n of as-yet-unspecified '"support
k=1

functions' determines the particular form of the supergame being played.
Player I's payoff is the characteristic function value u(S5) of the
coalition S of players who actually support him. The corresponding pay-
off to superplayer I7 1is w(¥}) - ©v(5) . (We could, of course, make the
gupergame zero-sum by defining the payoff to II to be -u(5) ; this

would not affect any strategic considerations. However, the given defini-



tion, which yields a constant-sum supergame, will clarify later discussions.)
et a = (al, aees an) and b = (bl, ceay bn) . Then the expected
payoff to superplayer [ , according to the preceding description of the
supergame, is
Pla,b) = )} {Np.la., b,) I (L=-p.la., b,))Iw(S) .
s sci ies © U Vg 98
(One might note the similarity of this payoff function and the multilinear

extension {6] of v .) The expected payoff to superplayer JI is

PII(a,b) = v{N) - PI(a,b)

Y { Up.la, b} T (L-p.la., b))} w(N)-v(3)]
sy ies v Y Ygs 4 I

Il

) W pslag, by) T (1-pilas, bj))}v*(sc) .
SV el JES
In the last expression, u* is the "dual" of v , defined for all TCU¥N
by 0*(T) = v(N) - »(7°) . The dual of v can be thought of as a "block-
ing" game. If the players in ¥ have agreed to cooperate in order to
attain w{(N) , but are debating the precise division of this amount among
themselves, then a coalition 7 might be concerned not only with the amount
v(?) as a justification of its members' claims, but also with the amount
(T} = v(N) - v(7°) , which is the amount which it cannot be unquestion-
ably denied by the opposing coalition. Given this "blecking'" interpreta-
tion of the dual, the form of the last expression for PIIﬁa,b) is not
surprising.

The competitive game has a hidden symmetry, regardless of what the

underlying game v may be. If we are informed only of the payoff func-



tions of a pair of superplayers, we cannot deduce whether the first is
playing a role of superplayer I in a supergame based on a cooperative
game v , or whether the second superplayer has the role of I in the
supergame based on v* . If v is constant-sum (that is, if

(1) + v(T°) = v(N) for all TCN) and if p.(a, b,) +p,(b; a;) =1
(that is, the outcome functions are symmetric), then the supergame is
overtly symmetric. This follows from the easily-verified fact that a

constant-sum game is self-dual.

3. Values awnd Equilibria

Much game-theoretic work has centered on the problem of comparing
the prospects of playing various positions in a variety of games. Given
a family Zf of cooperative games, a value ¢ on .11 is a mapping which
assigns a real number ¢k(v) to each player %k of any game v Exéf.
A classical approach to the study of values is from an axiomatic viewpoint.
A number of "reasonable" criteria are proposed, and the values satisfying
these criteria are characterized.

A game v , with player set N , is monotonic if v{(5) > v(T)
whenever 5 =T ; v 1is strictly monotonie if v(S) » v(l) for all
g i??’. A player k e N is a dwwny In v 1if 0(SUk) = v(3) + v{k)
for all S C wN/k ;3 k is a zero-dwmmy if, in additiom, v(k} =0 . (Note
that we frequently omit the braces when writing one-element sets.)

1t is common to require that a value be a linear function on its
domain ,ff. Other criteria include the following: if k is a dummy
in » , then ¢k(v) =vp(k} ; i1f v 1is monotonic, then all components
of ¢(v) are nonnegative; the value of a game to any of its players is

unaffected by introducing a dummy player into the game. Of a slightly



different nature is the criterion that the value be symmetric; that is,
if © 4dis a permutation of the player set of v ¢ ly , and if wv (de-
fined in the usual manner) is in _29 , then for every player k of the
game, ¢, (v) = ¢ . (") .

Take any 0 < ¢ <1 . The t-value for any player k of an n-player

game v 1s defined by

¢£“(U) = 7 510" wsuk) - i)y,

SN\
where N 1is the player set of v , and where & generically denotes
the cardinality of S . The values which satisfy the preceding criteria
(over the family of all finite-player games) are precisely those which are
weighted averages of L-values [3]. When all ¢-values are equally-weighted
in the average, we obtain the well-known Shapley value; the 1/2-value of
a pame is its Banzhaf value.

A primary purpose of this paper 1s to indicate how the t-—values
arise in a competitive setting. Since the setting involves only the single
n-person game under consideration (rather than a family of games, many of
them not relevant to the situation being studied, over which the value is
constrained by various criteria), cur results provide strong support to
the importance of such values.

In order to study competitive games, we require several equilibrium
concepts. Consider any two-person game. A pair of strategies (one for
each player) is an equilibrium point of the game if each player's strategy
is a best response to his opponent's strategy. Assume that the initial
resources of the two superplayers of a competitive supergame (as previously

discussed) are in the amounts /A and 5 , respectively. Thus the strategy



space for I 1s the set = {ac RE : Zak = A} , and the strategy space
for II is B = {b ¢ Hﬁ : Zbk = Bl . The strategy pair ({(a,b} is in
equilibrium if P {a,b) > P (a’,b) for all a' e, and

P&j(a,b) z_PII(a,b') for all b' €& . The equilibrium concept can be
localized. A local equilibrium point is a strategy pair (a,b) which
satisfies the preceding conditions as long as a' and D' are restricted
to sufficiently small neighborhoods of ¢ and b , respectively. The
local equilibrium concept is a natural one for situations which evolve

over time, and in which major strategy shifts gquickly become known to one's
opponent. In particular, pure strategy local equilibria tend to be self-

reinforcing, and therefore stable.

4. Competition for the Support of a Single Player

Assume that the two superplayers respectively commit the resource
amounts g and b 1in an attempt to win the support of player k in the
underlying game. (Since we are only concerned with a single piayer in this
section, we shall omit the subscripts from all expressions.) How might
these commitments affect k's behavior? A reasonable assumption is that
pl(a,b) , the probability that %k supports I , depends on the relative
sizes of g and b , rather than on the absolute magnitudes of these
amounts. Hence, we assume that p is homogeneous of degree zero; that
is, for all ¢ » 0, p(Ra,tb) = p(a,b) . Certainly, it is reasonable
to assume that p(a,b) 1s monotone increasing in a , and monotone de-
creasing in b . This merely asserts that Xk is not averse to having
additional resources allocated to him. We further assume that
p(0,0} = p(1,1) , p(l,0) =1, and p(0,1) = 0 . The first of these

is merely a convenient convention, while the latter two indicate that



k's loyalty can be ensured with high probability by a sufficiently dispro-
portionate commitment by one of the superplayers.

Besides these structural considerations, there are at least two
additional important characteristics of p , When the two superplayers
commit equal amounts of resources to Xk , the resulting probability
p(1,1) = y 1indicates the degree of "natural" support X provides to I .
And when the commitments are unequal, the difference between p(a,b) and
p(1,1) indicates the sensitivity of k's behavior to the relative differ-
ence between a and b .

For any 0 <y <1 and m> 0, let p(a,b) = Yam/[Yam-ffl—Y)HW].
The family of such "support functions' serves to illustrate the preceding
discussion. Clearly, p(l,1) =y . For values of m near zero, p(a,bl
is near y even when a and b differ substantially. However, if m
is very large, slight differences between « and b can make p{a,b)
quite different from vy . Yor the sake of future discussions, we define
B{a,b) as the limit of p(a,b) when vy =1/2 and m + = , This is
the so-called "Colonel Blotto' outcome function, which satisfies

Bla,b) = 0, 1/2, or 1 accordinglyas a<b, a=b, or a?>b X

*Another Blotto interpretation might give "ties" to the defender, whence
for a = b the defender scores 1.



5. The Location of Equilibria
Our first result is that pure strategy equilibria (local or global)
of the competitive supergame must correspond to the t-values of the under-

lying cooperative game.

Theorem. Let v be an n-person monotonic game, in which no players are
zero-dummies. Consider the two-person competitive game based upon v ,

and let the initial resources of the superplayers [ and II be L and
1, respectively. Assume that the same support function p governs the
behavior of all n players of the underlying game, and that p 1is con-
tinuously differentiable, and is strictly monotonic in each variable.

Then, if the allocations a = (al, . an) and b = (bl, cens bn) con-—
stitute a local equilibrium pair of pure strategies in the competitive
game, it must be that both a and b, are proportional to the p(L,1)-value

of v .

Proof. We first demonstrate that g > 0 and b > 0 at any local equilib-

rium peoint. Let p = (pl, vees pn) be the vector of probabilities deter-
mined by ¢ and b ; hence P: = p(ai’ bi) for all 4 41n the underlying
player set &N . The payoff function PI(a,b) can be written as a continuous
function PI(E] . Furthermore, the assumption that v is momnotonic and

without zero-dummies implies that PI is strictly monotonic in p ; that

is, p' E p implies PT(E”) > PI(E] . Now, suppose that some a, = 0.
If bi is also zero, then J can modify his strategy by reducing some
positive aj by a slight amount, and increasing a; accordingly. This will

decrease pj slightly, while increasing p{ from p(0,0) te 1 . But

[J/(P]_’ aany pi:l, . ey PJ'—L’ ey P‘H) = }':I(pl_' aeay Ly ey pJ, ceay pn)

> /V(pl, cees p(L,10, ooy pay o.w, p ), where the approximation follows
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from continuity and the inequality from monotonicity. Hence, a local stra-
tegy change is advantageous for I , so (a,b} could not have been in
equilibrium. On the other hand, if a, = 0 and bi >0, then II can
decrease bi while keeping p; = 0 , and can correspondingly increase
some bj for which aj > 0, thus decreasing pj . It follows from the
monotonicity of PI that this local strategy change works to II's advan-
tage, again contradicting the assumption that (aq,b) 1s in equilibrium.
Similar arguments show that no bi =0 .

Since (a,b) 1is an equilibrium pair such that a and b are in
the relative interiors of the superplayers' strategy spaces, it is neces-
sary that all of the derivatives BPI/Bak are equal and nonnegative at

{a,b) , and that all of the derivatives BP&/Bbk = -BPII/Bbk are equal

and nonpositive.

Now,
8y 2 :
Eaf{a,b} = 5&—p(ak, by ) yo{ pla., b;) T (1-pla., b DI w(SUk) -v(5)]
k ke SciVk ieS 745 J’
J#k

and

oF
p@,b) = siplay, b)+ T {1 play, b) T (1=plag, b))} w(SUK) -(5)] .
k K SC\k ieS v iés J

J#k

Recall that p is homogeneous of degree zero. Hence, by differentiation

(this is an instance of Euler's equality),

D ]
ak'ﬁaip(ak’ by) bk'EE;p(”k’ by) =0,

and therefore

ad
5 K

—>pla,, b,) = - —-"p(a,b)

Bbk k* Tk bk a kB Yk
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The monotonicity of v , combined with the assumption that p
is strictly monotonic in each variable, allows us to conclude that the
derivatives SPI/Bak and BPI/Bbk are nonzero at {(a,b) . The equality
of all derivatives of the first type implies that (BEI/aak)(a,b) is
constant for all k . Furthermore, the equality of all (an/abk)(a,b)
implies that

83I a, oF
'ga*{a,b)
k

_“‘(Cl, b) = -
abk bk
is constant for all k ., Hence, the ratio ak/bk is unvarying in %k ,
and therefore a = Lb .

For any nonzero bk R p(Lbk, bk) = p(L,1) . 1t therefore follows

from the homogeneity of p that

3 3 % 1
e b = agPlps 1 (L1,
k a, =Lb k {"k k
k k ak=Lbk

where pl is the partial derivative of p with respect to its first var-

iable. Let ¢ = (¢1, cens ¢n) be the p{lL,1)-value of v . Then

aF

I 3 1
'é_a"_'"(Lbjb) = Sa (ak’ bk) B ¢‘k = 'B“‘PI(L; l)¢k =K K
k k a, =Lb k
k k
where pl(L,l) and K are positive constants, independent of %k . Con-

sequently, b 1s proportional to ¢ . This completes the proof. [:j

The assumption that v has no zero~dummies was included in the
theorem for mathematical convenience. Clearly it is not optimal for either

superplayer to allocate any of his resources to a zero-dummy. Since the
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p(L,1)-value of a zero-dummy is zero, the proportionality asserted in the
theorem will also hold for monotonic games involving such players.

Perhaps the proportionality of the optimal pure strategies (to one
another) seems surprising. However, observe that the t-value of any game
is equal to the (1-t)-value of its dual (this can be verified in a straight-
forward manner). Because of this, the hidden symmetry of the competitive
supergame provides an intuitively-satisfying explanaton of the preceding

thecorem.

6. The Exislence of Fquilibria
The preceding result allows us to restriet our search for pure
strategy equilibria to a single point. However, we have no guarantee that

this point will indeed be an equilibrium point.

m
Let us limit our consideration to the class {p }m>0 of support
functions defined by
m d"
12 (a!b) = - m ki m
ya o+ (1-yJ)b

where y 1s a fixed constant strictly between 0 and 1 . We indicated
earlier that, for large values of m , pm 1s similar to the Colomnel Blotto

support function B . It is well-known that many Colonel Blotto games

(at least, most of those in which the superplayers begin with comparable
initial resources) do not possess pure strategy equilibria. On the other
hand, for small values of m , pm is relatively stable with respect to
small variations in its arguments. This suggests that equilibria may then

be casier to come by. This is made precise in the following result.
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Theorem. Let ©v be an n-person game which is strictly monotonic. Let
the two superplayers have initial resources L and 1 in the competitive
game based on v , and let the support function pm govern the behavior
of all 7 underlying players. Then, for all sufficiently small m , the
allocations a* and " , both proportional to the pm(L,l)vvalue of v,

constitute the unique global equilibrium point of the game.

Proof. Let ﬂ;(a,b) be the payoff function for superplayer I . We shall
show that f?(a,b*) is, for all sufficiently small m , a strictly con-
cave function of g on the strategy space Q@ , and that the function
attains its unique maximum at o = a* . In a similar manner, it will follow
that E?(a*,b) is uniquely minimized (on By at b = p* . Therefore,
since the competitive game is constant-sum and all equilibria are equivalent
and interchangeable, we will have shown that (a*,b*) is the unique equi~-
librium point of the pame, as claimed.

For any players k and £ in the player set N of v , define

17 - Hrt m
Elta,b) = Y L npa., b)) U (1L-p (a., b)) o(SUR)}-v(5)),
K SCM\k ic5  © Y 4£S T
J#k
and
m M m
8, (a,b) = 7 {npa, b)) 1 (L-p(a, b))}
o san\(kus) ieS  © © g T
Gk, 2

qu(sVUkUg) —v(SUK) ~v(sSUg) +v(5)1 .

Then
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ﬂ( B) = pola,, b )R (c,b)
aak a, - pl ak: X Lf\' ),

2
2

2
aak

(a,b) = P}, (@, b e (a,b) .

and

ﬁ( b) = pia,, b, )p"(a .b)Bm (a,b)
aakaala’ T Pyl PpiPy gy Dp 7By gt 07 -

s m . . . .
The functions p? and P,y are the first and second partial derivatives

of pm with respect to its first variable; that is,

m m %% " % ;
pl(ak, b ) = Y(l—“{)'a' ?5; Yzl (1-y)

.
.

and
. m (a m LA
pTl(ak, bl = Y(l—y)-ﬂ%* 7o o | (1-y) (m=1) -y (m#l) EE- ¥ BE- + (1-y)
g k Lk k

Let b be any fixed nonnegative vector. The function P? is strictly

concave throughout the nonnegative orthant if the Hessian of P? is nega-

tive definite for all nonnegative a . After deleting common pesitive
factors from the rows and columns of the Hessian, we are left with the
: 7 _ th . .
matrix # (a,b) = (hk2) , 1in which the k diagonal entry is
a\" a \" bk i

k k m
Prg = |¥ 5, + (1-y) |+ [ (1-y) (m=1) - y(m+1) 5| | |a, "8y (a,b)

and the (k,i)th off-diagonal entry is
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My, = Y(l-Y)m'Bz’ E(a,b)

{The factor Y(l—v)'(m/ak)'(ak/bk)m/(y(ak/bkf”+(l-Y))2 has been deleted from the
kth row, and the factor (l/ak)'(aﬂ/bl)m/(vfal/bg)mi-(l-y))z from the Rth column;
these deletions don't affect the potential negative—-definiteness of Hm(a,b) )

For sufficiently small m (for example, m < 1 )}, the K th diagonal
entry is negative, and is less than Y(l-y)(m-l)BZ(a,b) . Furthermocre,

since v is strictly monotonic, each Bgfa,b) > min (v(SUk) -v(5)) >0 .
SCNN\k

And, since each Gz l(a,b) < v(N) , each off-diagonal entry is positive

.
and is no greater than vy(l-y)m-v(#) . We can apply Gershgorin's Theorem,
which asserts that the eigenvalues of an »n-by-#n matrix A = (akﬂ) lie

in the union of the % circles (in the complex plane) with centers a

kk
and radii Z !akgl‘ Hm(a,b) is symmetric, and therefore its eigenvalues
§£K
are all real. Let upu= min (v(SUk)-v(5)) > 0 . Then each
k, SCN\k
ihkki > y(1-y)(l-m} v . For each k , ;}\hm < y(l-y)m(n-1)v(N) . Hence
0k

if {l-m)y > m(n-1)v(K) , all eigenvalues of Hm(a,b) will be strictly

negative. Therefore, Hm(a,b) will be negative definite for all m< ywo(N) .

(Of course, this doesn't preclude negative-definiteness for larger valuesof m .)
it remains to be shown that, when a is restricted to & , ,ﬁ?(a,b*)

is maximized at a = g* . But both a* and JH* are proportional to

g"(1,1) , and consequently all derivatives aP?/aak are equal and posi-

tive at  {a*,»*) . Hence, a local (and therefore, due to concavity, global)

maximum occurs at a* . L;

What 1f v 41is monetonic, but not strictly so? This is the case,
for example, with most political games. We can still show that, for suf-
ficiently small m , {a*,b*) 1is a local equilibrium point of the competitive

game.



Assume that v 1s monotonic, and (for notational convenience) with-
out zero-dummies. The Hessian of P? at (a*,b*) will be negative definite
if, for all %k € ¥ , we have (l—m)Bg(L,l) > m(n-1)v(N) . As m approaches

0, pm(az, b;) approaches vy for every %k e N . Hence, Bz(L,l)

approaches BéY)(v) . Since v 1is monotonic, the y-value of v is posi-
tive in all components. Let n = min ¢£Y)(v) > 0 . Then for all sufficiently
k

small m , and for all k e NV , ngL,l) 3;%n . If, in addition,
m < %ﬂ/nv(ﬁ) , then H'(a*,b*) will certainly be negative definite.
Since the appropriate partial derivatives are equal, as before, we conclude

that (a*,b*) is a local equilibrium point,

7. GSymmelric Games
Typically, if m 1is near zero, the competitive game has a global
pure strategy equilibrium. Then, as m 1is increased, the equilibrium
point loses its global character, but remains in equilibrium with respect
to neighborhoods of decreasing size, ¥Finally, when m 1is sufficiently
large, the game may have no pure strategy equilibrium point at all. This
behavior is most clear when the underlying game is symmetric.
Let v be symmetric (that is, »(S5) depends only on the cardinality
of 7 ) and monotonic (as usual, we rule out zero-dummies), with player
. . m my, m, .m
set § . We consider support functions of the form p'(a,, b,) = ak/(a + b,
k> Tk KTk
(thar is, vy = 1/2 )}, and we restrict our attentijon to the equal-resource
case, [ =1 . In this case, the matrix #"(a*,b*) has diagonal terms

all equal to =g, , and off-diagonal terms equal to %msz . The gquantity

1
Bl is the Banzhaf wvalue (the %vvalue) of the underlying game, which is

(due to symmetry) the same for all players. (Note that a* =b* = (1/n, ..., 1/n)

and that both are proportional to the Banzhaf value.) Also, for any Kk, ¢ NV ,
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8, = nl_z ) [w(SUkUL) -v(SUk) -v(SUL) +v(5)]
27 sa\(kU L)

0 n
eI I (CTET LRI E
2 nin-1) s=1 8
where Ui”| =v(5) for all SCUN.
‘U
This matrix has an eigenvalue X = —Bl - %msz of multiplicity
(n-1) . The corresponding eigenspace is {x ¢ 7o Zmi = 0} . This eigen~

space is parallel to the hyperplane containing the strategy space L s
and the remaining eigenvector of Hm(a*,b*) is orthogonal to this hyper-
plane, Therefore, Hm(a,b*) is negative definite throughout a neighbor-
hood of a* in L if and only if A< 0 .

The quantity 81 is clearly positive. However, 8 can either be

2
positive or negative. Consider the three-player game defined by

v,.o=v, =0, v, = 1, v,=2 . For this game, = 3/4 and 82 =1/2 .

51
Hence, (a*,b*) 1is a local equilibrium point for every value of m .

= =O’

On the other hand, consider the six-player game defined by Vg =0 5

1
Uy T U, T Ug T 1, Ve = 2 . For this game, 81 = 11/32 and 82 = -1/16 .
Therefore, for m < 22, A< 0 and (a*b*) 1is a local equilibrium point.
(0f course, for sufficiently small m , the equilibrium is global.) For
larger values of m , the competitive game lacks an equilibrium in pure
strategies.

Motice Lhat the preceding six-person example was well-behaved, even
for moderately large values of o, It would be of interest to learn
whether there are games which lack pure strategy equilibria for relatively

small values of m .
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8. Summary

The preceding sections concern two related results: that super-
games based on outcome functions of the form pm have pure strategy
equilibria (that is, optimal pure strategies) when m is small, and that
these equilibria correspond to previously-studied "values" of m-person
cooperative games. We discuss these results in turn.

Consider the qualitative difference between pure strategy equilibria,
and equilibria which involve mixed strategies. In the former case, at
least for two-person constant-sum games, secrecy in strategic choice is
unnecessary. One may publicly announce his choice of a strategy, without
fear of that announcement damaging his prospects. However, in the latter
case secrecy is essential; one cannot afford to let his opponent learn of
the particular randomly-chosen strategy which will be followed.

When can we expect secrecy to be important? One instance is when
small strategy shifts can have a dramatic effect on the outcome of the
game. Such is the case, for example, in traditonal Colonel Blotto games
in which it is assumed that the slightest numerical superiority on the
battlefield will assure one of victory. This is the limiting case of
our outcome function pm , when m becomes large. However, if this model
of battlefield outcomes seems cxtreme, then we should turn our attention
to smaller values of the parameter m .

[f small strategy shifts have relatively small effect on the out-
come, il seems more reasonable that a stable situation exists. This is
the case, for example, in economic and political games which are played
over time, in which local strategy shifts have only small effect on the
state of the entire economic or political system. Our use of an outcome

funetion pm , with m small, places us within this case. Under the
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legislator/lobbyist interpretation of our work, we view a legislator as
having developed (over time) a natural proclivity to support the agents

of change a fraction y of the time. The current pressures brought to
bear upon the legislator (and contributions made to his campaign chest)

by opposing forces will affect this degree of support, but the effect will
not be drastic if the integrity of the legislator is high. This corres-
ponds to the case of small values of m , and to the existence of stable
patterns of legislative behavior. That mixed strategies are unnecessary
means simply that "under-the-table" payments are not part of an optimal
lobbying strategy.

When m is small, the optimal strategies of the superplayers of
the competitive game indicate the relative "values" of the players im the
underlying cooperative game. When the initial resources of the opposing
sides are equal, then as we vary the parameter <y we obtain the full
family of "t-values," whichspans the class of values studied axiomatically
in [ 3]. That these values arise from markedly~different approaches indi-
cates that they measure some universal attribute of the components of a
cooperative game. For the strategic planner, the implication of our work
is that these values provide mnatural guidelines for the allocation of stra-

tegic resources.
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