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Abstract

An economic agent is said to be weakly myopic if when he prefers
a time-contingent consumption plan x to a time-contingent consumption
plan y , then he prefers x to §' augmented by any stationary consump-
tion plan which begins sufficiently far in the future.

An economic agent is said to be monotonically myopic if when he
prefers a state-contingent consumption plan x to a state-contingent con-
sumption plan §', then he prefers any sufficiently large finite trunca-
tion of x to every sufficiently large finite truncation of §_.

A topology on the space of time (state)-contingent consumption plans
is said to be weakly (monotonically) myopic 1f every complete preference
relation which is continuous in this topology is weakly (monotonically)
myopic.

A characterization of weakly (monotonically) myopic Hausdorff locally

convex linear topologies and their dual spaces is given.

*This preliminary draft is being duplicated for private circulation only,
and is not to be quoted without the authors' permission.

**This research was supported in part by an NSF grant and a Yale University
Senior Faculty Fellowship.



MYOPIC ECONOMIC AGENTS

by

Donald J. Brown and Lucinda M. Lewis

I. 1Introduction

The standard treatment of general equilibrium theory in a Walrasian
economy assumes consumption and production to occur in markets for each
of a finite number of commodities. If we distinguish between commodities
which are produced or consumed at different times, then the dimension
of the commodity space may be quite large. In fact, the observation that
the future has no natural termination date suggests an infinite dimensional
space as the appropriate model for intertemporal economies.

Consequently, we consider a world with a denumerable number of
time periods. In addition, we restrict our attention to bounded commodity

bundles, hence our commodity space is ¢ (N), the space of bounded real-

b
valued sequences. Cb(N) is then the space of time-contingent consumption
plans,

As in the finite dimensional setting, we characterize an economic
agent by his initial endowment, a positive wector in Cb(N), and his
preference relation, a transitive binary relation on ¢ b(N).

Given a topology, T, on Cb(N), we can make precise the notation
that if an economic agent prefers a commodity bundle x to a commedity
burndle y, then he prefers bundles "close to x" to bundles "close to y".

Preferences having this property are said to be continuous with respect

to T or T-continuous.



In the finite dimensional case, the assumption that an economic
apent's preferences are continuous is made for technical reasons, e.g.,
to guarantee the existence of a preference maximizing commodity bundle in
the agent's feasible choice set, if this set is compact. In this situa-
tion, where the commodity space is Rn’ there are several eguivalent
"nataral" topologies, e.g., the product or sup-norm topologies, denoted

TP and T = respectively.

These topologies are equivalent in the sense that a complete preference

relation on Rn is J,-continuous if and only if it is g _-~continuous.

P

But these topologies are not equivalent on ¢, (N) and moreover

b

t

there are other topologies on ¢, (N) which a priori seem as "naturai”

b
for economic analysis as the product or sup-norm topologies.
There is an economically interesting property shared by several

of the topologies on C_ (N), e.g., the product and strict (Mackey) topo-

b
logies. The property of impatience or intertemporal myopia. Each of

these topclogies has the property that every complete continuous prefer-
ence relation is impatient in the sense that present consumption is pre-
ferred to future consumption and the taste for future consumption diminishes
as the time of consumption recedes into the future. Such topologies will
be called myopic.

It is important to note that the sup-norm topology does not share
this property, i.e., there exists a complete ymncontinuous preference
relation which does not "discount" the futuregm In fact, if we relax the
completeness reguirement on preferences then the overtaking criterion

(%)

induces a partially ordered Tw—continuous preference relation on Cb

which is not impatient, i.e., treats all "generations" equally.



In the capital theory literature, the behavioral assumption that
economic agents are intertemporally myopic is central to the analysis
and description of intertemporal economies. This suggests that the
economically interesting intertemporal topologies on Cb(N) are those
which are myopic. Continuity is now a behavioral assumption rather than
& technical requirement,

The product, strict (Mackey), and sup-norm topologies share the
useful technical feature that they are Hausdorff locally convex (linear)
topologies on Cb(N). Since we wish to impose as few restrictions as
possible on the myopic preferences of economic agents, we are led to
consider the existence of the finest locally convex (iinear) topology on
rb{N) such that every complete continuous preference relation is (in
some precise sense) impatient.

We shall investigate the following formal noticons of intertemporal

myopia:

A preference relation on Cb(N) is said to be weakly myopic iff

for all x, y, ¢ €C_(N), where ¢ 1is a constant vector; if X is

b
preferred to ¥y then X is also preferred to y + Gn for all suffi-
ciently large n, where En is a "tail" of ¢, i.e., En(i) =0 for
1<i<n and € (i) =c(i) =c¢c for i > n.

A topology, T, on Cb(N) is said to be weakly myopic iff every
complete preference relation which is JT-continucus is weakly myopic.

Bewley [3] attributes to Hildenbrand the observation that the strict

(Mackey) topology is weakly myopiC.(e)



A preference relation on Cb(N) is said to be strongly myopic iff

for all x, y, z € ¢, (N); if x is preferred to y then x is also

’ b
- -~ ~
preferred to y 4+ z for all sufficiently large n, wheren z is a

“tail' of z, i.e., 2 (i) =0 for 1<i<n and 2 (i) = 2(i) for

i >n. A topology, T, on Cb(N) is said to be strongly myopic iff every
complete preference relation which is T-continuous is strongly myopic.
We note that the product topology is strongly myopic.

We shall show that the above model of intertemporal choice under
certainty is formally equivalent to a model of atemporal choice under
uncertainty if one adopts a state-preference model, Under this inter-
pretation, we distinguish between commodities which are produced or con-
sumed in different states of the world, and we posit a countable infinity
of states,

We are now confronted with the task of defining linear topologies
on this space which capture the essential aspects of eceonomic decision
making under uncertainty. The intuitive justification of the condition
that we shall impose on linear topologies over the space of state-contingent
consumption plans originates in Buffon's resolution of the St. Petersburg
Paradox.

In the 5t, Petersburg game, a fair coin is tossed until heads
appears, the individual is then paid " dollars, where n is the number
of tosses. What is the "fair price" for this gamble? It is generally
argued that the "fair price” for a gamble is its mathematical expectation,
but the St, Petersburg game has an infinite expectation,

As is well known, D. Bernouli suggested that is is the expected
utility of money and not the expected money income that determines for
an individual the "fair price" of a gamble, Moreover, if the marginal
utility of money decreased at a sufficiently rapid rate, then the 8t,

I



Petersburg game has a finite expected utility which can be used as the
"fair price",

Less well known, is another resolution of the St. Petersburg
paradox, attributed by Arrow to Buffon, where it is suggested that indi-
viduals neglect improbable events. We quote from Arrow: "The principle
ol neglect of small probabilitles was used by Buffon to resclve the
Ot. Petersburg problem. The probability that a head will not appear

unt il the ﬂth

toss becomes very small for n sufficiently large; if
the occurrence of that event is regarded as impossible for all n beyond
a certain value, then the mathematical expectation of return becomes
finite, and the paradox is resolved" [2].

Arrow goes on to give a cogent argument that this principle of
decision making is inconsistent with the laws of probability and there-
fore is inadequate for a probabilistic theory of choice under risk.

We wish to argue that a consistent state-preference model of
uncertain choice can be based on Buffon's principle of neglect of small
probabilities. Moreover, this principle is simply a form of probabilis-~
tic myopia.

If we have a probability distribution over the states of the
world, e.g., {Pt}i, where Pt >0 and 2? Pt = 1, then we can order
the states of the world with respect to their probability of occurrence.
We shall assume that Pl > P2 > e > Pn > «.. . More generslly, we
shall only assume that the states of the world are ordered with respect
to their likelihood of occurrence and not assume, necessarily, that
this ordering was derived from a probability distribution. Hence the

state labeled 1 is the "most likely" to occur, the state labeled 2

iz the "next most likely" to occur, etec.



Cb(N) is now the space of state-contingent consumption

plans, A topology, T, on C, (N) is probabilisticly myopic if every

b
complete T-continuous preference relation has the property that if a
state-contingent consumption plan X 1is preferred to another state-
contingent consumption plan y, then every sufficiently large finite
truncation of X is preferred to all sufficiently large finite trunca-
tions of ¥, i.e., in expressing a preference between X and ¥y, the
cconomic agent "neglects" all states less likely than some sufficiently
unlikely state.

As 1n the intertemporal setting, we restrict our attention to
Hausdor{f locally convex (linear) topologies on (:b(N), for technical
convience, and consider the existence of the finest Hausdorff locally
convex {linear) topology on Clb(N) such that every complete continucus

preference relation is (in some precise sense) probabilistiely myopic.

We =hall investigate the following formal notation of probabilistic

myopia:

A preference relation on Cb(N) is said to be monotonicly myopic if
for all x, y € Cb(N); if x is preferred to y then for all sufficiently
large n, X is preferred toyy, where X, 1is an "initial segment” of X,
(3)

i.e. in(i) = x(i) for 1<i<n and in(i) =0 for i > n.

A topology, T, on Cb(N) is said to be monotonicly myopic iff every
complete preference relation which is T-continuous is monotonicly myopic.

We show in part (a) of Theorem (5) that every strongly myopic, Hausdorff

locally convex topology on Cb(N) is monotonicly myopic.



If T is a Hausdorff locally convex (linear) topology on Cb(N)
which is weakly strongly,6 or monotonicly myopic, we are naturally led
to ask, what are some of its basic properties. That is, is it metrisable;
what conditions characterize the compact sets; under what conditions do
sequences converge; and most importantly for economic analysis, what is
the nature of the dual space of continuous linear functionals, For it is

the dual space that contains the family of permissible price systems,

An unpleasant fact about Cb(N) is that it admits topologies,

e.7., the sup-norm topolggy, such that some continuous linear functionals
cannot be represented as 5 b ®

- rep a summable (Ql) sequence {qt}l where ET q <
and qt-i 0 if the linear functional is positive. It is difficult to

imagine an economist taking seriously a notion of prices which 4id not

aliow him to talk about the social (or individual) marginal rate of
substitution between two goods as the ratic of thelr social (or indi-

vidual) prices. Hence the necessity of requiring the positive continuous

linear functionals tc have 21 representations.

In fact, the primary Justification in the mathematical economics
literature for considering the Mackey topology for the duality (cb(N),El)
is that it is the fipest Hausdorff locally convex (linear) topology on cb(N)

such that all the continuous linear functionals on cb(N) can be repre-

sented as Rl sequences.

We would question this jJustification since what is important for

economic analysis is only that the positive continuous linear functicnals



be £y summable. As we show in part {b) of Theorem (i), the Mackey
topology is mot the finest Hausdorff locally convex (linear) topology on
Cb(N) such that all of the positive continuous linear functionals have

El representations, In fact, TﬁM’ the finest Hausdorff locally convex
(linear) topology on Cb(N) which is weakly myopic, is finer than the
Mackey topology and every positive continuous linear functional in the

dual of has a £, representation -- see part {a) of Theorem (2),

Tum 1

The intuition that the Mackey topology is an appropriate intertemporal
topelogy is made precise by part (a) of Theorem (L) 6 where it is shown
that the Mackey topology is the finest Hausdorff locally convex (linear}
topology on cb(N) which is strongly myopic.

In part (a) of Theorem (6}, we give sufficient conditions for a
monotonicly myopic, Hausdorff locally convex (linmear) topology on Cb(N)
to be strongly myopic, where the crucial assumption is that the given
topology be metrisable and complete, Hence these monotonicly myopic
topologies are coarser than the Mackey topology.

jﬁM is {as far as we know) a new topology on Cb(N) and con-
sequently its basic properties are unknown. In particular we do not
know if it is metrisable and complete. This is an important question.
Since if th is metrisable and complete and if V is the linear vector
space consisting of linear functionals, L, on Cb(N) where L(Gh) -0,
then TRpy 1is the finest Hausdorff locally convex ( linear) topology, To»
on Cb(N) such that V is the space of T-continuwous linear functionals.
To better understand the properties of T, , we have also

investigated TM = T

WM N T . Here we can give a complete characterization
=



of the dual space -- part (b) of Theorem {3) -- and give sufficient

conditions for a sequence to converge or a set to be compact. TM is
interesting in its own right and also appears to be 2 new topology on
(:b(N). The essential myopic feature of TM is given in part (a) of

Theorem (%),



IT, Notation and Terminology

Cb(N) is the family of bounded real-valued sequences,

C;(N) is the family of positive bounded real-valued sequences,

A preference relation on Cb(N) is a tramsitive binary relation
N). A preference relation 2‘ is said to be complete if for all
X, ¥ & Cb(N)’ either x >y or y>x, X > y is to be read "x is
preferred or indifferent to y." x> ¥y 1is to be read "k is preferred
to y." X~y is to be read "X 1is indifferent to y."
If Cb(N) is given a topology, T, then a preference relation >
is said to be T-continuous if for all X ¢ Cb(N) the sets {y ¢ Cb(N)'§ > x)
and (y ¢ Cb(N)|i 2 y) are closed in the topology T.
A preference relation is said to be monotonic if for all i, y € Cb(N)
such that x >y, i.e,, x(i) > y(i) for all i and x(j) > y(j) for
some  j, x is preferred to y.
-]l is a seminorm on Cb(N)’ if for all x, y € Cb(N) and every
real number Q:
(1) Il > o,
(i1) e+ ¥l < i+ [I94,
(iii) ol = [orf .

»

If ¢

i]’ ic d, is a family of seminorms on Cb(N)’ then the

topology they define on ¢ (N) 1is that generated by the following family

.
of subsets of cb(N) : {x ¢ Cb(N)|H§-§Hi < €] where y ranges over Cb(N)

k)

« >0, and 1 ranges over §

1

A family of seminorms i}, 1 € § is said to be saturated if
the sup of any finite set of seminoxrms in the family is again a member

ol the family,

10



A lipear functional, L, on cb(N) is said to be a countably

additive integral if there exists a summable sequence {a,}? such that
1
o0

for all x € € (N), L(x) = %1 x(1i) a.

A linear functional L on Cb(N) is said to be a purely finitely
additive linear functional if for every x € Cb(N) such that x has at
most a finite number of non-zero values, L(x) = 0.

If x C Cb(N)’ then %n is that vector in Cb(N) such that §n

x (1) = X(i) for all i<n and ‘in(i) -0 for i>n+l, We define

~ - ~
X as X - X,
n n
u 1is defined as that vector in Cb(N) such that G(i) =1 for
all 1,
1f 7, and T, are topologies on Cb(N)’ then 7, 1is said to

be finer than Tl if Tl‘E:TQ'

T is the product topology on Cb(N).

g 1s the strict topology on Cb(N).

Tgm 1s the strong myopic topology on cb(N)'
T. is the weak wmyopic topology on cb(N),
T is the sup-norm toplogy on Cb(N).

jﬁ = TWM nr is the myopic topology on Cb(N).

The strict topology, jé, is generated by the following family of
seminorms: Let {an}T be any sequence of real numbers converging to- O

>
then for any x € Cb(N) define Hi” as sup Ian i(n)l.
1 <n<ow
If E 1is a topological vector space, then F and G are supplementary
subspaces of E iff E = F @ G, the direct sum of F and G. If the
algebraie isomorphism of F & G onto E is a TVS isomorphism, then we

say that F and G are topological supplements,

11



III. Statement of Theorems

Lemma (1}, (a) If T 1is a Hausdorff locally convex topology on Cb(N)’

then T is weakly myopic iff ﬁn 0.

(b) If T 1is a Hausdorff locally convex topology on Cb(N)’ then

T is strongly myopic iff for all x ¢ Cb(N)’ ;n » 0.

Thevrem {1). (a) There exists on Cb(N) a finest Hausdorff locally

convex topology, IWM’ which is weakly myopic,

(b) There exists on Cb(N)’ a finest Hausdorff locally convex topology,

T which is strongly myopic.

SM

Lemma (2). (a) A purely finitely additive linear functional on Cb(N}

is TWM-continuous iff its null space contains u.
{(b) A purely finitely additive linear functional on Cb(N) is

TSM-continuous iff it is the zero functional,

Theorem {2). (a) A linear functional on Cb(N)’ L, is TWM-continuous

iff L(a ) » 0. Moreover 6 a positive linear functional on Cb(N) is
n

TWM-continuous iff it is a positive countably additive integral.

(b) A linear functional on Cb(N) is Tg,-continuous iff it is

a countably additive integral.

iz



Theorem (5). (a) Let > be a complete, monotonic TM-continuous pre-

ference relation. For all X, y ¢ C{N¥) if x>y then there exists a

- W -
constant vector ¢ such that for all sufficiently large m, > y.

{b) A linear fumctional on Cb(N) is Ty-continuous iff it is

the sum of a countably additive integral and a purely finitely additive

linear functional whose null space contains u.

Theorem (k). (a) Tg = Tou-
(b) TSM -CI; TM $ TWM'
Theorem (H). (a) TSM is monotonicly myopic.
. . + .
(b) The T interior of cb(N) is empty.
Theorem !6!- (a) If T is a monotonicly myopic, complete metrisable
ltausdorff locally convex topology on Cb

if  lim inf }i(i)| = 0, then Qn - 0. Then T is strongly myopic.

2

(N), such that for all x ¢ Cb(N)‘

{(b) If T 1is a complete metrisable Hausdorff locally convex
topulogy on Cb(N) such that every positive T.continuous linear func-

tional is a positive countably additive integral. Then 7T is weakly

myopic.

13



LV. Proofs

~ - - -
Lemma (1), (a) Suppose u —~»0 and x > y for some complete T-con-

tinuous preference relation 2. If x ¥y o+ u for all sufficiently

large n, then there exists a subsequence a such that vy + Gn Z X,
J J

But Gn -0 and therefore ¥ > i, a contradiction.

J
Suppose T is defined by a family of seminorns [ga|a £ A} and

that every complete T-continuous preference relation on Cb(N) is weakly

myopic. For every p, there exists x € C (N) such that pa(ia) £ 0.

Qx(') defines a complete continuous preference relation »~ on Cb{N)
where for all x, ¥y ¢ ¢, (N, x>y iff pa(i)‘z pa(§), For any ¢ > 0
94
and @ A, let B = e/pa(xa). Since ¢ = HI(Bxa), onﬁa 0. Hence for
=N ~ . _ _ ~
sulficiently large n, Bxy, ~ o u, i.e., €= PQ(BXQ) > Pa(un)' Therefore

o ~ {1
u )0.(|)
n

{(b) The argument is the same as that in part (a).

Theorem (1), (a) Let {Pala € A} be the family of seminorms on Cb(N)
such that for every Q€ A, Pa(ﬁn) — 0, Then {Pa|a € A} 1is a saturated
family of seminorms which contains the family of strict seminorms, Hence
[Pu'a ¢ A) generates a Hausdorff locally convex topology on Cb(N), T
T is weakly myopic and is as fine as any

> WM
other Hausdorff locally convex topology on Cb(N)’ which is weakly myopic.

By part {a) of Lemma (1)

(b) Let {PB|ﬁ € B! be the family of seminorms on Cb(N) such
that for every B € B, and for all x € Cb(N)’ PB(QH) - 0. Let Jg, be
the topology generated by this family of seminorms. The argument that
TSM has the desired properties is the same as in part (a).

14



Lemma (2). (a) If L 1is a purely finitely additive linear functional

v - ~ v ~
on Cb(N), then for all n, L(un) = 0. Hence L{u) = L(un) + L(un) = L(un).

~
Therefore, if L is T Continuous then L(un) -0, i.e,

2

If L 1is a purely finitely additive linear functional on Cb(N)

and L(u) = 0, then L(Gn) -0, L defines a seminorm ||-|| on Cb(N)’
where for all x € Cb(N); x|l = IL(ﬁ)I. This seminorm is Ty continuous
and for all Xx € Cb(N)’ L{x) < [x]|l. Hence L is Ty Continuous.

(b) If L is purely finitely additive linear functional, then

s

xn) = 0, Hence if L is TSM—contlnuous then

L(%) = L(x ) + L(X ) = L(x ) >0, That is, L(x) = 0, for all X ¢ o (V).

for all x € e (N), L

n

Theorem (2). {(a) If L is a linear functional on ¢ _(N) and L(Gn)Aa 0

“h »
then the seminorm H-H, where ||x|| =|L(kx)| for all x e Cb(N)’ is Top-
continuous. Hemce L is T -continuous, since L(x) < |x|| for all
X Cb(N). If L is TﬁM-COntinuous then L(aﬁ) - 0, since Gn >0 in

the TﬁM—topology. The proof that a positive countably additive integral

is a TWM-continuous linear functional is immediate. Suppose L is a

positive TWM-continuous linear functional, We shall show that L 1is a
j@-continuous linear functional. Let 9n be a sequence converging to O
in the sup-norm topology, T . Let & = H&nHOO and En - anﬁ, then

y, =z . Since L(En) = o L{u) -0, L(§n) - 0, Hence by the Hewit-
Yosida respresentation Theorem, L = LC + LP where LC is a positive

¢ountably additive integral and LP is a positive purely finitely additive

lincar functional, Since LC is TWM-continuous, LP = 1, - LC is TWM-

15



continuous. Therefore LP(ﬁ) = 0, by part (a) of Lemma (2). Hence if

x > 0, then LP(i) - 0, Since every x € cb(N) can be expressed as the

difference of two positive vectors i(+) and i(—), LP(i) = 0, for all

x C (1Y)

(b) Let L be a T, ,-continuous linear functional and let

SM
n
- - - ~ % -
o L(ei). For every x € Cb(N), L{x) = lim L(xn). But L(xn) =3 x(l)ai.
n L — o i
Hence L{(x) - lim ¥ i(i)ai. Let z be the vector in Cb(N) where
n --smnl

o1l

z2(i) - 1 if ai >0 and -1 otherwise. Then L(z) = ). Iail. If LC
1

is the countably additive integral defined by the ai’ then L =L

c

The converse is obvious,

Theorem (3).(a) Let A be the set of all constant vectors in e (M),

then A is connected in j;, hence connected in jﬁ = TWM N T@. Suppose

N}, either x> ¢ or ¢> x for every ¢ € A, Let

for some x € Cb(

B {ceAle>% and D= (c€Alx> c}, then B and D are Ty~ open

and by monotonicity they are both nonempty. Therefore, A =B U D and

BN D=, a contradiction, Hence if %> ¥ there exists a ¢ >y, i.e.,

- v . )
¢ ~ x, But ¥ ¢ with respect to TﬁM’ hence cn -» ¢ with respect
n

to T,. Therefore, %n >y for all sufficiently large n.

(bY If L is a Ty-continuous linear functional then L is 7T -
continuous, since TM = Tm N TWM' Therefore by the Hewitt-Yosida repre-

sentation theorem L = LC + Lp where Lc is a countably additive integral

16



and LP is a purely finitely additive linear functional. It follows

from Theorem () that L is 7T _ -continuous, Hence L =L - L is
C WM p c

Tym-Continuous.  Therefore by part (a) of Lemma (2), u is in the null
space of L .
P p
The converse follows immediately from Theorem (2) and part (a) of

Lemma (2,

Theorem 4, (a) TS ETTSM’ since the family of strictly continuous semi-

norms is contained in the family of seminorms which generate In

Tsm-

s

(1), Conway has shown that the finest Hausdorff locally convex topology
on rb{N) such that every continuous linear functional is a countably

additive integral is the strict topology, T Hence by part (b) of

g*

Theorem (2), T To. Therefore, T, = T

sM = g s = Tgm-

(b) Every strongly myopic seminorm is clearly weakly myopic,

== t
hence TSM c TWM' Also TS < Im. Therefore ISM « TM jWM N im. 1
follows from Lemma (2) that there exists a non-zero TM-Continuous linear

functieonal which is not TSM-Continuous. Hence TSM £ Tﬁ. To complete the

proof, we must show that TM’é TWM'
h'd b4
u uw ., ...} 1is a linearly independent

The set consisting of (u, 10 strs U

subset of Cb(N) and therefore may be extended to a Hamel basis of Cb(N)’
which we shall denote as {Ei}ie ¢ Let A = {K,}m where EO = ﬁ,

1
then A is a proper subset of {z.} e.g., (1, 0, 1, 0, ..., 1, O

n ]
ic &7 ) ) * »

..} can not be expressed as a finite linear combination of vectors in A. In

i
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fact, there are at least a countable infinity of vectors B such that

AN B-pP and AU B a subset of {2z, },. . Let ai:§ -+R such that

i‘id 3§
. : 5 - , . 5 . th .
a(i) - 1 AE €, €A and iy = n if z, is the n element in some
fixed enumeration of the vectors in B, otherwise (i) = 0. The function
f determines a linear functional on Cb(N)’ denoted T, where f[or ecach
X Cth), T(x) . ¥ afi) ﬁifi) and ﬁi(i) is the ith coordinate of
icy

X in the representation of x with respect to the Hamel basis {Ei}if" ¢
Now T(ii,) 1| for j >0, hence T(u Y = T{U ) = T(G) - T(u,)

! . - N s - . = - .

o - i 0 7] 0 3

-1 0, for j > 1, T defines a seminorm [-]|, where for all
(N), "xfi - lr(x)!. ||l is weakly myopic, simnce for all j > 1

?hiﬁ iT(ﬁj)| © 0. Hemce T is a J  -continuous linear functional,

Morcover the vectors in B can be choosen to have sup-norm 1. There-

for T is not bounded with respect to T and hence not T -continucus.
¥y

e

Theorem (). (a) Suppose > is a complete T ~-continuous prefercnce

S5M

relation on ¢ (K and for some X, £ y ¢ ¢ (N); x> y. Since x_ -0 and
b ’ 4 b n

) - s - v - .

y, o, it follows that X X and Yy, Y- Hence there exists n, such
Avd
X

that for all n > n
( — 0 n

> Y-

18



{b). 1f we give Cb(N) the natural ordering where C;(N) is

the positive cone and assume that the T,

: . + .
- interior of Cb(N) is non-

empty. Then by the following proposition, proven in (9), every positive

linear functional on Cb(N) is 7. -continuous, But there exists a

WM
pusitive purely finitely additive linear functional on Cb(N)’ e.g., a

linear extension of the first order Cesaro sum. This contradicts part

{a) of Theorem {2).

Prupositioq;&{l. If E is an ordered locally convex vector space and

the positive cone of E has nonempty interior, then every positive linear

function is continuous,

Theorem (). [a) Suppose T 1is defined by a family of seminorms

s Lo A and that every complete T-continuous preference relation on
Py P

- ~ -
CbTN} is monotonicly myopic, If for some x € Cb(N), X 4> 0 and

lim inf |x(i)| > O, then there exists a T-continuous seminorm -]l such

~ ~ ) ~ ‘
that for some - >0 and subsequence x_ Hxn | >¢ and inf|xn (j+l)' >
3 b A

Let be a maximal linearly independent subset of the

(2} e g

Suppose & 1s finite say of cardinality m. Let £(1) ©be

the index of the first non-zero component of Ei’ then £(1i) £ £(3)

19



for 1 #£ j. Let ¢ = max £(i) and consider some Qn where
1 <i<m j

Fay
the index of the first non-zero component of X exceeds ¢, The

~ '
cxistence of X is guaranteed by our assumption that “gn it > e,
o j
for all j. But X cannot be expressed as a linear combination of
- JO - ~

the =z, ., Hence 9 is infinite and we can assume {z. ) = _={x_]7.

i i‘ic 8 nj 1
Moreover, we can also assume that the first component of X 1is not zero.

o~ VN Fas ’
Hence if x =X, then [xn ]; is also linearly independent, For any
0 ]
yC Cb(N)’ let V{(y) be the linear subspace of Cb(N) spanned by y.
~ i<] ~ ~

For all j > 1, let V, =V(x ) ® . @V(x_ - x ). The proofs of

the following two propositions can be found in (5).

Proposition (7). Let E be a Hausdorff locally convex space, Every

finite dimensional vector subspace of E admits a topological supplement,

Proposition {5). Let E be a topological vector space, F a closed

veetor subspace of finite codimension. Then every linear mapping of E
into a topological vector space G which vanishes oo F 1is continuous,
By Proposition (), each Vj has a topological supplement wj
such that Cb{N) LU Wj. Let Pj : Cb(N) R>Vj where for all y ¢ Cb(N),

J
Pj(y) : Pj(v + W) = v. Then Pj is continuous by Proposition {3)., Let
- i<ji
- - -~ ”~
I, . Vj »R where for all q & Vj’ Tj(q) o Tj(rxn' + _Z Qi(xn, - Xn,))
i i=0 i i
YH; U, then T, is continuous. If L, = T.eP,, then L. is a continuous
“j ] | J 1 J
linear functional on Cb(N).

20



1f y« ¢, (N), then L y) 341)/x {j+1). Hence

.y}l . |y(3+1)1/|x (j+1)! < Uy” /1nf!x (3+1)] < “yn /e, for all j.
i 1 J
That is, the L, are pointwise bounded. Let BK =3 Hxn Il and note
] " 1 i
1 ¢
e y e K = 3 ’ i ise
that CK > Ko, If SK bK 1 Lj’ then the SK are pointwise bounded

continuous linear functionals on Cb(N). Since T is assumed to be
complete and metrisable, {SK}T is an equicontinuous family by the

Banach-Steinhaus Theorem, We shall need th= following proposition,

Proposition ()., If B = {y € Cb(N)f lim SK(§) exists}, then B is
K =3 o0

a closed subspace of Cb(N).

Proof: Let T : (¢ (N), T) - (e (N), T ) where for all y € _cb(N),

T{?) {SK(§)}W. Then T 1is obviously linear. Moreover, T is bounded
and therefore continuous. Since cOn’ the family of convergent real-

valued sequences, is a closed subspace of (Cb{N), T); we see that

oo L . . (%)
B [ (Oon) is a closed subspace of <Cb(N)’ 7).
Let B - {y C N)i lim SK(§) exists} and define §:B - R
’ K -5
where for all y ¢ B, S(y) = 1lim § ( vy). Then S is a continuous linear
K —>5m

lunctional on B, by Banach-Steinhaus Theorem, Hence by the Hahn-Banach

Theorem 8§ can be extended to a T-continuous linear functional §,
defined on all of Cb{N). S defines a complete T-continuous preference
relation > where for all %, y ¢ Cb(N); x>y iff S(x) > 3(y). we

shall show that 2 is not strongly myopic, Recall that for all i,
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- ”~ Ay . - ~ ~ ~~
x X, +x . Hence for every j > 1, x - L (xn - X )
J 3 j 0 3
.L‘\:_] ~ ~ ~
s O(Xn. - Xn,) + OW.. Therefore, Lj(x) = Hxﬁ'” and
i-1 i i ]
- 1 - - - -
SK(X) 5 g,”xn = 1. 8(x}) = lim SK(x) =1, i,e,, x € B, Hence
K 1 i K =
~, - - . ~ -~ ~ ~
5(x)  8{x) = 1. But for all j > g, X, =X+ (xn - X )
i ¢ j £ 3
e ~ ~ - ~ .
r ‘>. O(Xn, - xn.) + owj. Therefore, if j > ¢, then Lj(;;n } o= x|
1/ﬂ i i . £ i
and K 2 K
~ 1 ~ 1 ~ ~
SK(xn ) = Er-ﬁ Lj(xn ) = 7 ( > Lj(xn ) + 0 Lj(xn ))
i K1 £ K 1 £ £41 £
- A
:%; [ 5; (LJ(an) - ”X“j“)] + 1, for all K > g
~ e
Since '()K reo as K s, lim SK( X ) = 1. Therefore [xn_]ooo cB
K 5w b J
~ - .~ Y ~ N
and  S(x_ ) = S(; ) = 1, But S(x) = S(Q + %X_ ) = S5(x_ )} and therefore
n n, ) n. n, n,
j j J ] J
g(; y . 0. Since x> 0 and for all j, ;n ~ 0; 2 1is mot monotonicly
" 3
myoepic.

(b) Suppose T is not weakly myopic, then we proceed as in the
proof of part (a) to construct a T-continuous linear functional §. Recall
that § is the extension of a linear functional S, whose domain is a

subspace B. u and the {SH}T are members of B. Also S${u) - S(dn) -1,

for all n. Hence § 1is not weakly myopic, i.e., the preference relation

H

defined by S is not weakly myopic, If § is positive, then the proof
is complete, since § canpnot be a countably additive integral by part (a)

of Theorem {2). The positivity of S follows from the following proposi-

tion proven in (9],



Proposition (»)., If M 1is a linear subspace of a vector space E ordered

by a cone K and if for each x ¢ K, there is a y ¢ M such that x <y

then every positive linear functional on M can be extended to a positive

linear functional on E.

We give Cb(N) the natural ordering where the positive cone is
C;(N) and will show that S is positive on B. If x ¢ B and x > 0,
5 =
K
then 8{x) - lim 8 (x) = lim — Y, L.(x). To evaluate L, (%) we must
K O j j
K o K—->w K1 . s
- ~ 1<J e ~
express x in terms of V. @ W.. Recall that V(u,}) @& > @ V(u,-u,) = V..
] J J . 1] ]
i=0
~
{We have assumed that the subsequence u such that Hﬁn I >e¢ >0 is,
J j

”~ -
in fact, the original sequence u .} If xC Cb(N)’ then the coefficient

of hi in the representation of x is x{j+1). Therefore, Lj(i) Cx{jel) 0

and SK(;) -0, for all K. That is, S(x) > 0.
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V.

(1)

Footnotes

The most comprehensive study of impatience with respect to the sup-
norm topology is found in a series of papers by Koopmans and his
collaborators. We refer the interested reader to his two most recent

articles on intertemporal choice [6], [7].

Hildenbrand's remark concerned the Mackey topology on Cb(N)’ i.e.,

the finest locally convex topology on Cb(N) such that all the
continuous linear functionals can be represented as summable (El)
sequences, But Conway [t ] has shown that on CB(N)’ the Mackey and
strict topology are the same, The importance of the strict topology

is that it is generated by a family of seminorms which can be inter-
preted as generalized discounted values. See Lewis [8] for a discussion

of the strict topology as an intertemporal topology.

M. Yaari suggested this notion of myopia in a personal communica-
tion, but it first appeared in the uncertainty literature,6 where

Arrow [1] refers to it as monotone continuity.
The idea for this proof orginated in a remark made by Roger Myerson.

This is a minor modification of the proof of a similar result

found in [10f,
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