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PROBABILISTIC VALUES FOR GAMES*
by

Robert James Weber

Yale University

1. Introduction

Much attention has been given to methods for measuring the "value"
of playing a particular role in an h—person game., The study of various
values is motivated by several considerations. One is to determine an
equitable distribution of the wealth available to the players through their
participation in the game. Another is to help an individual compare his
prospects from participation in several games. A study of equitable distri-
butions may shed light upon a player's prospects. However, a study of
individual prospects need not yield any information concerning the relative
fairness of various distributions of wealth.

The well-khown Shapley value assigns to every n-person game an
n-vector of payoffs. Since this value serves as a method for determining

equitable distributions, it is natural that a defining property of the Shapley

value is its "efficiency" (or "Pareto optimality"); that is, the sum of

*The research reported in this paper was supported by grant
NDOD14-77-C-0518 from the Office of Naval Research, and by grant

S50C77-27401 from the National Science Foundation.



the individual payoffs is constrained to eqgual the payoff achieved through
the cooperation of all of the players. However, when the‘players of a game
individually assess their positions in the game, there is no reason to
suppose that these assessments (which may depend on subjective or private
information) will be jointly efficient. 1Indeed, conservative assessments
may'combine into a sub—efficient vector, while optimistic assessments may be
super-efficient.

This paper presents an axiomatic development of values for games
involving a fixed finite set of players. Our results wiil center around
the class of "probabilistic; values, which are defined
the néxt section. Since this class of values includes both the Shapley value
and the also-familiar Banzhaf value, our work provides a suitable context

for further study of both.

2, Definitions and Notation

For ocur purposes, we fix a particular set N = {1,2,...,n} of
bPlayers. The collection of coalitions (subsets) in N is denoted by 2N .
A game on N is a real-valued function v: 2N 2+ R which assigns a "worth"
to each coalition, and which satisfies v(@) = 0 . Let 4& be the collection

of all games on N (note that /% is a (2n - 1)-dimensional vector space),

and let v be any game in Ji « The game v is monotonic if w{(8} 2 v(T}
for all s > T ; v is superadditive if v(S U T) 2 v(s) + v(T) whenever

$nT=@ . The class of all monotonic games is denoted by 1”@. and the
class of all superadditive games by A; . For future reference, note that
M ana A are cones in M ; that is, each is closed under addition,and

under multiplication by nonnegative real numbers. Also note that neither



class contains the other.

{The zerc-normalization of a game v is the game v(z) , defined
for all T <« N by V(z)(T) = v(TF) - Z v(i) . The game v 1is
ieT
zero~monotonic if v is monotonic. The class of all zero-monotonic

{z)

games is denoted by j; .  Every super-additive game is zero~monotonic;
however, neither 27 nor & contains the other. In this paper, a nunber
of results are cbtained for the class ‘J of super-additive games. 3All of

rhese results can also be dbtained, mutatis mutandis, for the class 15 .)

I1f the game v +takes only the values 0 and } , then v is

simple. If wv(S) =1 , then § is a winning coalition; otherwise § is

% - Xk
a losing coalition. 43 ’ ﬂDL , and 15* denote, respectively, the class

of all simple games on N , those which are monotonic, and those which are
superadditive. For simple games, note that superadditivity implies mono-

.. * * .
tonicity; hence, ,n, 2 ,8 . [(Some authors prefer to restrict the term

, * *
"simple game" to elements of ﬂbp ; the more general games 15“ are then
called "0-1 games.")

Two special types of games will play an important role in our work.
For any nonempty coalition T , let Yo be defined by VT{S) =1 Aif
$°T, and 0 otherwise. BAlso, let v, be defined by GT(s) =1 if
A A

SDT,and 0 otherwise. Let c={vT:ﬁ#TCN} , and c={vT:,G#TCN}:

Al
> * 3 ' M L A -
any game in c is a carrier game. Observe that every game in é or ﬁ 'is

monotonic, superadditive, and simple. We shall occasionally refer to the game

~

v, defined by v.{S) = 1 for all nocnempty coalitions S . This game is

@ 4

monotonic and simple, but is not superadditive.



For any collection 5' = 19 of games, and for any player i ¢ N ,
a value for i on o is a function ¢i: 7 » R . As we have previously
indicated, the value ¢i(v) of a particular game v represents an assess-—
ment by i of his pfosPects from playing the game. This definition stands
gsomewhat in contrast to the more traditional definition of a "group value"
p = (¢l,¢2,...,¢n) which associates an n-vector with each game. The
construction of group values from our individual values will be treated
later in this paper.

Recently, Blair [11] aﬁd Dubey [3] have discussed a family of wvalues

which arise from individual perceptions of the coalition-formation process.



{Earlier discussions of related matters appear in [4] and [7].) Fix a player
i , and let {p;: T < N\i} be a probability distribution over the collection
of coalitions not'containing i . (Incidentally, notice that we shall often
omit the braces when writing one-player coalitions such as {i} .} A value

¢i for i on J is a probabilistic_value if, for every v ¢ 5’ ’

¢i(v) = Z pé[v(T ui) - v{(T)] .
T<NAL
Let i view his participation in a game as consisting merely of joining
some coalition § , and then receiving as a reward his marginal contribution
v{s U i) - v{(8) to the cecalition. 1If, fof each T < N\i , p; is the
(subjective) probability that he joins coalition T , then ¢i(v) is simply
his expected payoff from the game.

Both the Shapley and Banzhaf values are instances of probabilistic
values. The Banzhaf value (for an individual player i ) arises from the
éubjective belief that the player is equally likely to join any coalition;
that is, p; = 1/(2n-l) for all T < N\i . The Shabley value arises from
. the belief that the coalition he joins is equally 1ikely'to be of any size t

(0 <t <n-1), and that all coalitions of size t are equally likely;

1 _tls (n-t =1}
(n - 1) - n!
t

that is, pl =-§ . for all T < N\i , where

T
t = |7},
in the following sections, we shall investigate several reasonable
conditions which a value might be expected to satisfy. We will find that the
only values which satisfy these conditions are closely related to the prob-

abilistic values.



3. The Linearity and Dummy Axioms

Given a game Vv , and any constant ¢ > 0 , consider the game cv
defined by (cv) (S} = c*v{S) for all S ¢ N . It seems reasonable toc assume
that such a rescaling of the original game would simply rescale a player's
assessment of his prospects from playing the game. Similarly, let v and
w be games, and consider the game v + w defined by (v + w)(8) = v(8) + w(S)
for all S ¢ N . A rational player, facing the latter game, might well con-
~sider his prospective gain to be the sum of his prospective gains from the .
two original .games.

Consider a cone j of games in ,!; . A linear function on ¥ is a

function f£:¥ + R satisfying f(v + w) = £{(v) + £(w) and £(cv) = c*£(v)
for all v,wedJ and c >0 . Let qbi be a value for i on & . The

preceding comments are reflected in the following criterien.

Linearity Axiom. ¢i ig a linear function on J .

Since ,8 ’ m, and ,8 are all cones in ﬂ, the following

theorem applies to a value on any of these domains.

THEQOREM 1. Let ¢i be a value for 1 on a cone .7 of games. Assume that
(bi satisfies the lipnearity axiom. Then there is a collection of constants

{aT: T c N} such that for all v € j ,

p.(v) = Z a viT) .
i TN T



Proof. ¢i has a unique linear extension to the linear subspace
oc < ,j spanned by j . This extension can in turn be extended t¢ a linear

. ext
function ¢i on all of Ay » by defining ¢?xt
i

arbitrarily on a basis of the 6rthogona1 complement of Vol

For any nonempty T < N , define the game Vi by wT(S) =1 if §=7T,

and 0 otherwise. Then -{WT: @ # T c N} is a basis for 4? , and ¢§Xt

is uniquely determined by its values on this basis. Any v e Jy'can be

written as v = E v(T) ° W i since ¢iXt is linear,
PAT<N '
ext . ext
¢ () = yooviT) ¢ o () -
' FATCN
. . c s ext
However, ¢i is simply the restriction of ¢i to :7 . Therefore, upon
taking ag = ¢§xt(wT} for all nonempty T < N , and_defining aﬁ arbitrarily,

we obtain the desired result. 0

A player i is a dummy in the game v if wv(s u i) = vi(s) + v(i)
for every § < N\i . This terminology derives from the observation that such
a player has no meaningful strategic role in the game; no matter what the
situation, he contributes precisely v(i) . Therefore, the following criterion

seems reasonable. Let ¢i be a value for i on a collection df’ of games.
Dummy Axiom. If i is a dummy in v ¢ 8 , then ¢i(v) = vi{i) .

This axiom actually has two aspects. While §pecifying the prospec-
tive gain of a dummy in a game v , it implicitly states that ¢i and v
are measured in common units, under a common normalization. These aspects
are exploited separa;ely in the proof of the following result. Recall that

¢ denotes the collection of carrier games.



THEOREM 2, Let ¢i be a value for i on a collection .7 of games, defined

by ¢i(v) = z aTv(T) for every v ¢ Y . Assume that '(bi ' satisfies
TcN '
the dummy axiom, and that .7 contains C . Then
there is a collection of constants {pT: T ¢ N\i} satisfying ) Pp =1,
TcN\L

such that for every v ¢ , ‘

$, (v) = ): pT[v(T u i)y =-v(Ty) .
. TeN/ i

Proof., First, note that for any nonempty T < N\i , player i is
a dummy in Vo € c. Therefore, ¢i(vT) = vT(i) =0 ., It follows that
¢i (VN\i) =a_+a_. =0 . For inductive purposes, assume it has been shown

N NAL

that a, . +a, =0 for every T cN\i with |r| 2k > 2. (The case

k=n-1 has just been established.} Take any fixed S c N\i1i with

ls| =k -1 . Then

¢.(v)=£a= E-(a.+a)+(a.+a)
i''s TS T TN\ i Tui T Sui S
T=>S
#
= + = [
Agui Y35 =0

the next-to-last equality follows from the induction hypothesis, and the last

from the dummy axiom.

Therefore, a, . +a, =0 .forall T c N i with 0< |?f <n-1.
F i = = - . i = .
or every such T , define PT aTUi aT Also, define pg ai Then
for every v € y ;

o, vy = § agvim) = ) Pplv(T U i) - v(M] .

TcN Tci\i



Consider v, € c: . Player i is a dummy in this game; indeed,
every player is a dummy in vi . Therefore, ¢i(vi) = vi(i) = 1 ., But, since
vi(T u i) - vi(T) = 1 for every T < N\i , the expression in the preceding

paragraph yields ¢i(vi) = ) p.. 0D

, T
TcN\A
When this theorem is taken in conjunction with the preceding one, we

obtain the following result.

THEOREM 3. Let ¢i be a value for i on j& ’ ﬁﬂbw or ,f . Assume that
¢i satisfies the linearity and dummy axioms. Then there is a collection of

constants {pT: T ¢ N\i} satisfying Z Pq = 1 , such that for every game
TeNA\1 :

v in the domain of ¢i '

$,(v) = ) polv(T U i) - v(D)] .
TcN\i

4, ‘The Monotonicity Axiom

Let v be any monotonic game. A player 1 , facing the prospect of
playing this game, may be uncertain concerning his eventual payoff. However,
for every T © N\i , V(T v i) - v{(T) > 0 ; therefore player i knows, at
the least, that hié presence will never "hurt" a coalition. This motivates
*the following criterion. Let ¢i be a value_for i on a ceollection \jr of

games.

Monotonicity Axiom. If v €  1is monotonic, then ¢i(v) > 0.

The following proposition will be of value.
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proposition. Let ¢i be a value for i on a collection j of games.
Assume that there is a collection of constants {pT: T ¢ N\i} , such that for

ali v ed,

6. (v) = ) p. Iv(Tui)-v(m] .
i . o7
TcNAL

Further assume that :7 contains the game v , for some T < N\i (note that

T

T may be empty), and assume that ¢i satisfies the moncotonicity axiom. Then

>
PT=O'

~

Proof. The game Vo is monotonic. Therefore, ¢.1(GT) = pT 20.0

o
The collections of games 4& and m_ each contain c , and also

contain v_, . On the other hand, ,3 contains a , but not \'}g . Therefore,

2

we have the following theorems.

THEOREM 4. Let ¢i be a value for 1 on /g or m Assume that ¢i
satisfies the linearity, dummy, and monotonicity axioms. Then d:i is a
probabilistic value. Furthermore, every probabilistic value on /9 or m

satisfies these three axioms,

THEOREM 5. Let ¢i " be a value for i on ,J . Assume that ¢i ‘satisfies
the linearity, dummy, and monotonicity axioms. Then there is a collection of

constants {pT: T ¢ N\i} satisfying z P, =1, and pT 2 0 for all
TcN\L

nonempty T € N\i , such that for every game V € J ’
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9, (V) = L pyIv(T U i) - viT)] .
TcN\i

Furthermore, every such value on ,A‘ satisfies these three axioms.
In the case of values on 29 or }bb , we thus have a natural axiomatic
characterization of the probabilistic values. However, for values on ,J? we

are unable to rule out the possibility that pg < 0 . This phenomenon is

investigated in the next section,

5. Values for Superadditive Games

It is natural to seek an explanation of the preceding results. A
value for a class of games yields a relative evaluation of one's prospects
from playing the various games., If ﬁhe class of games is sufficiently rich,
the only evaluation functionsrsatisfying certain reasonable criteria are the
probabilistic values. Why, if one's consideration is restricted solely to
superadaitive games, does the class of reascnable evaluation functions
broaden in the indicated manner? We shall attempt to provide a rationale.

Consider any particular game v . A player i , faced with the
prospect of playing this game, may seek to determine the amount of gain which
he 1s "guaranteed," in the sense that he contributes at least this amount
~ to any coalition which he joiné. In the case where .v is superadditive,
this "floor" to his expectation is precisely wv(i) , since v{T u i) - v(T) > v(i)
for all T < N\i (and since, when T = g , his marginal contribution is
exactly wv(i)). Taking this amount as assured, the player will then strive

to achieve as greaf a reward as he can in the new game v{l) defined by
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) vi{s) if i g8 ,
V(l)(s) -
v{5} - wv{i} otherwise .

(This is the game that he perceives himself to be playing, after having
'mentally "withdrawn” the amount v(i) from the game.) However, any
gain from this new game is uncertain, and depends upon such factors as
the bargaining ability of the player. Hence, the two amounts under con-
sideration, w(i) and his gain from playing v{i) , are measured respec-
tively in "certain" and “qncertain" units.

Assume that the player's attitude toward risk is such that one
uﬁit of uncertain gain is worth Y units of certain gain to him. (Hence,
Y € 1 corresponds to risk—éversion, and v = 1 to risk-neutrality.)
FPurther assume that he evaluates his prospects, from any game v with
v{(i) = 0 , in terms of a probabilistic value ¢i(v) . Then, his evalua-

tion of any superadditive game v, expressed in units of certain gain, will be
(1) .
= L -+ N
Ei(v) Y ¢i(v )+ v(i)

One would expect an aversion to risk to limit a player's options.
That such is the case is the impact of the following theorem. Let P
be the set of probabilistic values on 48 , and for any Yy > 0 let
- . : - (1)
v(y) —{Ei: Ei is a value on ,8 , and for some ¢i e P , Ei(v) =y . ¢i(v }
+ v{i) for all v e Ag } . This is the set of all evaluation functions

on )8 arising from the considerations discussed previously, when Y

represents player 1i's attitude toward uncertain gain.
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THEOREM &. A value £i on /6 satisfies the linearity, dummy, and

monotonicity axioms if and only if Ei eV = U V{y) . If
Y20
0<Y <Y, then Vv (Y') ?V (y) . Furthermore, V(1) =P .
Proof. Let Ei satisfy the indicated axioms on 46 . Then

g, is associated with a collection {p; : T © N\i} of constants,
as in Theorem 5. Iet vy =1 - Pg >0 . If v >0 , define the
probability distribution {qT T ¢ N\i} by qT pT/Y if T #£ P,
and q; =0 ; if ¥y =0 , take any probability distribution

{q;} . Then, if ¢i is the associated prababilistic value,

Ei(v) 4) (v ) + v{i} for all v ¢ /5 . Hence, Ei € Vi{y) « v .
Conversely, it is easily verified that any £i €V satisfies the

axioms on /J . (It is essential to this verification that, for
(i)

every monotonic v € As . v is a monotonic game; hence
(1)

gi(v) = Y-¢i{v Y+ vi{i) 2 vi{i) 20 )
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If 0<y <Yy , then any Ei e V{Y') corresponds to
some ¢’ € P , which is in turn associated with a probability distribution
i

{Pﬁ= T < N\i} . But then, let ¢i € P be associated with the probability

r
distribution {qT: T ¢ N\i} , where a9 = %— * Py for all nonempty
T ¢ N\i , and 9 = 1- ) dp - It follows that Ei(v) =y e ¢itv(l)l + v{i)

T#@
for all v € p. , SO Ei € V{Y) . Hence, V(Y'} c v(y)
Consider any probability distribution {pT: T ¢ N\i} such that
Pg = 0 . Then, if ¢i is the associated probabilistic value on Ag.

gi(v) =Y * ¢i(v(l)) + v(i) defines a value Ei € V(y) which is not in

v(y'}) for any vy’ <Y . Hence the indicated containment is strict.

Finally, observe that, when Y = 1 , every value Ei in

v{Yy} = V(1) is of the form

£, (v = o, vy + viay

{ Y Pplv(T u i) - v{i) - V(T)]} + vii)
TcN\i

]

! p V(T u i) - v(D)]
TeN\i

= ¢1(V) r

so V(L) p .0
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This theorem can be viewed in several different ways. One
might ask whether the addition of some other natural axiom will lead

to the conclusion that Py > 0 . For example, it has been suggested

by Milnor [g] that it is unreasonable for any player i€ N to hope

to attain more than b, (v)mmax [v(Sui) - v(S})] . If we require
ScN\i

that, for all v € A P ¢i(v) ibi(V) , then

b, (F,.4) = _ p_.=1-p <b . & .\) =1 .
i {i} ﬁ#TEN\i g="i"{i}

Hence, pg 2 0.

Another point of view is the following. If a player
wishes to evaluate his prospects from superadditive games, he can

satisfy our criteria of rationality while still basing his evaluation in

part on hisg posture toward risk. However, these same criteria, when
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applied to the evaluation of broader classes of games, force the player
into a posture of risk-neutrality. It would be of interest to learn

of a behavioral justification for this consequence of risk-neutrality,

6. Values for Simple Games

Simple games, particularly those which are monotonic, are often
used to represent political games. A value for a player may then indicate
the plaver's perceived politica; power in various games. Under this inter-
pretation, the dummy and monotonicity axioms remain reasonable. However,
the linearity axiom does not seem to apply; indeed, the sum of simple
games is generally not simple.

An alternative axiom has been suggested by Dubey [2] . For any
games v and w , define v Vw by (vVv w(S) =max (v(S),w(S)) and
define v Aw by (v Aw(S) = min (v(5),w(S)) , for all s cN . If
v and w are simple, then v vw and v A w are also simple. A coali-
tion is winning in v Vv w if it wins in either v or w ; it is winning
in v A w if it wins in both . Therefore, each coalition wins as often
in v and w together as it does in v vw and v A w together.

Let ¢i be a value for i on a collection :7 of games,.

Transfer Axiom. If v s, W, vVw,and v Aw are all in J’ , then

G, (V) + ¢, (W) = ¢ (vVvw +d (vaAw .

The name of this axiom is motivated by the following observation,
The game v A w arises from v when all of the coalitions which win only

in v are made losing; v V w arises from w when these same coalitions
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are made winning. Hence, v A w and v v w arise from v and w when
winning coalitions are "transferred" from one game to the other,

We require several definitions., Let v be a simple game. A

minimal winning coaliticn in v 1is a winning coalition with no proper
subsets which are also winning; a hole in v is a losing coalition with a
winning subset. WNote that the monotonic simple games are precisely those
without holes.

Let :r be a collection of simple games, and let v be any game
in :7 . We define two types of operations which can be performed on v .
Let T be a minimal winning coalition in v . Define the game vdT by

-T . -T -T .
v "(S) =wv(s) for all S# T, with v (T} =0 ; v arises from v
by the deletion of a minimal winning coalition. On the other hand, let
: 1 +7 +T

T be a hole in v , and define the game v by v (8) = v(s) for all

. +7 +T . : .
S#FT , with v "(T) =1 ; v arises from v by the insertion of a

(new) winning coalition. The collection :7 is closed under deletion and

insertion if these operations, applied to any game in 5’ » give rise only
* *

to other games in :7 . In particular, 4’ R zn, , and /G* are all closed

under deletion and insertion.

The following result is an analogue of Theorem 1.

THEOREM 7. Let ‘7 be a collection of simple games which contains & and
is closed under deletion and insertion. Let ¢, 'be a value for i on Y.

and assume that ¢i(vN) = Q .* Finally, assume that ¢i satisfies the

*Recall that the game GN is defined by ¥ (S) =0 for all S <N . This
game is contained in every nonempty collection of games which is closed

under deletion, and every player in N 1is a dummy in the game,
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transfer axiom. Then there is a collection of constants {aT: T c N}

-

such that, for all games v e 7 ,

¢, v) = ) avi(T) .
TcN

Proof. e claim that ¢  is determined on all of ,J by its
values on C . In order to verify this claim, first consider the collection
UM of monotonic games in ,7 . This subcollection of 7 is also closed
under deletion and ihsertion, and contains Ci. Since vy € e: , the claim
is trivially true for this game. BAssume that the claim has been verified
for all games in :7; which have at most k winning coalitions {(the only
game in j;q with just one winning coalition is vN) , and let v ¢ 7 be an'y
game with k + 1 winning coalitions. Let T be any minimal winning

~T -T

coalition in v , and consider the games vT r v , and VT Av . The

first is a carrier game, while the latter two are both in '7M and have

: . . . -T
no more than k winning coalitions. Since Vo vv =v , we have from

the transfer axiom that Cbi(v) = ¢i (VT) + (bi (V-T) - d)i (VT A v"f'T) . It
follows from the induction hypothesis that ¢i(v) depends only on the
values of ¢i on ¢ This verifies the claim throughout ng . {Observe
that the game :;N regquires special treatment; since it has no winning
coalitions, it is not covered by the induction.)

Next, assume that the claim holds for all games in 7 which have
at most k holes (the case k = 0 has just been treated) , and let
vV € 7 be a game with k + 1 holes. Let T be any hole of maximum
cardinality, and consider the games VT ;, VAV = V., and v V Vip = v .

T T
The first of these is in €, the second is in ‘7M » and the third is in 7



-19~

and has only k holes, Since (bi(v) = ¢>i(v v vT) + tbi(v A vT) - (bi(vT) '
it follows (by induction) that cbi (vl depends only on the values of ¢i
on 5 This completes the verification of the claim.

We have just seen that ¢i is determined by its values on c
Sin;:e* c is a basis for 4’, there is a unique linear function cbi'.in
on & which coincides with d)i on c . This linear function must
satisfy the transfer axiom, because (v V w} + (v Aw) = v +w for all v

lin

and w in 49 Therefore, d)i and ¢i must coincide on 7 Since

¢IiLln can be expressed in terms of its values on the basis {wT: g #T c N}
of 4& (see the proof of Theorem 1) , it follows that ¢i has the desired
form. ([

We can now invoke Theorem 2 and the proposition concerning mono-

tonicity, in order to obtain analogues of Theorems 4 and 5.

- * *
THEOREM 8. Let d)i be a value for i on 3 or My . Assume that
d)i satisfies the transfer, dummy, and monotonicity axioms. Then (bi
*
Is a probabilistic value. Furthermore, every probabilistic value on &

*
or M, satisfies these three axioms.

%
THEOREM 9. Let ¢, be a value for i on A . assume that b
satisfies the transfer, dummy, and monotonicity axioms. Then there is

a collection. of constants {pT:T c M\i} satisfying |} p_ =1, and
TeN\L

*Assume that |} c_v_ =0 . Then for any nonempty T ¢ N , ) cg = 0.

prsen ° S g#ScT
Solving this system of equations successively for ['I'| = 1,2,...,0 vyields
CT =0 for all T < N . Hence the 2" - 1 games Vi are linearly inde-

pendent in & .
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*
o > 0 for all nonempty T < N\i , such that for every game Vv € 4! '

¢, (v) = ) ppIv(T U i) - v(D] .
TcN\i

*
Furthermore, every such value on A$ satisfies these three axioms.

The discussion of the previous section, interpreting the class

*
of values on As, applies with equal strength to ,& .

7. Symmetric Probabilistic Values

A probabilistic value assesses the relative desirability of being
a particular player in various games. At times, one might also want to
compare the desirability of playing various roles within a particular game.
Such comparisons can be facilitated by the use of a collection ¢ = (¢l,...,¢n}
of values, with ¢i(v) representing the value of being player i in game
v . Such a collection is a group value.

Iet W= (W(l),...,%(n)) be any permutation of N . For any
S <N, define m5 = {m(i): i € S} . The game T7v is defined by
(mv) (mS) = v(S) for all S ¢ N . (v arises upon the re-labelling of
fhe players 1,...,n with the labels m(l),...,7({n).) Let :7 be a collec-
tion of‘games with the propert§ that, if v € J’ ' thén every TV € J7 ;
such a collection is symmetric.

Let ¢ = (¢l,...,¢n) be a group value on :7. For the comparison
of roles in a game to be meaningful, the evaluation of a particular position

should depend on the structure of the game, but not on the labels of the

players.
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Symmetry Axiom. For every v € :7 and every permutation W of N,

and for every i ¢ N , ¢i(V) = ¢ {(nv) .

(i)

Observe that each of the classes #, m. A,ﬂ.ﬁ:, and X

A . :
contains both d: and c: ; furthermore, each of these classes is symmetric.

Therefore, the following thecrem applies to values on any of these classes.

THEOREM 10. Let :7 be a symmetric collection of games, containing C: and
A
f: . Let ¢ =(¢l,...,¢n) be a group value on :7 , such that for each

ieN and v E‘:f',

9, (V) = ) p;{v('r U i) - v(m] .
TeNAL

dssume that ¢ satisfies the symmetry axiom. Then there are constants

}n-l

160 Fulps

such that for all i e N and T < N\i , p; 2 pl ]
T

Proof. For any i € N, let Tl .and T2 be any two coalitions

in N\i satisfying 0 < ITll = szl <n -1 . Consider a permutation W

of N , which takes Tl into T2 while leaving i fixed. Then
FS ~ 1
P, =¢.(v_ ) =9¢.(v, ) =0p
Tl i Tl 1 T2 T2

, where the central equality is a conseguence

0of the symmetry axiom.
Next, let i and 3j be distinct players in N , and let T be
a nonempty coalition in N\{i,j} . Consider the permutation =T which

interchanges i and 3j while leaving the remaining players fixed. Then

3

7% = v _, and p; = ¢i{3T) = ¢j(GT) = Py

T T , where the central equality

is again a consequence of the symmetry axiom. Combining this with the
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previous result, we find that for every 0 < t <n -1 there is a pt
such that p% = p, for every i e N and T ¢ N\i with [T =¢t.
Again, for distinct players i and j , let T interchange i
and j while leaving the remaining players fixed. Then p;\i = ¢i(vN)
J . .

= = . Let be this common value. Then for all i ¢ N,

o5 vg) = Py Ph-1

i —
Povi T Fner v

Finally, for each i e N,

i i nl n-1
Pg=1- L Pp=ic- L [t]pt :
TcNAL t=1
T#¢
this last expression is independent of i .
3

Therefore, p; = p for all i,j e N . Letting Py be this common value

g
completes the proof of the theorem. []
We shall return to this result later in the paper, when we

briefly consider the Shapley value.

8. Efficiency without Symmetry: Random-order Values

Consider a collection ¢ = (¢l,...,¢n) of values, all on the
domain :7 , one for each player in N . Depending on the game Vv under

consideration, the players' assessments, as a group, of their individual

prospects may be either optimistic or pessimistic; that is, Z ¢i(v) may be
' ieN
either greater than or less than v(N) . However, if the group assessment
is neither optimistic nor pessimistic, the payoff vector ¢{v) = (¢1(v),...,¢n(v))

may be taken as an equitable distribution of the resources available to the
grand coalition N . Therefore, it is of interest to study those collec-

tions of values ¢ = (¢l,...,¢n) which meet the following criterion.
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Efficiency Axiom. For every v € :7 ,' z ¢i(v) = v(N) .
ieN

A group value satisfying this axiom is said to be efficient,
g,
Any efficient group value ¢ provides a fair distribution scheme

for the games in :1 . The following theorem characterizes all such

group values.

THEOREM 11. Let ¢ = (¢l,...,¢n) be a group value on 47 , defined for ail

i e N and all v'e :1 by ¢.(v) = Z pl[v(T U i) - v(T)] . Assume
1 . T
TcN\{,
~ ‘
that :7 contains t; and & . Then ¢ satisfies the efficiency axiom

i
TA\L

Z pJ for every nonempty

if and only if z p;\i =1, and z )
J€

ieN ieT

TZN.

Proof. For any V € 49, let ¢N(V) Z ¢i(v) .  Then

ieN

o = ] prlv(T v ) - v(T)]
ieN TeN\i
= v(T)[ X pi . - Z pj] .
TN ier M ggp T

It is immediately clear that any ¢ which satisfieé the conditions of the
theorem is efficient; that is, ¢ﬁ(v) = v(N) .
For any nonempty £ c N , consider the gaﬁes Vo and GT .
Since VT(S) = GT(S) for all S # T , and VT(T) =1 while GT(T) =0 ,
it follows from the preceding equation that
J

o vy - b (5 = 1 pr. - T pl .
N T N T ieT T\i jéT T
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However, VT(N) - GT(N) is 1 1if T =N, and is 0 otherwise. Therefore,

if ¢ satisfies the efficiency axiom, then the indicated conditions must
also hold. U

It is conceivable that the efficiency of a group value is an
artifact, existing in spite of the fact that the players have grossly
different views of the world. However, we can define a family of group
values, each of which arises from a viewpoint common to all of the plavers.
Let {r“: m € I} be a probability distribution over the set II of
n! orderings of N ; r1T is the probability associated with the ordering

ﬁl“"’in} in which the k-~th player is player i

m = x For any ordering
= (i ,..., i) , let ﬂlk ={i ,...,i } be the set of predecessors of
1’ n Y "Tk-1
ik in W . A random-order group value £ = (El,...,En) on :7 is
defined by
E.v) = §r vt ui) - vy,

mell

for all i € N and all v ¢ :7 .

An interpretation of this definition can be given. Assume that
the players have as their goal the eventual formation of the grand coalition,
N . Further assume that they see coalition-formation as a segquential
process: given any ordering T of the players, each player i ijoins with
his p;edecessors in T , making the marginal contribution v(ﬂi v i) - v(ﬁi)
in the game v . Then, if the players share a common perception {rﬂ: T e I}
of the likelihood of the various orderings, the expected marginal contribution

of a player is precisely his component of the random-order group value.



THEOREM 12. Let § = (51,...,En) be a random-order group value on :1 ’
assocliated with with the probability distribution {rﬂ: 7 ¢ II} . There
exists a collection ¢ = (¢1,...,¢n) of probabilistic values on :7 . such
that ¢i(v) = Ei(v) for all i € N and all v ¢ :1 . Furthermore, o

satisfies the efficiency axiom.

Proof. For any i ¢ N and v E.:r ’

) r“{v(ﬁi u i) - v(ﬂi)]

E.(v)
1 mell

. T {v{(T u i)} - v({T)] .
TeN\L | {mell:wi=T}

Define, for all 1 e N and all T c N\i ,

i
Pe = L, Tn
{wel:wl=T}
and let ¢ = (¢l,...,¢n) be the associated collection of probabilistic
values. (It is easily verified that, for each i € W , {p;: T < N\i}

is a probability distribution.) Clearly, ¢ =§ .

Observe that, for any v ¢ J’ ’

[ =1 ] slvir v - v (7Y ]
ieN ieN well

Lor, Dot u i) - v
well ieN

Pox, cvon = v .
mell



Therefore, since ¢ = & , it follows that ¢ satisfies the efficiency
axiom. [
The preceding theorem shows that every random-order value is an

efficient probabilistic (group) wvalue. The converse result also holds.

THEOREM 13, Let ¢ = (¢1,...,¢n) be a collection of probabilistic values

N
on :7 . Assume that :7 contains (f and Cf , and that ¢ satisfies the

efficiency axiom. Then there is a random-order value & = (El,...,En) on 3’,

such that Ei(v) = ¢i(v) for all i e N and v € :7 .

Proof. Let ¢ be defined for all i1 ¢ N and all w ej by

i G -
9, (V) zTcN\i p, Lv(TUi) - v(7)] . For any i e N and T c N\i , @efine

H

d ] . i, d
a (T Z Pq ¢ and A(i;T) = pT/A (T} . Consider any ordering

T = (il,...,in) e Il , and define

ho.

i
r =
n-1

L e ot emis fa W e mrs s :
T = Py A(12;{11}) A(13,{11,12}) A(ln,{ll,....,l

It is easily verified, by repeated summation, that

' } in/{il,...,i

] /.
=1 i2¢{11} 13¢{il.iz

n-1I
50 {r": m ¢ I} is a probability distribution.
Let £ be the random-order value associated with {rﬁ: me I} .

Since

£ (v) = ) ] x V(T u i) - v(D]
. TeN\i | {mel:mi=T}
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it will suffice to show that for all i ¢ N and T c N\i ,

pr= 7 .
‘[‘IT:'I'Ti-—“T}TT

Observe that

{ i r'iT= .z . E . -‘..
m:mi=7} i €T 1 _1eT\{1t} i

. ET\{lt,...,lz}

1

) e
it+2£TU{i} it+3£TU{i,it+2} inéTu{i,i

peersi

t+2

i pit . pit"% .
Py 5 T\{lt} T\{lt,lt_l}
d , . d ..
AT(T) iy leT\{:.t} A (T\{lt;lt_l})

a ) .
€T A (T\{lt}) i_

i

' ) By L oA mlih
iem\ip i) g i, o fruli} e2f '

LS

R S 5 T

- ) A(L 5T v {l'1t+2 -1

1n£Tu{ 1'lt+2""’ln-l}

This summation can be carried out explicitly. -Proceeding from right to left,

the first n - (t + 1) sums each, in turn, have value 1 , Continuing
i
inductively, each term of the form Z ka\i is preceded by a factor
1ke'1‘k k 'k
with denominator Ad(T ) = Z pj .
k . T
JET. Tk

k

r,. .
_1} (ll""'ln)
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Fach two such sums are equal; this follows from the hypotheses of the
theorem and from Theorem 11. Therefore, the entire expression simplifies
to p; , as desired. O

Combining ﬁhe preceding results, we obtain an interesting cbser-
vation. A collection of individual probabilistic values is efficient
for all games in its domain precisely when the players' probabilistic
views of the world are consistent; that is, only when the various

{p; : T « N\i} arise from a single distribution {rTr : e I} .

The family of random-order values associates a set.of imputations
(that is, efficient group allocations) with each game. This set clearly
contains the Shapley value of the game; in addition, it can be shown
that it contains the éore of the game.

For any finite set K , let I, be the set of all one-to-one

K

functions from K to {l,Z,...,lKl} . Givem i e K and T € HK', define

o= {1 eX:mw() <m(i)} . (A, is the set of orderings of K , and

K
- is the set of predecessors of i in the ordering T Y . If w

is a game on the player set N , and if m ¢ I then we define the

N >

marginal worth vector an(v) as the imputation satisfying az(v) =

v(ni u i) - v(ﬁi) for all i ¢ N . Let W(v) be the convex hull

of the set {a'(v):ime HN} ; W(v) is the set of all imputations which

are associated with v by some random-order value.
Recall that the core of a game v with player set N is the

set C(v) = {x ¢ Rﬁ : x(N) = v(N) , x(S) > v(S) for all S < N} .
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THEOREM 14. Let v be any game on N . Then W(v) > C(v)

Proof. We proceed by induction on n , the number of players
in N . The theorem is easily seen to hold for the cases n = 1,2 .
For n =3, the diagram illustrates the situation for a game with a
non-empty core; for the sake of completeness, the situation when the
core is empty is also illustrated. Assume that the theorem is true
for all games with fewer than n playvers.

Since the core of a game is convex; it will suffice to show that
all points in the boundary of C(v) are members of W(v). Let x be
a boundary point of C(v) . Then, for some non-empty S F N, x{S) = v(5)
Define the game u on S by u(T) = v(T) for all T < § ; define w
on N\S§ by w(T) =v(T v S) - v(8) for T < N\§ . Clearly xS e C(u)
Furthermore, for any T < N\S , x(T) = x(T v 8) - x(8) > v(T v 8) - v(8) = w(T) ;
hence, XN\S e C(w) .

Express xS = Z uoac(u) as a convex combination of marginal worth
vectors in {a®(u) : 0 ¢ HS} . Similarly express AL )} BTaT(w)A as
a convex combination of vectors in {aT(w) : T € HN\S} . For any 0 € HS
and T € HN\S , write (d,T) for the ordering T ¢ HN defined by
(i) =o(i) 4if i e S, w() =8| + t(3) if 3 N\S . Then

x = z (uo . BT)a(G’T) (v) , and hence x ¢ W(v) , as claimed. [

This theorem bears upon several well-known results. TFor example,
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if a game v is convex (that is, if v(S u T) + v(S n T) > v(8) + v(T)

for all §,T ¢ N), then W(v) = C(v) (This result is due to Shapley

[9] ; the converse has recently been noted by Ichiishi [5].) Further

attributes of the set W(v) are currently being investigated.
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9. The Shapley Value

A standard characterization of the Shapley (group} value is as
the only value which satisfies the linearity, dummy, symmetry, and efficiency
axioms [8] . From our previous results, we can quickly prove the uniqueness
of the Shapley value, and simultaneously obtain a simple derivation of the
explicit formula for the Shapley value. Traditional proofs center around
a consideration of the carrier games in ¢=. It appears that our considera-

A
tion, as well, of the games in c simplifies matters,

THEOREM 15. Let ¢ = (.d)l,...,d)n) be a group value on /9, 7)’_, or ,f .
Assume that each ¢i satisfies the linearity gnd dummy axioms, and that ¢
satisfies the symmetry and efficiency axioms, Then for every v inrthe
domain of ¢ , and every i € N ,

b = e -t =D o e

. n!
TcN\Q

where t generically denotes the cardinality of T .

Proof. From Theorems 3 and 10, it follows that there is a sequence

{p }n~l , such that each ¢,(v} = 3 p [v(T u i) - v(D] . Specializing
£ t=0 i TeN\i T

. i
Theorem 11 to the symmetric case, we must have Z pN\i =np = 1l , and
1eN
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i _ j
) Pryg = Ppq L Py

(n - t)pt for all nonempty T ; N .
ieT jET

Consequently,

|+

and
n-1 _ |n-1
t 1Pt T |e-1)Pe-1

- 1
for all 1 <t <n-1 . It follows that, for each t , [ntl]pt =4

! - - !
and therefore, p, = tiin n? D! g

It may be noted that, upon replacement of the linearity axiom

with the transfer axiom, we obtain a similar theorem characterizing the

Shapley value on ﬂ R ”t*, or ,8( .

10. Remark

Throughout this paper, we have studied values of games on a fixed
finite set of players. Along similar lines, one may consider values
defined for all finite-player games in an infinite universe of players,
or values of infinite-player (non-atomic) games, or the asymptotic
connection between these two types of values. Such considerations will
be presented in a series of papers written by various gubsets of

{Pradeep Dubey, Abraham Neyman, the author} .

;o
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