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THE GREEDY HEURISTIC APPLIED TO A CLASS OF

SET PARTITIONING AND SUBSET SELECTION PROBLEMS*®

by

Richard Engelbrecht-Wiggans**

élgstract

The greedy heuristic may be used to obtain approximate sclutions
to integer programming problems. For some classes of problems, mnotably
lmapsack problems related tc the coln changing problem, the greedy
heuristic results in optimal solutions. However, the greedy heuristic

does quite poorly at maximizing submodular set functioms.

This paper considers a class of set partitioning and subset gelec-
tion problems, Results similar to those for maximizing submodular set
functions are obtained for less restricted objective functions. The ex-
ample used to show how poorly the heuristic does is motivated by a prob-
lem arising from an actual auction; the negative results are not mere

mathematical pathologiles but genuine shortcomings of the greedy heuristic,
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The greedy heuristic is quite successful at solving a class of
knapsack problems related to the coin changing problem, Chang and Korsh
[2), Hu and Lenard [5], Johnson and Kernighan [7], and Magazine, Nemhauser,
and Trotter [8] show that the greedy heuristic results in optimal solu-
tions for such problems. Problems of optimal subset selection have been
studied by Boyce, Farhi, and Weischedel {1], indicating the need for a
simply heuristic for obtaining approximate solutions. Fisher, Nemhauser,
and Wolsey [4, 9, 10] have shown that the greedy heuristic may result {n
a solution for problems of maximizing submodular set functions with a
value which is a relatively small fraction of the optimum.

This paper derives similar results for a wider class of set parti-
tioning and subset selection problems. The problem is formulated in the
first section of the paper. Although the motivating problem results in
a set partitioning problem, the results of the later sections apply as
well to a wider class of subset selection problems, The more general
problem statement is given as problem II; however, most of the discussion
uses examples formthe context of the more restrictive problem I,

The second section considers various possible restrictions to be
placed on the objective function. The conditions may be stated in terms
of either of the problem statements; the two forms of the conditions are
shown to be essentially equivalent. Included among the possibilities
are submodular set functions and several alternmatives which are relaxa-
tions of submodularity, The relative generality of the various possibil-
ities %8s illustrated by a couple of simple examples.

The next two sections contain the main results of the paper.

Objective functions which are "normal,'" “monotonic,' and 'discounted"



are congidered first, For such cases, the greedy heuristic solution is
shown to have a value of at least 1/m of the optimal value, where m

is the cardinality of the largest feasible subsets, The third section
concludes by presenting a class of examples for which the greedy solution
value is arbitrarily little more than the bound established above.

Similar bounds may be obtained if the "discounted" condition is
replaced by 'variably discountedness," although now the bounds must be
functions of the variable discounting functions. Again, a lower bound
is derived for the greedy solution value. The section concludes by pre-
senting a claass of examples for which the greedy solution value is arbi-
trarily little more than this bound.

The last section is an attempt to reassure the reader that the
above results are not simply pathological cases. An actual real estate
auction [6] is briefly described. This real world problem is used to
motivate bidding functions (of two hypothetical bidders) similar to those
used to establish the tightness of the bound in sections three and four,
This discussion suggests that the results are not mere mathematical pathol-
ogies and that, from many a practical viewpoint, the greedy heuristic is
not a satisfactory algorithm for obtaining approximately optimal solutions

to set partitioning and subset selection problems,

1. Problem Formulat ion

The problem is motivated by the question of Pareto optimally assign-
ing m indivisible items among n iIndividuwals., Each individual {i has
a value function vy defined over all possible subsets of the m items.
The object 1s then to find the partition g = (31, 8yy eeey sn) of the

m items which maximizes the sum V(g) = ii:?vi(ai) over all posgible

partitions.



In order to formulate this problem as an integer program, let

be zero-one variables; X1

i
X 1

3
to individual 1 ., Thus, s

is one if and only if item j s assigned
i is the set of j for which in is one,
Let xi = (xi, X;, .voy X:‘) , and let X = (Xl, xz, voey Xn) . Through-
out the paper, the notation will be abused slightly; in particular,

vi(xi) and vi(si) represent the same quantity and will be used inter-
changeably, Likewise, V(s) and V(X) represent the same quantity and
will be used interchangeably.

The problem of finding a Pareto optimal assignment may now be

written as the following set partitioning problem.

(Xi) sub ject to all Xi

5 being either

Problem I, Maximize V(X) = Ei:rllvi
zero or one; and such that

1) 2:1:‘1‘:{151 for all j .

The inequality constraint assures that for feasible solutioms,
each item is assigned to at most one individual; for infeasible solutioms,

the s, need not be disjoint, Notice that if all items have positive

1
"marginal" value to all individuals, then each item will be assigned exactly
once in any optimal soclution,

S8ince the results of this paper hold for a wider class of problems,

a more general form of the problem is stated below. The theorems are proved

for the more general problem; however, all the examples used also satisfy

the more restrictive formulation.

Problem II. Maximize WV{X) subject to all X;‘

are zero or one, and
any constraints such that

1) any X with exactly one X;' = 1 1is feasible, and

2) feasible X have at most m components xi= 1.

i



It is clear that problem II is a special case of problem I. The second
formulation is onme of optimal subset selection subject to an upper bound

on the cardinality of feasible subsets.

2, Restrictions on the Objective Function

Several restrictions will be considered for the objective function,
The first is simply a normalization assumption; the objective function
has a value of zero for the zero solution. The second assumption requires
that the objective is a monotonically non-decreasing function of the vector
X . An intuitive interpretation of this is that (in terms of the motivat-
ing problem) each item has a non-negative marginal value to each individual
regardless of what items the individual already has.

Several forms are considered for the third restriction. The first
is the submodularity used by Fisher, Nemhauser, and Wolsey. Next is the
subadditivity condition often used in game theory. It will not be con-
gidered explicitly in the remaining analysis, but several of the examples
have objective functions which are subadditive in addition to being dis-
counted or variably discounted,

The third form is a very apecial case of subadditivity; the value
of a set need only be subadditive with respect to the sum of the values
for individual items. An obvious extension of the discounted condition
is the fourth and last form, that of variable discountedness.

The conditions may be stated for either of the problem formulations.
First they are stated for the more general problem. However, they are
restated for the less general formulation since it is the motivating prob-
lem and variably discounted functions are slightly more general in this

context than in that of the more general problem.



Specifically, consider the following possible restrictions,
1) Normality: V() = 0 ;
*2) Monotonicity.: V(X) > V(Y) whenever X>Y ;
3) Submodularity: V(X) + V(Y) > v@xUY) + v(XNY) for all
X and Y ;
3') Subadditivity: V(X) + v(Y) > Vv(XUY) for all X and Y ;
3'") Discounted: V(X) < ¥ iEIV(e;') for all X (where

i,j:xj

ei is the unit vector with component 1,j equal to one

§

and all other components equal to zero); and

3*) Variably Discounted (with non-negative discount function

i
3

Alternatively, if V(X)) = T:'_:t;vi(xi) , then the conditions may be stated

D) VX) 5D(|[(i,J):x§-l1|)}:i i_ V(e forall X .

’j:xj

in terms of the individual Ve
1) Normality: vi(ﬂ) =0 for all i ;
2) Monotonicity: vi(si) > vi(ti) whenever 8y Zti and
for all 1 ;
3) Submodularity: vi(si) + vi(ti) _>_vi(siU t:l) + vi(siﬂ ti)

for all s ti , and for all 1{ ;

i H)
] .
3') Subadditivity: vi(si) + vi(ti) > vi(siU ti) for all T
ty s and for all 1 ;
3") Discounted: vi(si) < Ej:jgaivi(j) for all 8y and for
all {1 ;
3%) Variably Discounted (with non-negative discount functions

D, ): vi(si) S-Di(isil)zj:jgsivi(j) .

There is a close connection between the two forms of the conditions.



Lemma 1. If V(X) = t;:'{vi(xi) , then
1) Any condition 1 1{implies the corresponding condition 1 ;
2) Conditions 1 and 2 together imply condition 2;
3) Condition 1 and any form of condition 3 together imply the

corresponding form of condition 3, (In the case of 3%, the

Di may all be set equal to the D of 3%,)

Proof, The first claim is obvious. The remaining may be verified by
cong {der ing vectors X with all but one of the subvectors x1 identi-

cally equal to zero.

The different forms of the third condition speclfy how nonadditive
the individuals value functions may be. Fisher, Nemhauser, and Wolsey
[4, 9, 10] study the performance of the greedy heuristic when the objec-
tive function satisfies conditions 1, 2, and 3. This paper obtains similar
results when condition 3 is relaxed to cne of the forms of 3" or 3%,

The various forms of the third condition are listed in order of
increasing generality, as will be verified below. The "discounted" re-
striction is the special case of 'variably discounted" where the discount
function(s) 1s(are) identically equal to one, It is easy to show that
normality and monot micity together with submodularity imply subadditivity.
Likewise, normality and monotonicity together with subadditivity imply
discountedness.

That the reverse implications are false is verified by the follow-~

ing examples.



Example 1, Let m =3, let v,(s,) be the following function of |31|

s, =0 1 2 3

vl(al) =0 2 3 5,

and vy is identically zero for all 1> 1,

The V{X) (='v1) is normal, monotonic, and subadditive. However, if
8, = items 1 and 2 , and t, = items 2 and 3 , then vl(sl) + vl(tl)
=34+ 3=6, which is less than vl(slljtl) + vl(slf1t1) a542=17;

thus V is not submodular.,

Example 2, Let m=4 , let v ,(s;) be the following function of |91|

vi8)=0 1 1 1 4,

and vy is identically zero for all {>1.

This V(X) (==v1) is again normal and monotonic; it is also discounted.
However, since vl({1,2,3,4\) is greater than twice vl({i,j1) for any
distinct 1 and j , this value function cannot be subadditive. The

following lemma has now been verified.

Lemma 2, For normal and monotonic functions, the following implicationms
exlst between the various forms of the third condition. 3 w=> 3" ==> 3

- 3% and _3_ -y 9.' — 2’" -_— 2*.



3, Greedy Solutions for Discounted Functions

The main results of this paper are "tight'" bounds on the ratio of
the value of the greedy solution to that of the optimal solution. Each
theorem is in two parts. TFirst a lower bound on the ratio is obtained
by considering the value of the objective after the first item has been
asgigned. Then, an appropriate example shows how to generate ratios
arbitrarily close to this bound, thus establishing the tightness of the
bound.

The greedy algorithm starts with all variables equal to zeroc and
then changes the one variable which results in the largest increase in
the objective function while maintaining feasibility of the solutiocn.

The greedy solution 1is any solution obtained by changing variables one

by one until no further improvement of the objective function is possible.
Notice that for monotonic objective functions, variables may be changed
from zero to one, but the greedy heuristic will never change a variable
from one back to zero, Thus, for problem II, the greedy solution is ob-
tained in at most m iterations. However, the value of this solution
may be only a small fraction of the optimal value as shown in the follow-

ing theorem,

Theorem 1, When applied to problem II with a normal, monotonic and dis-
counted objective function, the greedy heuristic will result in at least

1/m of the value of an optimal solution,

Proof, The monotonicity of the objective function implies that the greedy
solution value is at least the value of the first item assigned. Thus
it suffices to show that the most valuable single item has a value of at

least of an optimal solution value. This may be verified by noting that
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for an optimal solution X* and corresponding value V(X*) the condi-

tion that the objective is discounted implies that

vE*) < T

i
V(e,)
1, j:x*;ﬂ 3

< 1{(1,1) x*§= l'}|maximmni’jV(e;')

i
< m maximumi,jv(ej) .

Thus, maximumi jV(e;') z_v(x*)/m as desired.
y

The above proof verifies that the most valuable single item must be worth
at least 1/m of the optimal solution value. The following example illus-
trates cases In which the most valusble item has value arbitrarily close

to this bound and where the remaining items add arbitrarily little to

the greedy solution value,
Example 3. Let n>2, m»2, 0<d<e/m, and

vi(1) =1, v.(s)) =d- 1+ |s 1f |81| >1 and 1 ¢s

1 1

and v,(s;) = ]sl| if 1 s ;
vz(sz) - d|32| if 1 ¢s,, and vz(sz) - 1.-d-kd|sz| if les, ;

and vi(si) = 0 for all 8, for all 1i> 2 .,

Note that these v, are not only normal, monotonic, and discounted, but

i
that they are also subadditive.
The optimal assignment for example 3 is s, = {2, 3, .v., m¥ and

8, = {1}, with an associated optimal value of m , The greedy heuristic,
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on the other hend, will first assign item 1 to the first individual since

maximum V(ei

1,3 1
the first individual of any second item is zero, whereas the warginal

1
Y =1d = vl(el) . Once x} = ] , the marginal value to

value to the second individual for additional items is d . Thus all
of the remaining items will be assigned to the second individual, This
results in s, = {11 and 5, = {2, 3, ..., m} . The resulting greedy
solution value 18 1+md , which by the definition of d 1is less than
l+e .

Since the optimal value is m , the greedy solution has a value
of less than e 1In excess of 1/m of the optimal value., This proves

the following theorem.

Theorem 2, When problem II has a normal, momotonic, and discounted ob-
jective function, then for any e > 0, there is an example (based on
example 3) such that the following relationship exists between the optimal

value V* and the greedy solution value vy v*/m S.Vg < V¥/m+ e .

4, Greedy golutions for Variably Discounted Functions

Results similar to the above may be obtained for the case of var-
{ably discounted functions. However, in this case, the bound must be
in terms of the discounting functions. $ince condition 3* (with a single
discount function) is the special case of condition 3* with all discount

functions D, equal, the following results will be in terms of the latter

i

and more context.
Although the discount functions Di may be any functions such
that condition 3* is satisfied, it will be assumed that the discount

functions actually used are the minimum possible such functions. It re-
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maing to be verified that there exist minimum discount functions; the
verification follows.

For any fixed k< m , there is a finite number of subsets con-
talning exactly k of the m d{tems. Now let Di(k) be the
maximumsi:|si|ﬁkvi(si)liﬁ:jcsivi(j) » This maximum must exist, and the

resulting D, 1is the desired discount function for Individual i . Thus

i
a minimum discount function exists for each individual,

For actual data, the minimum discount function may be extremely
difficult to calculate; indeed the work involved may be comparable to
solving the set partitioning problem exactly. In this case, some approxi-
mately minimum discount function, perhaps determined using any structure
that values might have, must be used. The following results are in terms

of the minimum discount function; equally correct (but not "tight') bounds

result from using non-minimal discount functions.

Theorem 3, When problem II has a normal, monotonic, and variably discounted
objective function (with discount functions Di ), then the greedy heuris-
tic will result in a value Vg satisfying the following.

=7
Vg 2_V*/maximumkiiwlkini(ki) where k = (kl, kz, ‘oo kn) is any vector

with non-negative integers as coordinates such that ii:;ki =

vector k may be viewed as specifying the number of items assigned to

m . (The

each individual,) And V* denotes the optimal value.

Proof. As with the proof to theorem 1, it is only necessary to verify
that the most valuable single item has at least the above specified value.

This is true, since for an optimal solution x*,
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)

V’(ej

vy < T (s X = 1D
jax*y=1

< maxtmm, V(e )TyTy| (31 X4 = 110, (| U3 £ X} = 11))
< maximum V(e )max:l.ml.lmei =151 j.(k )

Solving the inequality for " maximumi j\i’(e;) " completes the proof.
2

The following example shows that for discount functions not uni-

formly bounded by one, the greedy heuristic may do arbitrarily poorly.

Example 4, Consider example 3 except vl(al) is now equal to the var-

iable v* > m when |51| =m ,

As soon as v* exceeds m, there is a d > 0 such that
vk > md . Thus, Dl(m) = vX/{(mtd) is greater than one and vy is no
longer a discounted function. (Note that all other Di(k) <1.) The
new optimal solution is s = {1, 2, ..., m¥ and has a value of v* ;
the greedy solution remains unchanged. As v* goes to infinity, the
greedy solution is arbitrarily bad when compared to the optimal,

Since all Di(k) < 1 except Dl(m) = v¥/(md) > 1, the sum
{s maximum when k1 = m and all other k:'~ = 0 . The cor-
responding value of the sum is mv*/(md) . Using this maximum value,

o140y ()

the above theorem assures that the greedy solutfon value is at least
vk/(mv*/(mtd)) = 1 + d/m , However, for d <e/m, 1l+uwd is less than
1+e and therefore less than 1+d/m+e . Thus, for any e > 0, this
example results In a greedy solution value of less than e in excess of
the lower bound established in theorem 3. This, together with theorem 2,

proves the following theorem.
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Theorem 4. When problem IT has a normal, monotomic, and variably dis-
counted (with minimum discount functions Di ) objective function, then
for any e > 0, there is an example such that the resulting greedy so-
lution value is less than the maximum of e + V*/m and

e + V*/maximumkii:?kibi(ki) ;, Where V¥ i the value of an optimal so-

—

lution and k 1s any vector of non-negative integers such that zikai =m.,

Thus the lower bound on the performance of the greedy heuristic is a "tight"

bound.

5. Relation of Examples to an Actual Problem

Although examples 3 and 4 are constructed to show how poorly the
greedy algorithm may do, the examples are motivated by a set partition-
ing problem arising from an actual auction [6]. In this particular auc-
tion, a bank is selling four plots of land; three contiguous and roughly
similar plots, and one larger separate plot (which borders on one of the
city's school properties). The bank accepted bids on single plots, on
the three contiguous plots as a set, and on all four plots as a set.

This is not very different from allowing bids on all possible subsets of
the four plots,

Conslder two hypothetical potential bidders. The first is a de-
veloper wishing to build one apartment house. The sizes of the bids on
single plots reflect the sizes of the plots and the size of the largest
apartment house which may be built., A larger building may be built on
several contiguous plots, and thus the value function may be additive
for all subsets of the three smaller properties (assuming the three plots

are pairwise adjacent), However, two non-contiguous plots are valued
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very little more than the most valuable single plot in the set.

The second hypothetical bidder, perhaps the city government, is
really only interested in the larger plot and submits very small marginal
bids on the remaining plots. Thus, the resulting bids might be 1like the
value function in example 3.

Unfortunately, if the bank uses the greedy algorithm to decide
how the plots are sold, the large plot is sold to the first individual
and the remaining plots to the second individual, The resulting revenue
is only about one fourth that obtained from selling the larger plot to
the second individual and the remaining plots to the first individual.

This example seems plausible enough that it cannot be dismissed
as a mere mathematical pathology. It must be concluded that the greedy
heuristic may be very inefficient at obtaining an optimal solution value.
Notice however, that the results are very sensitive to the data of the
examples, A change of d 1In a few of the values might result in a greedy
solution which is an optimal solution. One possibility for further re-
gsearch is to determine how and by how much any given problem should be

perturbed in the search for a near optimal greedy solution.
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