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ON DISEQUILIBRIUM ECONOMIC DYNAMICS
PART III

A KEYNESIAN THECRY OF MONEY WAGE ADJUSTMENT"

by

Katsuhito Iwai

1. Introduction

It is often argued that Keynesian economics is nothing but a spe-
cial case of neo-classical economics and that only its ad hoc institu-
tional assumption of 'downward money wage rigidity" lends it a realistic
flavor and ﬁakes it a useful special case. The purpose of the Keynesian
disequilibrium dynamics to be developed in the present and subsequent
articles is to reconstruct Keynesian economics firmly on the foundation
of a coherent microdynamic theory of the firm and to demonstrate that
it is indeed "the general theory" which is at the same time both realis-
tic and useful.

The labor market is not a '%ourse."l Money wages are never deter-
mined by symmetrical exchanges of biddings Setween approximately equal
numbers of firms and workers circulating among each other. In the

unionized labor market they are negotiated between the firm and the

*This is Part III of a series of papers on disequilibrium economic dyna-
mics. This paper can be read, however, with little prior knowledge of
Part I and Part II of the serles circulated earlier; furthermore, its
Mathematical Appendix (Steady-State Theorems for the Random Walk Model
with Two Return Barriers) is an independent mathematical treatise on some
elementary problems in the theory of random walk. A sequel: "Part IV:
The Theory of Long-Run Phillips Curve" will appear also as a Cowles Foun-
dation Discussion Paper. Research for this paper was in part supported
by grants from the Natilonal Scilence Foundation and the Ford Foundation.

1See Dunlop [6], Chapter 2,



trade union. 1In the non-unionized labor market they are unilaterally
quoted by the firm on a "take-it-or-leave-it" basis. 1In the present
series of papers we consider only the non-unionized labor market, simply
because it 1is easier to iInvestigate analytically. But most of the quali-
tative results obtained in this series would hold true even in the union-
ized labor market.

We observed in Part I of this series that the money wage, uni-
laterally quoted by a firm on a take-it-or-leave-it basis, can no longer
be regarded as a mere exchange rate between labor-service and the means
of payment, but as a 'signal" informing potential employees of the pos-
sible job opportunities open in the firm quoting it.2 Then, two funda-
mental problems confront the wage fixing firm., First, in order for the
money wage to function as an information signal at all, it must be an-
nounced before workers make up theilr labor supply decisions and reveal
their true labor supplies in the labor market, This implies that when
the entrepreneur of the firm decides the level of money wage he is able
to possess only an imperfect information about the magnitude of labor-
services offered to his firm, The firm must, therefore, make his money
wage decision under uncertainty. Second, the entrepreneur must determine
the period of time between money wage changes, because the effectiveness
of the money wage as an information signal depends crucially upon how
frequently it is adjusted.

As a consequence of the first problem, which arises out of the
role of money wage as an information signal, we can conclude that the

entrepreneur's decision on money wage must be governed by his "expectations"

2See Iwal [10], Section 2.



of factors influencing the labor supply schedule to his firm. Obviously,
all expectations are subject to errors. When he has overestimated the
level of labor supply relative to his desired labor demand, his expecta-
tion error would materialize in the form of "unfilled vacancies; and
similarly when he has underestimated the labor supply relative to his
desired labor demand, his expectation error would materialize in the form
of "involuntary unemployment'" of some workers willing to work at the going
money wage.:3 This simple observation is in fact the essence of our micro-
economic and short-run theory of involuntary unemployment.,

However, why the involuntary unemployment can spread over the whole
economy and why it can persist even in the long-run are entirely different
questions which demand entirely different answers. In order to explain
the involuntary unemployment as a macroeconomlc phenomenon, we need to
elucidate the mechanism through which a majority of firms commit the same
mistake--an underestimation of the labor supply relative to the labor de-
mand--involuntarily but inevitably under certain reasonable circumstances.
Part 11 of this series was devoted to the analysis of this fundamental
macroeconomic mechanism.a

It is then the task of the present and subsequent articles to ex-
plain the involuntary unemployment as a long-run phenomenon ag well.

It goes without saying that the key to this "long-run theory of involun-
tary unemployment," so to speak, lies in the '"downward rigidity of money

wage." But the problem is not so trivial, because we must demonstrate

3Here we are implicitly assuming that when there is an excess-supply of
labor-services it is absorbed not by the uniform reduction of working
hours of all the willing workers but by the reduction of the number of
workers by a certain rationing scheme such as the first-come-first-serve
rule.

4Iwai [1i1].



that the downward rigidity of money wage has not only transient but also
permanent influences on the determination of the real variables in the
economy, in particular, the rate of involuntary unemployment. It is clear
that the conventional Keynesian economics which typically formalizes the
notion of downward money wage rigidity by postulating that there is a
fixed money wage level at which the "actual" labor supply schedule be-
comes infinitely elastic is of no help for this end. We need the refor-
mulation of the notion of downward rigidity itself.

I1f the labor market is not a bourse and if money wage is fixed by
the entrepreneur of a firm on the basis of take-it-or-leave-it, the most
natural way to formalize the notion of the rigidity of money wage is to

suppose that his firm Iincurs certain adjustment costs whenever he changes

the level of money wage. One determinant of the money wage adjustment
costs 1s the loss of the value of money wage as a reliable information

to potential employees when its level is adjusted. In this sense, our
long-run theory of involuntary unemployment is related to the second prob-
lem created by the role of money wage as an information signal,mentioned
earlier in this section. However, this information cost is only one of
many determinants of money wage adjustment costs. Indeed, so little can

be said on raisons d'étre for money wage adjustment costs from the stand-

point of pure economic theory. Therefore, it 1is only to the following
more tractable problem that the present and subsequent articles will be
addressed: 1f it is costly for the entrepreneur of a firm to adjust the
level of money wage, then what would be the consequences? Accordingly,
we start our Keynesian [disequilibrium dynamics by developing a wmodel of
the individual firm whise entrepreneur must determine the level of money

wage in a dynamic as w#ll as stochastic labor market environment under



the condition that an adjustment of money wage is costly to him.

2. Money Wage Adjustment Rule

Let us consider the entrepreneur of a firm who must determine the
level of money wage at the beginning of, say, the tth period. In the
present paper we shall assume for the sake of simplicity that all workers
are homogeneous and can be regarded as a completely variable productive
factor, Then, the entrepreneur has to pay the same money wage to all the

workers, new and old. We shall then denote by v, the logarithmic level

of this single money wage to be quoted at the beginning of the tth pericd.

(Warning: 1in the following all the variables will be measured by logarith-

mic scale!) However, by interpreting w_ as '"the marginal scale wage"

t
-~the wage paid to new workers in the typf{cal job-category, we can apply our
model of money wage adjustment equally well to the heterogeneous and im-
mobile labor market in which the majority of workers remain with the same
firm from one period to the next and a wide variety of jobs are open to
workers with a wide variety of skills and experiences.5

Let us suppose that our firm is monopsonistically competing with

other firms for a given level of aggregate labor supply in the economy-

wide labor market.6 Therefore, our firm has its own labor market in the

5See Hall [8). This paper is an interesting attempt to develop a model
of money wage adjustment in the heterogeneous and immobile labor market.
However, because of the failure to introduce the adjustment cost of the
scale wage he derives a conclusion which supports the so-called "natural
rate theory of unemployment,'" in contrast with our theory which rather
refutes this sophisticated revival of pre-Keynesian neo-classical theory
of employment.

Hence, in this model we are assuming that the labor market is composed
of a large number of small firms which behave as if there were no oli-
gopolistic or strategic interdependence with each other. If the number
of rival firms 1s small, this behavioral hypothesis breaks down.



gense that it can control the supply of labor to itself by adjusting the
level of money wage relative to its expectations of other firms' money
wages. The economy-wide labor market thus consists of numerocus labor
markets, one for each monopsonistically competitive firm. We also sup-
pose that the 1evellof money wage is the sole means of the monopsonistic

competition in the short-run. Let us then denote by w; the logarith-

t
mic level of money wage that would uniquely maximize the firm's short-
run subjective expected profit in period t , were there no money wage

adjustment costs. To ease the terminological burden, we shall simply

call w: logarithmic level of the "optimal" money wage in peried t .
Presumably, it depends upon the entrepreneur's subjective expectations
of current labor market conditioms as well as those of future product
market conditions, upon various fixed productive factors endowed in the
firm and upon available technology known to him in period t . This is
indeed the case for our highly parameterized model of the firm developed
in Part I of this series;7 but in this paper we need not confine ourselves
to that special model.

If an adjustment of money wage is costless, the optimal money wage
adjustment policy for our entrepreneur becomes trivial; it is only to set
the logarithmic level of actual money wage v, equal to that of the

optimal' money wage wt

in each period. However, if our entrepreneur
incurs some costs whenever he adjusts the level of money wage, his optimal
money wage adjustment policy becomes no longer trivial. Clearly, he does

not always set w_  equal to wt in every period, and his task becomes

t

that of finding an optimal money wage adjustment policy that allows the

actual money wage deviate from the "optimal" money wage in each period,

7See equation (53) in Iwal [10].



taking a due account of the costly nature of the money wage adjustment
activity itself. This is an inherently dynamic problem. Since the mathe-
matical difficulty of determining a fully optimal money wage adjustment
policy out of all the possible policies seems ingurmountable, let us as-
sume in this paper that our entrepreneur chooses the best policy from
a restricted class of feasible rules whose functional forms are given
a priori except for a few parameter values. We believe that our specialized
+ formulation of the model of costly money wage adjustment is a reasonable
first approximation which captures most of its essential features.8

A class of feasible money wage adjustment rules which is reason-

able is of the following type:

= * -
we =Wy M <wmv g SN
(1)
= W * : * o .
Ye 5 Ve I we mwy Sk OF W W 2N

where hl and A? are given parameters assumed to be positive and nega-
tive, respectively. If our entrepreneur adopted this adjustment rule,

his money wage determination activity would proceed as follows. 1In both
the product and labor markets he is constantly gathering and collating
various information about their current as well as future conditions,

At the beginning of every period, in the light of new information acquired

through his actions and observations during the previous period, he revises

BThis simplification of problem is clearly due to the "bounded rationality"
of the present author, who unabashfully assumes that the entrepreneur

of the firm in question has as poor computation capacities as he has.

See Simon [19) for the notion of bounded rationality. Note that unlike

the (S,s) policy of the mathematical inventory policy, there is no
guarantee that the form of feasible adjustment rules presented below is

the truly "optimal" form. (See Scarf [18] for the proof of the optimality
of the (S,s) 1inventory policy.)



his subjective expectations of relevant random variables which he believes
influencing the demand schedule for his product and the supply achedule

of labor to his firm. He 1is then able to calculate the logarithmic level
of the new "optimal' money wage w: in this period and compare it with
the logarithmic level of money wage Vi quoted in the previous period.
If the deviation of w: from L is in the tolerable range in the
sense that A, < w: - W <N he defers the adjustment of money wage
in this period ﬁnd simply requotes the same money wage as before. How~
ever, whenever the deviation of w: from W1 ‘exceeds the ceiling hl
he immediately raises money wage in this period to the new "optimal' level
and whenever the deviation gravitates below the floor kz he immediately
lowers it to wi . Therefore, the celling parameter kl and the floor
parameter AQ , which completely specify the money wage adjustment rule
given by (1), can be regarded as "thresholds" of our entrepreneur's money
wage adjustment activity.

However, the above money wage adjustment rule has one obvious de-
fect. In this Keynesian economy where money wage adjustment 1s costly,
w: is no longer optimal in the genuine sense of the word, and there is
no reason why our entrepreneur should adjust his money wage to this "op-
timal" money wage level if he has decided to adjust it. Therefore, in
the following we shall allow our entrepreneur to adjust v, to the level
different from w: , namely, to the level equal to w: + AU ; where
AD is a congtant parameter wﬁich can take on either positive or nega-

tive value. Then, the class of feasible money wage ad justment rules can

be respecified as follows:
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where )\ 2 0 and AQ <0 <A

0 Since a money wage adjustment rule of

L -
the above type is completely characterized by three constant parameters
= Xy M and Ay the determination of the optimal money wage ad-
justment policy by our entrepreneur has been reduced to a much gimpler
problem of choosing the optimal values of these three parameters. This
is still a dynamic problem; but a tractable one.

Note in passing that if Kl = Az = AU = 0 then we have W, = w:
for all t and the above adjustment rule becomes equivalent to the optimal
money wage adjustment policy in the economy where there are no money wage
adjustment costs. In other words, the microdynamic model of the firm in
the '"Wicksellian" economy, discussed in Part I, is a very special case
of the one in this truly Keynesian economy. If Az = -® and Kl =40 ,
the same ad justment rule dictates our entrepreneur to raise money wage
whenever desirable but to refuse any wage cut no matter how low w: falls
below Voo ot Money wage in this case 1is perfectly flexible in the up~
ward direction but absolutely rigid in the downward direction. If
KZ = -0 gnd 0 < hl < ® , money wage becomes imperfectly flexible up-
wards but absolutely ripgid downwards. If both hz and hl are non-zero
and finite, money wage becomes imperfectly flexible in both directions.

Let us now denote by X, the rate of deviation of the money wage

level to be returned fromthe actual level of money wage, and by §t the

rate of change in the "optimal'" money wage;9 that is, we put
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Note that the variable X KO = w: - W, can be interpreted as a sub-

jective measure of disequilibrium in our entrepreneur‘'s labor market.

In fact, in our special model of a firm developed in Part I of this series
it can be shown that it is proportional to the rate of deviation of his
subjective expectation of the rate of excess supply in his own labor mar-
ket from what he believes to be a "normal rate" of excess labor supply.10
Substituting (2) and (3) into (1)' and rearranging terms, we can elimi-
nate the parameter AU and transform the money wage adjustment rule as

follows

9Since all the variables are measured by logarithmic scale, the difference
between two variables can be regarded as approximately equal to the ratio
of these variables measured by the standard non-logarithmic scale. In
particular, the time-difference of a variable can be interpreted as the
rate of change of that variable measured by the non-logarithmic scale.

IOWe have

tﬁt e o0 +.eiﬂ£1-7)t1}(w )
NA-y) + 7

where ﬁ and & are the firm's subjective elasticities of product de-
mand and labor supply, 7 1is the labor input elasticity in production,

tht is the entrepreneur's subjective expectation of the rate of excess labor

supply in period t conditional upon the information available to him
at the beginning of period t , and h* 1s the constant normal rate of
excess labor supply whose value is determined by T, €, 7 and the
firm's subjective specifications of the variability of the random vari-
ables influencing the product demand and labor supply schedules., It can
be easily seen from the equation given above that the optimal money wage
policy without adjustment costs in our Wicksellian economy developed in
Part I can be characterized by the condition that tht = h* .,
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= £ h r
x X + "t where hz < X, .1 + ¢ < Kl s

(4)

x =0 where x

t g1t 5 SAy ot x  +E >N .

Once the values of hl and hz are chosen by our entrepreneur
at the beginning of period, say, zero, his prediction of the dynamic
motion of the new variable X, in the future is governed by his own
subjective specification‘of the dynamic motion of §t « Now, the value

of W' and hence that of Et in the future are unknown to him, because

t
he will revise their values in later periods on the basis of new in-
formation available to him. So he must regard % a8 a random variable,
and give a stochastic specification to it. We shall assume in the fol-
lowing that our entrepreneur believes El, §2, veny Et, see are mutually

independent random variables with a common subjective probability distri-

bution f(g) :

) gy = Prig, <€) for t=1,2 .. ;"

whose mean value is denoted by { :

) G=[ gare) .

In words, he believes that the "optimal" money wage will underge a multi-
plicative random walk with the average growth rate {i . This is by no
means an innocuous assumption, but we believe it is a useful first-order

approximation. Note that the subjective probability distribution F(E)

e denote by Fr[z] the entrepreneur's subjective probability of an

event Z .,
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summarizes not only the entrepreneur's view of the stochastic properties
of the variables relevant to his calculation of the "optimal" money wage
but alsc his own estimation of his possible measurement errors of these
variables.

Before specifying our entrepreneur's objective function and deter-
mining the optimal money wage adjustment policy, let us examine the
nature of a given adjuatment rule characterized by arbitrarily chosen
parameter values of hl and h2 .

The position of the random variable, defined by (4), fluctuates
along an open interval i;:_ir as a partial sum of independent random
and of a given initial position x in

0

period zero. However, whenever the value of X 1 + §t enters into either

variables El, €os eees By
of a half-open Interval -=, A, oOra half-open interval Al’ ® in period
t , the money wage is ilmmediately adjusted and the system returns to the
origin: x_ = 0 1in that period. This random walk must start anew from

t
the origin from then on. According to the theory of random walks, the

two parameters xl and kz are called return barriers, and the sequence

of random variables fxt] is said to constitute a random walk with two

return barriers at ll and Az .

3. The Steady-State Theorem for a Money Wage Adjustment Rule

Let the probability distribution ﬁt(x|x0) summarize our entre-
preneur's prediction of the position of the random variable X, in period

t on the basis of his information about its initial position x

0 ; that

is, for A <x< A and t= 1, 2, ..., we put

(N ﬁ%(x|xo) = ﬁr[xt < x|x0} .
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By convention we put ﬁt(xlxo) =0 for x< A, and ﬁ%(x|x0) =1 for
x > hl + As time goes on, the money wage will be adjusted over and
over again and the process of random walk will start from scratch over
and over again. Our entrepreneur can therefore anticipate that after
a gufficiently long time this stochastic process will settle down to a

"sgtochagtic gteadv-gtate" independently of the initial condition. In the

Mathematical Appendix we are able to prove the following fundamental

proposition that justifies this conjecture.12

Steady-State Theorem. If (1) both Kl and Az are finite, or (i1)

1
is finite, A, = =@ and 0 < f<e, or (111) A, 1is finite,

M =+® and -=< <0, thenas t = ® the sequence of random

variables [xt] converges to a steady-state random variable X

in the sense that ﬁ%(x]xo) converges to a steady-state distribu-

tion jkx) s Independently of the initial condition x that

0 3
is, we have

(8) lim ﬂt(x|x0) = fix) = Prix <x}.

It is easy to see that ka) is determined only by the two parameters

A, and Ay and by the random walk probability distribution ﬁ(g) .

1
The limit distribution ﬁ(x) is called the steady-state distribution

because it satisfies the following steady-state property:

(9) fiexy = Prix o < x|Prix, < x}=fix))

M
= § Haxlx) -dfix)
t t ~ L

A

1ZSee section 4 of Mathematical Appendix,
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for t'=1, 2, ,,. and ¢t = 1, 2, ... . Once the position of the random
variable X, in period t is believed to be distributed according to
this distribution, {ts positions in the entire future from peried t on
can be also predicted by the same probability distribution. It is, in
other words, a "self-perpetuating' subjective probability distribution.

Alternatively, the steady-state distribution can be interpreted as a

description of the long -run average behavior of the random variable X, -

Because ﬁ(x) also represents the average proportion of periods during
which X, is expected to spend in an interval X;:—Z‘ during a very long
period of time.13 Therefore, we shall interchangeably call lg(x) either
the steady-state distribution or the long-run average distribution. The
reader familiar with the mathematical theory of inventory management
should have already noticed that our steady-state theorem is a generali-
zation of Karlin's steady-state theorem for the well-known Arrow-Harris-
Marschak inventory model.14 Their connections will be briefly discussed
in the Mathematical Appendix,

We shall suppose in the following that one of the three conditions
stated in our Steady-State Theorem is always satisfied.

Qur interest in the steady-state behavior of the given money wage
adjustment rule is two-fold. 1In the first place, because our Steady-
State Theorem characterizes the long-run average behavior of an indivi-

dual entrepreneur's money wage ad justment activity, it would certainly

13This gsecond interpretation of ‘ﬁ(-) can be rigorously justified by
the so-called Mean-Ergodic Theorem. For this, see Billingsley [3],
Chapter 1.

14Karlin [13]. See also Prabhu [16], pp. 177-178. The pioneering paper
is, of course, Arrow, Harris and Marschak [1].
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facilitate the determination of his optimal money wage adjustment policy.
In the present paper, our attention will be focused upon this micro-
economic application of our Steady-State Theorem. However, the second

and at least equally important reason lies in the fact that if we con-
sider the dynamic behavior of the economy as a whole in which numerous
firms are making money wage decisions in a decentralized but interdependent
manner the steady-state diatribution ﬁ(x) could be given a novel inter-
pretation as the cross-sectional description of the economy's stochastic
macro-equilibrium--an equilibrium which is maintained by offsetting motions
of a large number of firms perpetually thrown out of equilibrium by in-
cessant intersectional disturbances of product demand, labor supply,
capital accumulation and technology.15 Qur Steady-State Theorem would
enable us to analyze this fundamental equilibrium concept in macroeconomic
dynamics within the most coherent theoretical framework. This topic will

be taken up in Part IV of this series of papers.

4, Expected Rate of Money Wage Change in the Short-Run and in the

Long-Run
It 1s clear from the specified form of the money wage adjustment
rule (1)' that the motion of the rate of change in the actual money wage,

o is inherently discrete. There is an upward jump by

£ =¥ T V12
*
the rate equal to (wt+-h0) Vel B X t & when Xt E 2N

in period t , and a downward jump when X, 1 + Et < kz ; otherwise

lslt 1s Tobin [22] who first introduced the concept of stochastic macro-
equilibrium into macroeconomics literature. But we can find similar no-
tions in Lipsey [12}, Rees [17] and many other literature in the theory
of Phillips curve relation.
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there is no adjustment of the level of money wage at all., However, we
can still acquire some useful insight into the nature of this money wage
adjustment process by examining its short-run as well as long-run aver-
age behaviors.

We know tchat Xy © AO = wg = W, measures the size of disequili-
brium perceived by our entrepreneur in his own labor market at the be-
ginning of period zero. Then, the expected rate of money wage change in
period t , predicted on the bagis of his knowledge of X - RD , can

be calculated as follows

(10) &b, [xy = N;) = 0-Pr{n, < Xy T B < Aplxg o)
© N AZ-xt-l .
+ é{‘r}\ L et RRE) 4 jﬂ (x, g+ ) dF(E) [x,)
1 %1 '
© o ‘ )\2
= j‘_w‘f)\{z-df(z-y) + f_:-df(z-y)}-dﬁt_l(ylxo)
1
@ )"1
= - [ [ fzedf(a-y) -yleall,_ vlx)
-0 h
2

in view of (4) and (7).16 In particular, the expected rate of change in
money wage during one unit period can be expressed as

M

(11) Bty [xg = Ng) - 6= xq - j}\ z+dF (z - x5) -
2

16we denote by £{z|I1 the entrepreneur's subjective expectation of a
random varlable =z conditional upon the information I available to

him,
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Let the right-hand-side of the above equation be represented by a func-

tion G(xo-Lo) . The shape of this function is determined by A A

0! 17
kz and f(@) « Though, in general, @(+) 1is not necessarily an increas-
ing function, it is easy to show that it is a2 non-decreasing function

if ﬁ(g) is the simplest Bernouilli trial distribution and that it is

a strictly increasing function if f(g) is a mixture of two exponential

; 1 .
distributions. 7 Therefore, at least in these cases we can regard the

equation (l1) as our entrepreneur's perceived law of supply and demand,

for it maintains that his subjective expectation of the rate of change
of money wage in excess of that of the "optimal' money wage @ , 1is
positively correlated with his perceived size of disequilibrium in his
own labor market, X, -AD » which is proportional to the rate of devi-
ation of his subjective expected rate of excess labor demand from its

normal rate.

17In the case of the Bernouilli trial distribution, G(xo-hn) = —(l-q))\2 <0

when Xg = Apts; =0 when Xg = Ay F 2s, A, + 38, eue, hl - 28 ; and
= q.xl > (0 when Xg = Ai -85 ; where 8 >0 i3 a unit step size and
0 <q<1 is the probability of a positive jump. In the case of a mixed

exponential distribution where F'(E) = -—exp(-f/a) for % >0 and

a+b
FT(8) = a+b —exp(&/b) for € <0, we have

*o z z - X4
Pixg=np) = %5 = | a+b "p(( ) ',J;\ a+b°"°< b )dz
1
a(a-l—?\.) b(b )
=b - a+ ﬁcxp<f ‘> 34.22 (k )

This is clearly a strictly increasing function of Xg OF X, .
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It is important to bear in mind, however, that this is only a
"perceived" law for our entrepreneur, and ex post both the actual size
of labor market disequilibrium and the actual rate’of change in money
wage may turn out to be different from their ex ante or expected values.l8
It should be also noted that this perceived law of supply and demand does
not necessarily have the desired property: #(0) = é(m1|x0 N = 0y -g=20.
Therefore, even if the entrepreneur perceives that his labor market is
in equilibrium in the sense that Xy " AO = 0, he does not necessarily
expect the rate of change in money wage to be equal to the average rate
of change in the "optimal" money wage. It may exceed or fall short of
{i , depending upon his specification of ﬁ(g) and his choice of the

values of AU s A, and xz .

1
In the long-run, however, this subjective law of supply and demand
will evaporate, That is to say, as time goes on the influence of the
perceived size of labor market disequilibrium in the initial period will
gradually fade away, and finally as t — « the expected rate of change
in money wage will converge to a constant long-run average value, inde-

pendently of the initial perceived size of labor market disequilibrium,

It {5 remarkable but after a second thought obvious that this long-run

181n Iwai [9]), we demonstrated that under the assumption of no money wage
adjustment costs the actual rate of money wage change is an increasing
function of the realized rate of excess labor demand (in excess of its
normal rate). This ex post law of supply and demand is based upon the
observation that the latter measures the cxtent of the entrepreneur's
overestimation of the labor supply relative to his labor demand, and that his
downward revision of his expectations of the factors influencing the
labor supply schedule, induced by this revelation of expectation-error,
pushes up the level of money wage in the next period. In our Keynesian
dynamics, however, the existence of money wage ad justment costs prevents
the full working of this ex post law.
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average rate of change in money wage turns out to be equal to the expected
rate of change in the '"optimal' money wage, {I . This important proposi-

tion can be confirmed simply as follows:

(12) £(Mw) = lim &(B7_|x, - A.)
) = Uim &b [xg =2y
o Al
=8 - [ {[ zdf(z-y)-yYeafiy) , by a9y,
- )\2
=f- rfk z+d{[ Flz-y)aliy) - [ yedfin)
2 -en -0
Mo M
=8 - 1] zdlz) - [ yedafl)1, by (8),
)
= ﬁ .

It should be emphasized that this proposition is dependent neither on the

choice of the parameter values of X\ Az and AD s nor the specifi-

1 2
cation of the probability distribution ﬁ(g) ; 80 long as one of the

three conditions stated in the Steady-State Theorem is fulfilled.19

19A model of price adjustment developed by Barro [2] can be regarded as

a special case of our model of money wage adjustment if we replace his
price variable by the logarithmic level of money wage. ,His model in fact
assumes that the random walk probability distribution F(£) 1is a symme-
tric Bernouilli trial distribution, so that the drift {1 is equal to
zero, He calculated the ratio of the expected rate of price change and
the expected duration of time up to the first price adjustment as an ap-
proximation of the expected rate of price change per time up to the first
price adjustment, and showed that it is an increasing function of the
size of initial disequilibrium, Unfortunately, it is hard to give any
meaning ful economic interpretation to this result, although Barro himself
seems to regard it as an aggregative approximation of the law of supply
and demand that relates the (expected) rate of price change to the size
of initial disequilibrium. However, as is clear from our discussion above,
the expected rate of price change per unit period is easily calculable

as éﬁﬁp1|x0-ho) = G(xo =Xy} 1in the short-run or é{(pt -po)/t|x0 -An1

= &{ Eﬁ&pj/t|x0 -An] in the medium-run., Neither of the above expressions
J:
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5. The Cost Structure of the Firm

So far our analysis has been confined to the entrepreneur's pre-
diction of the long-run as well as short-run behaviors of the random
variable X, induced by a given money wage adjustment rule (1)'. We
have, in fact, deliberately separated this problem from the specifica-
tion of his firm's cost-profit structure. We must now turn to the latter.

In general, the firm's expected profit to be earned from its en-
trepreneur's one cycle activity starting from his recruiting activity
in period t 1is a function of the actual money wage v, and the time
t . However, it seems reasonable to specify this short-run expected pro-

fit function in the following way:
x* _ . A
(13) 30wt wt) exp(vt) .

Indeed, it is easy to check that the expected profit in the model of a

firm developed in Part I of this series is precisely of this special form;20

can be approximated by "the expected rate of price change per time up to
the first price adjustment." Moreover, in the long-run, by the mean ergo-
dic theorem mentioned in footnote 12, the rate of price change per unit
t
period: T &
j=1 3
change: 1lim E(Apt|xo-ln) . But, according to the proposition we proved
T =0

/t approaches the steady-state expected rate of price

in (12), the latter is equal to zero in the model of Barro that assumes

g =0 . In other words, contrary to his assertion, the rate of price
change in his model is zero, regardless of the size of initial disequi-~
l1ibrium, if we average it over long time horizon! A correct way to derive
the long-run av rage law of supply and demand, in addition to our ex post
short -run law mentioned in footnote 18 and our ex ante short-run law
discusged in this section, will be presented in Part IV of this series.

onhis can be easily seen 1f we gubstitute the equation in footnote 10
into equation (48) in Part I of this series.
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but it 1is obviously not the only case that generates such an expected
profit function. In any case, in (13) we have decomposgsed the‘expected
profit into two multiplicative components-- 5(w:-wt) and exp(Gt) .
The latter exponential function can be regarded as the trend level of
this firm's expected profit whose motion can be controlled only by its
long-term policies such as fixed investment, R&D investment and market-
ing policies, and is assumed to be totally independent of his short-term
money wage adjustment policy. On the other hand, we have specified the
former component of (10) as a time-independent function of the rate of
the deviation of the "optimal™ from actual money wage, (w: -wt) , which
is nothing but the percelved size of labor market disequilibrium, X, -AD .

We shall call this the trend-free expected profit function. Since we de-

fined, at the outset of this paper, w: as the logarithmic level of money

wage that would uniquely maximize the short-run expected profit were there

not any money wage adjustment costs, this trend-free expected profit func-

tion must attain the unique maximum at wi "W = t-ko =0 ; that is,
we have

- * - * - -
(14) 8(0) > a(wt w,) a(xt Ag) for any wi-w_ =x -k ¥#0

If B(-) 1is twice-differentiable, this property can be restated as follows
(15-a) ') =0,
(15-b) ") <0

Equation (15-a) is nothing but the first-order condition and inequality
(15~b) is the second-order condition for the maximum, respectively. The
more W deviates from w: in either direction the less expected short-

tun profit our entrepreneur can earn. Therefore, the difference between
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the maximum attainable trend-free expected profit and the actual expected
profit generated by a piven money wage level or by a given size of labor
market disequilibrium: P(0) - B(wt -wt) = (o) - 3(xt-AU) can be in-

terpreted unambiguously as the opportunity cost of failing to set LA

equal to wt or simply as the cost of labor market disequilibrium X, -AU
In period t . Later in our determination of the optimal money wage ad-
justment policy we shall rely exclusively on its quadratic approximation,

which can be expressed as:
- () AN A A (1)) 2,
(16) 2 (wt wt) =7 2 (xt - )\0) 3

where we have used (15-a). The proportionality factor, -$"(0)/2 , 1in
the above quadratic disequilibrium cost function is positive by (15-b).
In words, we have shown that the disequilibrium cost is approximately
proportional to the square value of the rate of the deviation of the
actual from "optimal' money wage or of the percelved size of labor mar-
ket disequilibrium.

Against the disequilibrium cost (16) the cost of money wage adjust-
ment must be welghed. Clearly, there are various kinds of costs a money
wage adjustment would give rise to. Its administration may require some
direct costs; or,as was briefly indicated in the introduction, it may de-
preciate the value of money wage as a reliable information signal to
workers job-hunting in the labor market and hence affect the current as
well as future labor supply schedules to the firm unfavorably; or it may
trigger the Internal equity of wage structure within a firm and create

troublesome labor management problems;21 or it may give rise to a labor

21Doeringer and Plore [5].
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dispute because, as Keynes observed in his '"General Theory,' workers are
concerned more with relative than absolute wages and tend to oppose any
cut in money wages which is believed to lower their wages relative to
wages elsewhere;22 and so on. We shall, however, leave the more syste-~

matic study of rajsons d'8tre of money wage adjustment costs for another

occasion, and concentrate on the analysis of their microeconomic implica-

tions in this paper.

We know from (4) that 1f X + Et > Kl our entrepreneur cuts
the level of money wage by the rate equal to X, .1 + Et and 1if
Xt §t <™ he increases it by the rate whose absolute value is equal

to —(xt_li-gt) . Let us suppose then that the adjustment coat for a wage

increase in period t equals the sum of the lump-sum ad justment cost:

C1t and the proportional adjustment cost: Cit(xt_li-gt) and the adjust-

ment cost for a wage cut in period t again equals the lump-sum adfust-

ment cost: C and the proportional adjustment cost: -Cf_ -*(x +E ) .23
The lump-sum costs, Clt and CZt » and the coefficients of the propor-

tional costs, Cit and Cét  are all assumed to be independent of the

rate of money wage adjustment. However, they must be in some way or another
related to the firm's cost-profit structure. Accordingly, we shall sup-

' ' -
pose in the present paper that all C1t s C2t s C1t and C2t are pro
portional to the trend factor of the expected profit, given by exp(Gt) ;

22Keynes [14], pp. 13-15.

231t is easy to generalize this lump-sum-cum-proportional money wage ad-
justment cost equation to the one which is an arbitrary polynomial func-
tion of the rate of money wage change. We can thus approximate any form
of money wage ad justment equation to any desired degree of accuracy.
However, to simplify the analysis we shall not seek this generalization
in the present paper.
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that is, we put

c

I

it

1t = cl-exp(Gt) » Gy, cz-exp(Gt) ,

il

R 8 ' 1,
Cle = ¢ exp(39,) , Coe = €5 exp(ﬁt)

where the trend-free lump-sum adjustment costs, ) and sy s and the

trend-free coefficients of proportional adjustment costs, ci and ci »

are all assumed to be invariant over time. This {8 only one of many pos-

sible specifications of money wage adjustment costs, and should be re-
garded as a rough approximation to the more realistic ones; but for the

sake of analytical simplicity we shall stick to this in the following.

The firm's total loss 1s the sum of the disequilibrium cost and the

ad justment cost. Therefore, the expected trend-free total loss in period

t can be calculated as

a a "
+oyBrix, g+ 8 KAl + Eled (e ED X+ E 2N x,)

o 2 .t .
Eley(xy p + B |x ) + 8 Sy xo}

E—L—lf (x- AU) dﬁ (xlxo)i-c "1 +-c2-ﬂ2 t+ec! 'jlt c2‘52t ;
M

-

where the probabllity of a money wage increase My o the probability

of a woney wage cut aﬁt , the expected rate of a money wage increase
jlt and the expected rate of a money wage cut th in pericd t are

given by
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24>

o
(18) e Pr[xt_1+ Ft > }\1|x0'! - ‘Y_,,[l -F(}'l—x)"dﬁt-l(xlxo) ,

o
T, = Pr{xt_l+ §t < hzlxo’i = j‘-mF()\z-x)-dHt_l (x|x0) H

(19) Sp =Btk e A x e [T edaf(Dal | xixy)
-m )\ -X
1
- hz-x
th = é{xt_1+ B X F 5 Shys %) = rr (x+g)d§(z)dﬂt_1(x|x0) .

It follows from the Steady-State Theorem that,as t —~ e, ﬁt-l (x|x0)

converges to the gteady-state distribution g(x) and hence ;'lt y Ty s

31': and th , defined above, all converge to constant steady-state

values, m o ;72, jl and 52, given by

(20) ﬁl = [ {1-§(x1-x}-dﬁ(y y Ty = [ FOyx)-dfix) ;
s oo m ?\_2-)(
(21) LT 1 eeoafdfied , go=0 7 eemdaf(D)afix) .
- ?\ - -00 -0
1

(The more complete characterizations of these steady-state parameters
are given in Corollaries 1 and 2 of the Mathematical Appendix.) There-
fore, as t = ® , we can conclude that the expected trend-free loss

Rt converges to the limit value 5’, given by

'y

1

- ”0 2 F Y -

(22) i\' = - L'ZL)'{;\ (x-)\o) dg(x) + SR + SR + ci- 1 cé'iz s
2
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independently of the initial condition =x Note that by construction

-

0 -
gjx) s Mo ﬁé ’ i& and i2 are all independent of the return para-

In the present paper we suppose that our entrepreneur is concerned
only with the trend-free profit and costs and has a very long planning
horizon. In other words, we suppose that the entrepreneur seeks only to

minimize the long-run average of the trend-free loss per unit period,

given by (22). The determination of the optimal money wage adjustment
policy under the more genmeral objective function would be an interesting
but difficult topic for the future research., Since the long-run average

trend-free loss A can be regarded as a function of the three parameters,

AO y N and Ay 5 We have succeeded in reducing the entrepreneur's de-
termination of the optimal money wage ad justment policy to a simpler

problem of choosing the values of these parameters that would minimize

the value of K .
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6. Optimal Money Wage Adjustment Policy

First of all, we want to minimize the long-run average trend-free

loss ﬁ s, given in (22), with respect to the parameter AO . Notinmg that

-~

E(x) y Mo ﬁé P i& and ie are all independent of the value of A, ,

)

a differentiation of i ; which is in turn equivalent to a differentiation

M

2 A
of f (x -AD) -dll{x) , with respect to AD leads to the following simple
A
2

optimal condition:

M
(23) Ay = xeafix) = 2o .
| Ny

In words, the optimal value of A given by i* » 1s equal to the ex-

0 2
pected value of the steady-state random variable x . Moreover, the above
condition can be rewritten in the following useful manner:

~ A, ke A
(24) lim B} -w, |x, - Af) = lim E(x, - Aglx, - AF) = O .

t o =0

In other words, when the entrepreneur chooses the value of AU optimally
at the beginning of his planning period, he can predict that the expected
rate of the devietion of the actual from '"optimal" money wage or equivalently

the expected perceived size of disequilibrium in his labor market will vanish

in the long-run, independently of the initial size of labor market disequi-
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librium. Note that the validity of this useful result hinges upon our
quadratic approximation of the disequilibrium cost function (17).

The proposition (24), along with the proposition (12), has esta-
blished an important conclusion that even in the Keynesian economy in
which money wage adjustment is costly, disequilibrium in the individual

labor market is averaged out to zero in the long-rur and that the "op-

timal" money wage in the "Wicksellian' economy in which money wage adjust-
ment is costless reestablishes its position as the long-run average op-
timal money wage! Does this mean that in the long-run no trace of dis-
equilibrium will be left in the labor market even under the assumption
of non-negligible money wage adjustment costs? The answer is clearly
"no™; but, we must examine the characteristics of the optimal money wage
adjustment policy in more depth 1in ordér to give a satisfactory justifi-
cation to this negative answer,

Let us substitute (23) into (24); then we can rewrite i a8 a

function only of hl and hz :

“=-.§"_@)..“ e 2 oa S S-SR I
(25) A 3 Var(z) + ¢ + cr* My + ¢ty Crly »
where we denote by ﬁar(f) the variance of the steady-state random vari-

able X :
~ ?\1 2
(26) var(x) = [ {x- 8@ aflx) .
)

Thus, the disequilibrium cost becomes, under the optimal choice of the
value of ko , Proportional to the steady-state variance of the random

variable X, o Our entrepreneur is now faced with the following trade-
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off in his determination of the optimal values of the parameters hl

and hz + If the width between the ceiling A, and the floor kz is

1
set narrow, the steady-state variance Gar(z) and hence the disequili-
brium cost become small. However, in this situation, the money wage is
ad justed frequently, and the large lump-sum adjustment cost can be ex-
pected. If, on the other hand, the width between M and A, 1s widened,
the disequilibrium cost will increase whereas the lump-sum adjustment
cost will diminish, Therefore, the optimal values of h1 and A, to
be denoted by i? and i; ; must be chosen by balancing between these
two conflicting costs.

Unfortunately, the general characterization of the optimal money

wage adjustment policy seems difficult, Therefore, in order to shed

more light on its nature, we must turn to the analysis of a special case.

7. A Speclal Case

Qur special model assumes that our entrepreneur believes the "op-
timal" money wage level fluctuating over time according to the Bernouilli
trial multiplicative random walk model.24 The Bernouilli random walk
model is the discrete-time, discrete-state analogue of the celebrated

Wiener process.25 Then, the (subjective) probability distribution of

24In the Mathematical Appendix we also discuss another special case in
which the subjective probability distribution F(%) is a mixture of two
exponential distributions concentrated on 0, and -=,0 , respectively.
However, because relatively little new information can be obtained from
this special model, we shall not examine it in the text; the deriva-
tion of the optimal money wage adjustment policy for this case is left

as an exercise for the interested reader.

25See, for example, Feller [7] for an excellent exposition of the
Bernouilli random walk model. See also Cox and Miller [4].
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gt can be specified as follows:

(2n fr{gt =+s}=q, and ﬁr{gt =gl =1-q ;

where s > 0 1s a step size and 0 < q <1 18 the probability of a
positive jump. Then, the mean (i and variance of a jump \?ar(gt) are

glven by

B=(q-Ds; -s<f<s;s

1

(28-8) B(E,)

(28-b) ﬁar(gt) =5 -0 .

In this random walk model, the position of the random variable x, as
well as that of 7"1 and )\2 can take only the discrete values of
O, is, izs’ LN .
Let ﬁ(x) denote the steady-state probability of x = x, for
= Ay Apts, ae )\1 -8 and ?\1 ; 1in this Bernouilli random walk
model with two return barriers at ).1 and My o Then, we are able to
show in the Mathematical Appendix that ﬁ(x) can be expressed as
s+(1-9Q M
7\-2'(1'Q )+H'(Q
K’ x= N

. 8e(Q “-1).(1-0Q
kz'(l“Q )+K2'(Q

XN
2:Q 1) for x = Nos 7\.2+s, seey 0,

21

(29) f(x) =

) for x =0, 8, «vsy N 5

M1

where Q = [q/(l-q)}”s = [(ms)/(ﬁ-s)}lh if 440, (If (=0 but
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32 > 0, the expression of 1(x) can be obtained by applying 1'Hopital
rule to (29).26 In the following we shall not distinguish this special
case,) We can also record the explicit expressions of E(i) ’ Gar(g) s

W ﬁé s i& and i& , which are obtained in the Mathematical Appen-

dix, as follgws:

LR My N2 (Q 2y 2
(0-a) B =3 —~ - F)
Apr(L-Q D)+ A (Q -1
-K -
A 1 Ag.(l - Q 1) + Ki'(Q AZ - 1) 2
(30-b) Var(x) = 5 — - - s
1 )
Ar(L=Q D) FAQ C-1)
2
1h2a-e ™ +a2aa 2. _GZ>2
R -A - T/
N (L-Q 1)+ A (Q 2.
2
(30-c) m o= Q. -l ’

A
A (1-Q 1)+ A (@ 2,

. ™
(30~d) n, = —J_*-,Cl(-l "9 ) = ’
N (L=Q 1)+ A(@ -1)
. den @ "2 1)
30- - -
( e) '1'1. -A‘l hz 2

A (L-Q ) +At(@ T-D)

26See equation (43-b) in the Mathematical Appendix for the explicit for-
mula .
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. ™
bery(l-Q )
™ )

Mr(l=Q D)+ A (@ T-1)

(30~f) 5_2 =

Substituting these expressions into (25), we can explicitly cal-

culate the long-run average trend-free loss:

-\

21, )

~ ~ -8
Ayt (1-Q My At (@ 2

2 N 2 N
N all(o) A'2'(1 -Q ) + hl'(Q -1

8 M -, b - G;')

7\-2'(1‘Q )+)\1'(Q -1)

1 3
) + N
31 AMe(Q

3
[ 8(0) A-z'(l - Q
~ 6

GRS 21y (cp =5 r)(1-Q
™ ) '
Me(l=Q D+h,e@ “-1)

By minimizing this with respect to M2 and Ay < "8, We can get
the optimal values of Al and kz as functions of the basic parameters
of our model, -P"(0), 4, s, €y s ci » ¢y and ¢} . Then, by
substituting them into (30-a) and noting that i% = é(ﬁ) , We can

also express the optimal value of xn as a function of the same set of
the bagic parameters,

Unfortunately, the expression of é’, we have just given in (31),
is still so complicated that we have not been able to obtain the closed-
form solutions of the optimal values of the parameters. (We are planning
to examine their properties by the computer analysis.) However, there

is at least one important special case for which the required computations
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of the optimal values of the parameters can be done by pencils and papers.
It is the case in which the Iump-sum adjustment cost ¢, of a money wage

cut is prohibitively high, Ciearly, we have in this case
(32) =,

but the optimal value of the ceiling &T is yet to be determined. Money

wage in this case is imperfectly flexible upwards and absolutely rigid

downwards. WNote that if the average growth rate of the "optimal' money
wage {I 1is non-positive X, will drife to -« ., Hence, in order to
make the problem non-trivial we must assume 0 < i< s < ® ., Now if we

let h2 =~ -® in (30-a)-(30-f) we can simplify their expressions as

2

(33-a) Bx) = %("1 - %—)

(33-b) Var(x) = Il'i'hi - %sz + %(5&—) ,
- noe L

(33-c) o Kl ’

(33-d) ﬁé =0,

33-e)  j =4,

(33-£) =0

Then, the long-run average trend-free loss becomes

(34)

1o

2 N
o 2 c.*{
(0 1.2 12  1¢{s 1 "
- - £ ﬁhl‘?“‘z('r) * Ttk
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which 18 a simple convex function of hl .
A minimization of i with respect to hl > s leads to the opti-

mal value of the ceiling threshold i: as

126c. |3 3
Sk 1 Ao _ B PO
(35) M 0y , when s > > 12c1 s
3
s~ ¢"(0
] s when - 12c1 >u>0,

It should be noted here that in this speclal case the optimal ceiling
threshold it is independent of the coefficient of the proportional money
wage adjustment cost rci + Now the equatioﬁ {35) states that when
-83-3"(0)/12-c1 < it < 8 the higher the expected rate of change in the
Yoptimal™ woney wage {i or the higher the lump-sum adjustment cost of
a money ﬁage increase, relative to the coefficlent -9$"(0)/2 of the dis-
equilibrium cost, the higher the optimal value of the ceiling threshold
i? « Because this would induce the entrepreneur to save the expected ad-
justment cost at the expense of the relatively lowered disequilibrium
cost. When, on the other hand, {I < -53-3"(0)/12-c1 3 iq is anchored
to the minimum step level s , independently of the parameter values.

We can also calculate the optimal value of ig , which was shown

to be equal to E(E) in (23):

1/3 \
(36) ig = 8(x) = (:"3ﬁ?63£> (E;:> when 8 > (> -slé-clo ,

_,3 1
.%G-%—)<O , when —31—5%@)—2{3>0.
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Therefore, when s > { > -s ﬁ"(O)/lch s hg is increasing in § and
e » and decreasing in =-$"(0) and 32 ; and, when -53';5"(0)/12c1 >u>0,
it is increasing in (i and decreasing in s2 but independent of -3"(0)
and cy
It 1is also very useful to obtain the explicit expression of the
steady-state variance Gar(f) induced by the optimal money wage adjust-

ment policy in this special case. Substituting (35) into (33-b), we get

2/3
3""
(37) Var(x) = 48 -1/3 (p"(OQ (—;—) when s>{I> _121_(21

2,2 3 1}
= %éf - ) » Wwhen 812c10 >0>0 .
i

The function (52/4)(52/ﬁ? - 1) 1is monotonically increasing in s and
monotonically decreasing in ( , while the function

1/3( ~2{i+c /3"(0)) 2/3 _ 82/3 + (szlﬁ)2/4 is monotonically increasing
in ¢y and s , monotonically decreasing in $"(0) , but decreasing

. R 3,42 L 1/4 a
in | for 0< {i< (s7/3) (-p (0)/c1) and increasing in {i for
R 3,02 1/4
i > (s /3) +(-9 (0)/c1) . We can thus summarize the possible cases

of the relation between and Gar(f) as follows. (i) When

i
s > (-12c1/3"(0))1/2 y it equals s for any possible values of (i,
(l.e. 0<{i<s ), and consequently Gar(f) is8 monotonically decreasing
in {i for any {I such that 0< {I<s . (i1) If
(-12¢, 18ont? s e > (9, /a0 t/? No=s for 0<fc -335"(0)/12.:1
and A* = (= 12uc1/a"(0))1/3 8 for -333"(0)/12c1 <fl<s ; but 'ﬁar(i)

is still monotonically decreasing in { . (iii) If 0 < s < (9c1/23"(0))1/2

Gar(g) 18 monotonically decreasing in {§ for 0 < < (33/31)1/2(-‘5"(0)/c1)1/4
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but becomes monotonically increasing in { for (53/3)1/2(-3"(0)/c1)1/4
<@ < s . The following diagram summarizes these three possible cases.

Even though we showed in the previous section that the entrepreneur's per-
ceived size of disequilibrium in his own labor market, x, - ig s will
average out to be zero in the long-run, the stochastic steady-state to
which the entrepreneur's money wage adjustment activity is expected to
converge in the long-run is far from a state of "tranquillity.' The sto-
chastic steady-state is a state in which the perceived size of lagbor mar-
ket disequilibrium is fluctuating widely between the state of positive
disequilibrium and the state of negative disequilibrium. What we showed
in the previous section onlymeans that the long-run average of positive dis-
equilibria over time and that of negative disequilibria over time tend
to balance with each other. 1In fact, our analyais of the special case
in this section has demonstrated that the fluctuation of disequilibrium
over time will never shrink to zero as long as the cost of money wage
ad justment {1s ﬁon-negligible. We have also exhibited by examining the
properties of the steady-state variance Gar(g) that the "structure"
of the stochastlc steady-state is determined by the basic structural para-
meters of the model, in particular, by the expected rate of change of

the "optimal' money wage (i .

8. Concluding Remarks

(1) Although the present paper has been confined to the analysis
of an individual firm's wage adjustment, the formal method developed here
can be applied to any kind of optimal adjustment problem with lump-~sum

adjustment costs. A list of such problems are: price, inventory and
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labor adjustment problems of the firm; cash management problem of the
firm or the household; foreign reserve management of the government; and
so on. In many cases, a simple reinterpretation of symbols would prove
sufficient.z7

(2) It is well-known both theoretically and empirically that the
average rate of unemployment is determined not only by the average size

of lgbor market disequilibrium but also by its dispersion. 1In fact, it

can be easily shown that in our special model of the firm developed in
Part I of this series that the long-run average rate of unemployment is
greater than what is called its 'normal" rate by the magnitude approxi-
mately proportional to the steady-state variance of labor market disequi-
1ibrium. Therefore, our proposition that the average size of labor market
disequilibrium tends to vanish in the long-run by no means implies that
the long-run average rate of unemployment would also approach its normal
rate, because we also showed in the present paper that the existence of
money wage ad justment costs prevents the variance of labor market disequi-
1ibrium from shrinking to nil even in the stochastic steady-state. In par-
ticular, under the assumption of complete downward rigidity of money wage
this steady-state variance was shown to be negatively correlated with the
average growth rate of the "optimal' money wage at least for the rele-
vant range of the values of the latter, which in turn was proved to be
equal to the long-run average growth rate of actual money wage. Therefore,
we have in fact established the following fundamental proposition: the

higher the long-run average growth rate of money wage the lower the long-

run_sverage rate of unemployment. The theory of 'long-run Phillips curve''

57
7An interesting paper by Barro [2] on the theory of price adjustment

was already discussed in footnote 19. The cash management problem has
been fairly extensively explored in recent years. See, for example,
Miller and Orr [151.
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we shall develop in Part IV of this series is nothing but the translation
of this microeconomic proposition into the law of macroeconomics.

(3) The reader might have recognized a certain analogy between
our model of money wage adjustment and the "satisficing model" advocated
by Herbert simon.28 Our firm does not attempt to maximize its short-run
expected profit every period but is satisfied so long as the rate of the
deviation of the level of actual money wage from its short-run-profit-
maximizing level (1.e., the subjective measure of labor market disequi-
librium)does not exceed the upper '"threshold" nor fall short of the lower
"threshold." A change in the level of money wage is induced only when
the rate of deviation (or the size of disequilibrium) strays from the "range of
satisfaction" bound by these two thresholds, Like the "aspiration level"
of the satisficing wodel, the levels of these thresholds are considered
to be fixed in the short-run. But in the long-run they will gradually
adjust themselves upwards or downwards on the basis of experiences ac-
cumulated over time. This adjustment of the thregshold levels would not,
however, drive the firm to behave like a firm inneo-classical economic theory
even in the long-run equilibrium. 1In fact, we succeeded in demonstrating
that the firm would only approach a "stochastic steady-state" in which
ite daily behavior shows no tendency to assimilate with that of the short-
run profit-maximizing firm. Although there may exist a wide gap between
the satisficing model which was proposed as an alternative to the notion
of economlc man (or economic agent) as a maximizing or minimizing animal
and our model of money wage adjustment which is based upon the hypothesis

of the firm as a minimizer of "long-run" average loss but with an explicit

285ee Simon [19, 20, 211.
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introduction of adjustment costs, both have much richer implications for
macroeconomics than the model of the firm as a short-run-profit-maximizer
without any adjustment costs. This is simply because both theories are
devised primarily for the analysis of disequilibrium situations, which
is what wmacroeconomics is all about.

(4) The micro-foundations of our Keynesian disequilibrium dyna-

mics have been laid. 1In the sequel we shall embark on a macroeconomic

exploration.
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MATHEMATICAL APPENDIX:
SOME STEADY-STATE THEOREMS FOR THE RANDOM WALK MODEL

WITH TWC RETURN BARRIERS

A~1, Introduction

This Mathematical Appendix will be devoted to the study of a sto-

chastic process, called the random walk model with two return barriers.

Although this study was motivated by our Keynesian theory of the firm's
money wage adjustment developed in the text, it can be read as an inde-
pendent mathematical treatise.

After presenting our problem in this introduction, we shall give
a brief exposition of some elements of the random walk theory which will
be utilized in this Mathematical Appendix. (Our exposition will follow
clogely that of Feller [5].) This will make our study self-contained and
at the same time facilitate the understanding of the reader who is not
familiar with the random walk theory. But, in the first place we must
explain the mathematical notations used in this Appendix.

We denote by Z:E R P;:g4, E:gq and F;:E an open interval
a<z<b, aclosed interval a <z <b , a half-open interval
a<z<b and another half-open interval a <z <b , respectively.

The limiting case where either a or b or both are replaced by +=

igs admitted; in particular, the whole line is the interval -®,=® , An
arbitrary interval is represented by I . If I 1is, for instance, ;:F
and y {8 a real number, I-y means ;:;:-3:; . &{1} denotes the pro-
bability that a probability distribution (or a probability measure) ?

assigne to an interval I . When & is a discrete distribution, ¥{y}
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represents the probability atom at a point y . The (cumulative) pro-
bability distribution function &(x) , used in the text to represent a
probability distribution %, can be defined as &{-», x } . The Lebesgue-

Stieltjes integral of a function with respect to a probability distribu-

— b
tion & over an interval a,b is written as X u(x)«8{dx? .
a

Let gl, 52, §3, «ss , denote mutually independent random vari-
ables with a common probability distribution F , and let the sequence

of random variables [xt} be defined by the rule:

X, = 0 when LY + gt s_hz or x._, + gt > kl
(1)
xt = xt-l + §t when h? < xt-l + §t < A1 3

where A, < 0 < hl « 1If we start from a given initial position Xy s

the position of X, fluctuates along an open interval kz, Al as a

partial sum of gl, §2, evsy & and X, . However, when x

t &

t-l

enters into either of a half-open interval -e, Az or another half-open

interval lkq, +o , the system returns instantaneously to the origin

x, = 0 , and the process starts anew from the origin. The two numbers
A, and A, are called return barriers and the sequence [xt] is said

to constitute a random walk with return barriers at N and L2 .

We denote by Ht the probability distribution of X, 3 that is,

we put for an interval I < Aas M and t =1, 2, ...

(2) nt{z} = Pr[xt cI}.

The probability distribution ﬂo is concentrated on the initial position

Xg €A, M . By convention we put Ht[I} =0 for IC -w iE‘U'Kl; = .
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Our main concern in this Mathematical Appendix is to show that under very

weak conditions, a8 t = += , X, comnverges to a gteady-state random

i

variable .3 in the sense that Ht converges to a steady-state distri-

bution E independently of the initial condition X - We shall also

give a complete characterization of this steady-state distribution.

A-2. The Random Walk Model with Two Absorbing Barriers

The study of the random walk with two return barriers, given by

(1), is intimately connected with the study of the random walk model with

two absorbing barriers at A and A, . Our exposition of this model in
the following closely follows that of Feller [5], Chapters XII and XVIII.

Let

(3) SO-O, and st5g1+§2+.¢-+gt, t=1,2, vre 3

then the sequence {St] constitutes the random walk generated by F which

starts from the origin., However, if

) S, €Xy; Ays sees S, €Ay Ay and S eI where IC -u,xz"u‘kl,e,

then we say that either of the abgorbing intervals, -, A, and Ny

{5 entered for the first time in period t and at a point of I . The
process terminates whenever the event (4) occurs. The absorption period

T is defined as the period of the first entry into one of the absorbing

intervals, and the absorption point is defined accordingly by ST « In

other words, T 1is given by

(5) T = {t|The event (4) takes place for the first time in period t} .
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Clearly, both T and ST are random variables. But if the event (4) does
not take place at all, they become 'defective" random variables. (A pro-
bability distribution, say, & 1is called "defective" if &{-», ol <1 ,

whereas it is called "proper" if @#{-e, ®} =1 ,) For the joint distri-

bution of the pair (T, ST) we write

6) Ht{rl =Pr{T =t and Sy € I, t=1, 2, ....

By convention we set Ht{IT =0 for I ehy M . The marginal distri-

butions of Ht are given by

(7) Pri{T =t} = HtF‘”y Kziukrkly =} = Ht['“’: ®}, t=1,2, ...,
(8) pr{sT e 1V = zH {1} =8{1}.
t=1

The random variables T and ST are proper if and only if H{-=, ol =1,

Let Gt{I} denote the probability distribution of the event that

in period t a point of IC kz, Al is reached and up to period t no

entry into the absorbing intervals took place; that is, for IC Nos M
and t =1, 2, ... we put
(9) Gt{11 = Pr{S1 € Ayy Ny eesy Sy €Ny, Ny and 5 e It .

We can extend the above definition to all the intervals on the line by

letting Gt{Il =0 for IC -~ AE4Ll§i, = ., As a convention we shall

denote by Gy the atomic distribution with a unit jump at the origin:

(10) GO{I} =0 for I #0 and 30{11 =1 for 120,
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Summing Gt over t we obtain

-]
(11) ¢{in= ¢ ¢ {1},
t=0
if the series converges. We can interpret G[I} as the expected number

that the random variable X, will visit an iInterval I < Xz, N, prior

1
to the first emtry into the absorbing intervals,

Note that by definition we have

(12) Gt{—q, ) = Gt{hz, 111 =pr{T >t} .

Summing over t we therefore obtain

o0 (.-
(13) G{-=, o} = TG [-» =l = mPr{T>t)=g1),
£=0 © t=0

1f the series converges; where €(T) 1is the expected absorption time.

It is easy to derive the recurrent relations for Ht and Gt

by examining their definitions (6) and (9). We have for 1 Ci-ﬂ5h2'U Al,m ;

(14) B (13 = [ e {1-g}-rldg}, e=1,2, ...,

and for I C}\.z, 7\.1 3

(15) Gy (11 = [ e fr-g}-Flag}, t=1, 2, ...

If we sum these equations over t , we can get the relations

for H and G ; that is, for I C -®, ?\?U'?\l, ®
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om

(16) u{1} = [ c{1-th-rlagy,

and for I C kz, hl )

w

(17) 6{1} - 6y{1Yt = [ c{1-g¥.riae} ;

if the series converges. These relations can be regarded as integral
equations determining the unknown probability distributions H and G,
respectively. Many interesting results can be derived from these inte-
gral equations, but we shall not consider them in depth in the present
note.

One of the key results in the theory of random walk with absorb-
ing barriers is the following lemma which spells out the conditions for
the "properness' of the random variables T and ST as well as for the
existence of their moments. The proof can be found, for instance, in

Feller [5], pp. 380-381 and pp. 566-567,

Lemma 1. (i) If both Kl and », are finite, both the random variables

T and ST are proper and T has finite moments of all orders.

ST has a finite expectation and the equation:

(18) e(ST) = €(5.)*&(T)

holds if and only if F has a finite expectation -eo< , = g(ﬁt) < e,

ii) If A, dis finite but A, = -, we have the following three
( 1 2

possibilities. (a) If u 1s finite and positive, then T and

ST are proper, have finite expectations and (14) holds, (b) If
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u=0, then T and ST are proper, and g£{T) = © , (c) Other-
wise either the random walk drifts to - (in which case T and
ST are defective), or else EKST) = o and g(T) = « ,

(ii1) The case where kz is finite but A, = += can be treated

1
in the same way as the case (ii),

The equation (18) is called Wald's equation. (See Wald [10],)

Note in passing that if a system of the random walk with absorbing
intervals, -, xz and Ihl, ® , starts at some arbitrary but finite

initial condition SO = X, s where Xy € Kz, hl » then we can transform
it into the system of the random walk with absorbing intervals,

J S — ——eee

- Ay = Xq and M " Xgs +O, which starts from the origin. We can then

apply the results obtained above to this case without any modification.

A-3. Recurrent Cycles and the Induced Renewal Process

Let us go back to our original random walk model, defined by (1).
Starting at a given initial condition xo (which 1z not necessarily the
origin), the system returns instantaneously to the origin in period ¢t ,

whenever
(19) xt-l + §t 5 Kz or xt_l 4+ gt > Kl s

and the process starts anew from the origin from then on. We define the

kth return period Tk as the period of kth entry into either of the

two intervals, =%, A, and 12t that is, we put for k=1, 2, ...

(20) T,

= {t|The event (19) takes place for the Kb time in period t 1 .
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The characteristic nature of our random walk model with two return barriers
is that the section of the random walk following the kth return period
Tk is a "probabilistic replica" of the random walk after the occurrence

of the first return to the origin in period T Therefore, the sequence

1 .
of the numbers of periods between two successive returns to the origin,

Ty =Ty5 T3~ Ty, oo , are mutually independent, positive and integer-

valued random variables with a (possibly defective) common probability

distribution. These random variables are called recurrence cycles. It

is clear from (5) that this common recurrence cycle distribution, which
we shall denote by ® , is identical with the probability distribution
of the absorption period T in the random walk model with two absorbing

barriers at A, and A, « Hence, we have

(21) ef{r] = Pr{Tk ~T,_, = T}

k-1

1t

Pri{r = 1= HT{""’:‘”} = GT_]_("”:'”) < G (=)

where equations (7) and (12) have been employed. It is also clear that

the probability distribution of the first return period T to be de-~

1 2
noted by @ﬁ ; 1s identical with that of the absorption period in the
random walk model with absorbing barriers at kl-xo and A2 "X that

is, we have

(22) @t {r} = Pr [Tl = 7}

Pr{t= 'T|Sl+x0 e Az,?\l, seey St_1+x0 € kz,)-l

and S, tx, € =%, U.hl,@1

n

P:'{t==='1’!s1 e 7\.2-—x0, hl-xo, "oy St-l e7\2~xo, 7\.1-x0

z xlub =
and S e "% A ~xXg UN ~x5, @},
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1f Xy = 0, then g coincides with @ ,

Therefore, the sequence of the kth return periods {TkT conati-

tutes a delayed remewal process generated by the common recurrence cycle

distribution ® and the initial recurrence cycle distribution ol .

{(An excellent expositiﬁn of the integer-valued renewal theory can be found
in Chapter 13 of Feller [4].) A delayed renewal process is said to be
persistent if both ® and ot are proper. (If one of @ and ot is
defective, it is said to be transient.) Lemma 1, which states the condi-
tions for the properness of the first absorption period, turns out directly

applicable to the classification of our delayed renewal process [TkW

We thus obtain

Lemma 2. (i) If both A, and A, are finite, {Tk1 is always persis-
tent. (i1) If A is finite and hy = ==, [Tkl is persistent
if and only if yu 1is finite and non-negative. (ii1i) 1If A2 is
finite and A, =+, frk} is persistent if and only if  1is

finite and non-positive.

Our concern with the classification of the delayed renewal process
{Tk} would be justified by the next Lemma, often referred as the

renewal theorem. This is the fundamental "ergodic'! result in the renewal

theory and its proof can be found, for example, in Feller [4], p. 318,

Lemma 3. (Renewal Theorem) Let {TkT be a persistent, integer-valued

renewal process, then as t -« =

(23) 8 = Pr{The renewal event (19) occurs in period ¢t}

R S
e(T) ’

if &) =0, then 8 =0 .
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our random walk model with two retumrn barriers at hl and A
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The Steady-State Theorem

We are now in a position of proving the steady-state theorem for

2

Theorem 1. (The Steady-State Theorem)

(24)

(25)

If either (i) both Kl

Kz = -0 and 0 < y<®, or (iii) kz is finite, kl = 4+ and

e n <0, then as t = » the random variable X, converges

and A? are finite, or (ii) Al is finite,

to a steady-state random variable x in the sense that

ﬂt[I} - {1}, for any 1,

independently of the initial position. The steady-atate distribu-

tion [l 1is characterized by the equation:

n(ﬂ=-G—m-

(T) ’

where G and &£(T) are given by (l1) and (13).

{Proof) It is easy to see from (1) and (23) that for I C k?’ 0 we have

nt{ﬂ = Pr{xt_l +E e 1,

and for 1 <0, AI we have

BTV =prix _ +% <A or x _ +F 2AV+Pr{x _ +7 el

t-1 t

= # .
8, +Prix _,+7 e 1}

t

e rea—

Now it 18 also easy to see that for T ¢ Aoy hl
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1l

F 1
Pr[xt_1+.t e I Pr{x ot S e)\z,?\l, ceey Xgt S, e IC"z”‘ﬂ
t-1
+ v Pr{The event (15) occurs in peried T}
=1

-Pr{s; e?\. My osSpnq € ICKZ’Hl
t-1

G{I'H L 8_-GC, Tfﬂ;
=]

%

1 ‘rrap——_ptran POO——
where Gt{11 = Pr{xo'l'S1 e h2’k1’ vrey xofi-St eI CZA2,111 , Just as
Gt{I3 is defined by (9). Let t' <t , then we can rewrite the above

eguation as

t-1 i t-1 ]
G _ {1y +¢ {1t = £o _-cf1t+c (0
™1 ™1
t! t-1 1
= £o ¢ {1¥+ v o _ 6 {1¥+c{1}.
ooy U7 pmttyy BT OT t

Now it follows from Lemma 2 that under the conditions stated above the de-
layed renewal process [Tk3 is persistent, so that we can apply Lemma 3

(Renewal Theorem) and assert that as t ==
6, = 1/&(T)

Therefore, if we let t — = first and then let t' = =, we have

t' 1 t! cl1?l - Go{ﬂ
:18 .+ .1} "= 2 ¢ {1} - =T

Similarly, if we let t =+ ® first and then let t' = =, we have
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t-1 t-1 ®
" 3 Ay o - -0
0 * 8 61 v 6 f1ig G (==t -0 ;
=t '+1 T=t'+1 =t'+]l

where the second inequality is assured by 0 < Gt <1 and the last series

converges to zero because by Lemma 1 the conditions given above imply that

(- -]
B(T) = ¥ GT{-m,wl < © , Finally, if we let t —= T,
=0

1 e
0< Gi{I? < Gt{-ﬂ,@1 —+ 0 , because again by Lemma 1 the stated conditions
imply that the expected absorption period for the random walk model with

absorbing barriers at kl -x, and A, - x. 1is finite, so that the series

0 2 0
1
7 Gt{-w,w} is convergent.
t=0

In consequence, we can conclude that as8 t == for I C kz, 0

cf{1t - GO{I] i1
L -5 " '5D ¢

and for 1<0, Al

¢{1V - g4f1} 1 i1}
L s ——m Tt e T e

(]
for I $#0 and GO{N=1 for I 30 . (Q.E.D.)

where we have used the definition of G, , given by (8), that GO{11 =0

The above proof is similar to that of the steady-state thecorem for
(S,s8) inventory policy in the mathematical inventory theory. {(See Prabhu
{81, pp. 176-177, For the general reference, see, for example, Arrow-
Harris-Marschak [1], Arrow-Karlin-Scarf [2] and Scarf-Gilford-Shelly [9].)
In the mathematical inventory theory, one has only to consider the random

walk probability distribution F(E) concentrated on the non-positive
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half-1l1ine ::;—64 because the level of inventory is necessarily decumu-
lating until it is restocked by an order, so that only the renewal theory
is necessary for the proof of the steady-state theorem. Thus, our steady-
state theorem includes that of mathematical inventory theory as a special
case in the sense that our random walk probability distribution F (%)
1s completely general and hence not only the floor barrier ( s in the
inventory theory and kz in our model) but also the ceiling barrier
(xl) must be considered.

In the above theorem, the steady-state distribution T{I1 has
been shown to equal the ratio between the expected number of visits to
an Interval I & XE:_K; prior to the absorption, given by {11, and
the expected absorption period, given by &(T) , in the random walk model with
absorbing harriers at }\1 and 7\2 . G{IY canbe computed to any desired degree of
accuracy by applying the recurrence relation (15) step by step from t =0
and summing Gt{I1's over t . Or if we are lucky enough, the relation
(17) can be directly solved to get the explicit form of G{1Y . 1In this
gsense, we can claim that the steady-state distribution E is completely

characterized by the equation (25).

A-5. Two Corollaries

Let ™ and e be the probabilities that x

enters
t

+ £
t-1 t

e

into the upper absorption interval Al, o and into the lower absorption
interval -e, xz , respectively. They can be easily calculated as

{26 -a) m

— o
=Prix _ +E €A, = j_mnt_lh,l - ®, =}.r{del,

1t
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(26 -b) M, =Pr{x ,+€ e-= xzh = { 0, = xz-sH-F{dgl .

t

Then, as an application of Theorem 1, we can establish

Corollary 1. Under the same conditions as stated in Theorem 1, as t —= =,

and

he comverge to their steady-state probabilities =

Me A}

and T s respectively, which can be characterized as

27 ATTem T M » 2T TEm ¢ &(T)

(Proof) It follows from Theorem 1 that, as t = o , we have

1

o

o mcﬁ -o-g,en'}
[ g!fhl-g,wl-F{dgi-j e o« F{d F}

e~ 0 e E(D)
@ » 6{=, 1,0}
e “ T = Mmr TR = [ e F et

If we apply the relation (16) to the above two equations, then we can

immediately obtain the desired resulta. (Q.E.D.)

Note that the overall probability of the return to the origin in the steady-
state, ﬂ1+-2é ; 18 simply the reciprocal of the expected absorption time

£(T) ; that 1is, we have

fol,-ﬂ + H{-wm, hz'i H{=ora) 1
(28) nth - 6] e M T =D

because T 1is proper under the stated conditions in Theorem 1.

-3
Let jlt and j2t denote the expected values of xt-14-‘t when
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p— —_—
it enters in Al,w and in -m,hz s respectively. Then, they can be

calculated as

[-- I -]

- 3 = P M .
(29-2) Jye 7 'Y-m";\ . (x,_p + &) FlAg YT, {ax )
1 "t-1

..}

{‘m goF{dE-xlen, _, {dx},
-a";\l

Ny
[ T 'c'F{dg~x't-nt_1{dx} )

-& -0

i

(29-b) Jop

Then, as a second aspplication of Theorem 1, we can establish

Corollary 2, Under the same conditions as stated in Theorem 1, as t = =,
jlt and j2t converge to their steady-state values i& and io

respectively, which can be characterized as
(30) i = E(ST|S € N> Ny =) oo o dp = e(sT]sT e 'w’hzt)'ﬂz .

(Proof) It follows from Theorem 1 that as t = ® , we have

i =l = ! £ erfar. n{dx1=j' yg.F{dg 1efdxd

d E(T)

=N

. - m___r .
TN gl‘ F(d? xlc{dx} = N z.H{dEY , by (16)
M 1

. E(STIST e N, @) Pr (S, ¢'h1,m‘) s
- e(T) & T‘ST.)‘lim) T by (27)

Jpp = g = E(SplS, e ‘“”7‘2')'32 . (Q.E.D.)
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It should be noted that the sum of i& and 22 is equal to yu , because

by Wald's equation (18) we have

E{STlsT ¢ kl,w1Pr{ST e hl,m1 + E{ST]ST P -abhzhpr{s ¢ :;;131
(31) tis = T
1 &(T)

E(sp)
e(ry "

A-6., Calculations of Steady-State Mean and Variance

If we are interested only in the mean and variance (and the higher
moments) of the steady-state random variable X, there is a method which
enables us to calculate them directly without having recourse to the prior
computation of the steady-state distribution. To this end, let us define
the joint expression of the generating function of T and the characteris-

tic function of ST as follows:

(32) K(w,k) = efexp(ines )k}
= T kt[f exp(imz)-Ht[dz1 + r exp(iwz)-Ht{dz1] s
£=1 B ;\‘1

where 1 = /-1 . Let us also define the generating-cum-characteristic
function of Gt as follows

wt?\l
(33) y(mk) = Tk f exp(imz)'Gt{dz} .

t=1 7\2

Finally, let us define the characteristic function of F by
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[--]

(34) p(w) = [ exp(imz)-F{dz} .

-0

Then, it is easy to derive the following relation from the recurrence

relations (14) and (15):
(35) K(w,k) = 1 - {L-keo@)}ey(wk)

for all @ for which () exists and for all k for which the two
series (32) and (33) converge. This relation is called the generalized

Wald's identity whose properties are extensively discussed in Cox-Miller

[3], Miller [7}, Kemperman [6], or Feller [5].

If the expectations of T, ST and gt exist, then they can be
expressed in terms of the generating~cum-characteristic functions as
&T) = 6{-= =) = y(0,1) , 1:€(S)) = H(0,1)/2 and 1:£(E) = i-u= o' (0) .
In this case, differentiating the generalized Wald's identity with respect
to m and evaluating the derivative at w =0 and k=1, we have

(36) EOD - o' 0)+7(0,1) .

This is nothing but the Wald's equation stated by (18). If we keep dif-

ferentiating the generalized Wald's identity with respect to wn , we obtain

2
(37-a E—Ké‘-"’gﬁ = 2:9' ) - 2L+ 04(0)7(0,1)
U .
3 2
[ 0,1 0,1
(37-b) i—;f%'ll = 3.9 (0) 'B—ng;z"—l + 3eg(0) » 2L 4 om0yeyco, 1)
4 3 2
(37-¢) 3L;§%rll = 4.¢l(0).§_€f%111 + ﬁ.wu(g).gLif%Lll
od)) 1]

1
+ 4™ (0)- 2L 4 gm0y +y(0,1)
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and so on. If we substitute the relations: in-m;?)(O) = E(g:) 3

1
2™ 0,1y /2" = s(s;) ;o i%a ™0, 1y 2" = L“Zzn'dc(z) and
7(0,1) = G{~w,w} = €(T) into the above equations, and rearrange terms,

we can easily establish the next theorem.

Theorem 2. (The Steady-State Mean and Variance)

If p= g(gt) # 0, the mean and variance of the steady-state

random variable X, if any, can be expressed as

Kl kl
(38) gx) = [ z+{dz} = | z%(é—,rz)l
N M
q Jesp )
2 \eGp ~ &(F)
hl Kl
(39) var(o) = [ (2 e emlae) = | fa- et
) M
2 2
y esp e\ Jesp U Jeeh
3\EG eG4 E(ST5 €(g,) ’
If =0 and Var(gt) >0 , they can be expressed as
1 5(8,3;) E(ES)
(40) E(}.E,) = 3 2 = ) :
E(SD)  ELE)
- <2 )
L Jesh aghl | [esh &(£)
(41) Var(® =g\~ - "7/ 9|\ T ) - )
€(5p) (%) FE &g,

The moments of ST are often easy to calculate or easy to approximate,
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A-7. Two Special Cases

In this sectlon we examine two special examples for which we can
explicitly calculate the steady-state distribution or at least its mean
and variance. The first example is the well-known Bernouilli random walk
model and the second one 1s the random walk in which the distribution of
each step is a mixture of two exponential distributions, The former is
the discrete-time, discrete-state approximation of the celebrated Wiener
process and the latter can be regarded as a discrete-time, continuous-
state analogue of the Birth-and-Death process.

Let us first consider the Bernouilli trial random walk model, in
whicﬁ the probability distribution F of Et is characterized by the

atomistic distribution:

(42) F{sl = Pr{gt =s}=q, and F{-s} = Pr{gt = ~s1 = 1-q ,

where s > 0 1is a single-period step and 0 < q <1 1is the probability

of a positive jump. The mean and variance of Et are given by

(43) E(E) = u’ = aeq - 5:(1-) = (2q-1)°s ,

Var(gt) = g(gi) - uz = 32 - uz .

Note that the position of x, as well as that of hl and hz can take

t
only the values of 0, +, +2s, ... .

Let g(x) = ¢{x} for x = K24-s, k24-28, ey %1 -8 , where G
is defined by (11) in the random walk model with two absorbing barriers

at kl and RQ . We can interpret g(x) here as the expected number

that X, vigits the position x prior to the first entry into either
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of the two absorbing Intervals. It is easy to see from our elementary
consideration that in the case of the Bernouilii random walk the rela-

tion (17) can be transformed into:
(44) g(x) = g*g(n-s) + (1-q)-g(x+s)

fO‘r X = A.2+S, ?\2+25, “sny -S’ S, *e0y 7\.1'3 ) With g(xz) = g(hl) = O 3

and for x =90

g(0) - 1 = qeg(-s) + (1-q)°g(s) .

When 11 # 0, we can solve the above difference equations to get

ML EN
(45-a) g(x) = 8:(1-Q ~h;.(Q-h 1) for x = Ay Npts, e, 0,
w(Q “-q b

- X=h
s 2oneog .
N, A
2o

or x=—‘0,‘5, LR }\-1 ]

u*(Q

where Q = \'_q/(l--c[)‘}l/5 . When uy =0, we can solve it to get

]
N

]
i

(45-b) g {x) Xy for = Ayy Nyt8, oen, 0,

¥
[~

for % = 0, 8, wsey Kl .

In the Berncuilli random walk model, an absorption can occur only

at A, or KZ . Let us then denote by h(kz) the probability that

1
ST = Az and by h(xl) the probability that ST = k1 . Obviously,

h(n,) = H[?\.z'l = H{-w,xz'} » h(\) = H{xﬂ = H{'Kl,aﬂ and h(A\)+h(r,) =1 .
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When p # 0, these two probabilities can be easily calculated as

-

1 s
(46 -a) h(r,) = (1-@) g(h,+5) = (1-q)= -0 2@ - 1)
N ™
u-(Q -Q
-}\'1
S Sl * S
- - 2’
Q >~2"Q kl

h(}\,l) = q-g(kl~s) = _%_;L—. .

and when 1y = 0 they can be calculated as

M A
R R L U e wi

Using these expressions, we can obtain for the moments of the absorption

peint ST ’
(47) £(5]) = Myrh(%) + A-h(A)
_}\_ -7\2
- h;(l- Q 1) + x?(Q -D , when uy# 0,
Q'kz ) Q'h1
n n
= h2.h1 _ hl.hz when u=0
MTh | ’

for n=1, 2, ... . Then, the explicit expression of the expected ab-
sorption period ¢(T) can be derived from Wald's equation (18) when

LL#O,
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"Kl “A
E68) MA-2 D+ nE@ “-1)

(48-a) e(r) =

and from (37-a) when y = 0 and 52 +#0

2, .2 2
(5.} N, - A
@8y E() =k - 2L el S Klzz :
Eigt) 8 '(kl- kz) s

Let E(x) = E{x] sy X = Az, h2+-s, very kl 5 be the steady-state
probability of x = x in the random walk model with two return barriers
at Kl and Az . Then, its explicit formula can be deduced from (25)

in Theorem 1. Thus, when y # 0, we have

- XA,
g(x) _ s'(1-Q kl)-xq .1
E(T) -hl -Kz
M- D)+ A @ 2-1)

-\ x-hz

2
S'(Q _l;ll.(l-Q-K_) for X = 0, Sy eavy ?\-1 3
AMpA-Q ) +a(Q l-1)

(49-a) m(x)

for x = Moy Moty wee, 0,

2
and, when 1 =0 and s # 0, we have

49-b = -2 2% " M £ =N\ + 0
( ) n(x) = -257 = % OF X = Ny Ng+8, «vsy 0
1
A X
271
-2s for x =0, 8, sos, A .
MM 1

The steady-state mean and variance, E(E) and Var(z) s can be also
calculated either from the explicit expressions of ﬁ(i) given above

or from equations (38)-(41) in Theorem 2. 1In any case, when u # 0,
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we obtain

R2a-o e 2 2
(s0-a)  Ex) = 3 -~ P
A(1-Q D+ A @ 2-1)
ey ey
(51-a) Var(E) =3 _Kl -Az - s
AA-Q N +a @ 2-1)
™

1
Rt b

A (L-Q )+?\(Q
'K

Ay (1= Q )+MQ

2
and, when u =0 and s # 0, we have

(50-b) e(x) = %0-1+?~2) )
(51-b) Var(x) jg K% 1x24—x§) - %sz .

We can also calculate moe oo i and AP by substituting (46) and

(48) into (27) in Corollary 1 and (30) in Corollary 2. When u # 0,

we have
R0LE noy) b -1
(52-a) S e BT =N =% s
M(-Q )+ A @ “-1)
. H{—-m,le! h(r,) pe(l - Q"“l)
T2 = Tam " Tem N )

Ay (1-Q >+MQ 2-1
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_ u'hl(Q 2 -1)
(53-2) iy = elsglsp 2t = A A, ’
hz(l- Q )+ hl(Q -1)
_kl
. 'S is A 3 u"}\'z(l -Q )
= £y <Ay tem, = = " .
42 Ve =2 Th N n,

MA-a D+ 2-1)

When 1 =0 and s” # 0, we have

szhl -8 hz
(52-b) T i DR Jp——
L
(53-b) — - = —2
i N W iz N - Ay

If one of the barriers is infinite, then the above formulae for
various characteristics of the steady-state random variable x can be
much simplified, If Az = -2 and 0 <y <e, we have by applying

1'Hopital rule to (50)~-(52):

(53) &(1) = —} ;

(54) n(x) = M— for x

il
<
-
1
w
L
1
M
7))
-

LEC L I }

s 1 _ x
=50 -9) for x =0, s, 28, ..., A

13

(55) &(x)

~

i}
(S TP
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2\2
.2 12 1fs”} |
(56) Var(f) = 12K1 38 + 4(;L/) ;
T S S =0 -
G7) LR TED =0
(58) =uw, jp=0.
We can do similar calculations for the case where A, = @ and -e< , <0,

1

but they will be left for the reader's finger exercise.
Next let us turn to the second example in which the probability

distribution F of each step gt has the density

5

(59) £(2) = a+bexp<- ai) , for E>0,

1 -
= mexp(;) ; for E<O,

where a >0 and b > 0 . The mean and variance of Et are given by
(60) €(5) =u=ab,
2 2

Var(gt) =a + b,

In this example, £(f) 1is the convolution of two exponential densities
concentrated on 5:; and :;;5 s respectively. Alternatively, each
step gt is the difference of two positive exponentially distributed
random variables, one having a density (1/a)-exp(-%/a) and the other
having a density (1/b)-exp(®/b) .

Although we have not been able to derive the explicit expression

of the steady-state probability distribution T in this example, we can

at least calculate its mean and variance as well as its other characteristics
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relevant for our calculation of the long-run trend-free average loss A
in the text,

To this end, let us consider the random walk model with two ab-
sorption barriers at Al and A2 y induced by this mixed expomential
distribution. If an absorption occurs 1in, say, the upper absgorption
s  ~m— .
interval hl,w in period T , then the step gr which carries S

T

ovey kl must be generated by the positive part of the exponential den-

sities, i.e., by (1l/a)+exp(-%/a) . The excess of the absorption point

is the excess of the random variable

over the upper barrier, ST-kl 3
£ - - . -
Ly over Kl ST-l co#ditional upon ET > hl ST-l or ST > kl Be

cause of the well-known "lack-of-memory' property of the exponential dis-
tribution (see, for example, Feller [5], p. 8}, ST-kl conditional upon
ST = hl has the same exponential distribution as that of the positive
component of ET ; 1independently of the absorption period T . Similar
remarks can be applied to the occurrence of an absorption in the lower

absorption interval, —«5h2 . Hence, we can show that

exp(imkl)

(61) E{eXP(imST)|ST 2.K11 T T+ iw/a ?

exp(iwhz)

E{exp(imST)lST St e T

Keeping these remarks in mind, let us now substitute k = m-l(m)

into the generalized Wald's identity (35) and obtain

- T
hy~elexp(inS ) {0 (@) |5, > A1

-1 T

(62) g[exp(inT){m (YRR
h . -1 1T

+ hyeglexp(us ) {o ~ ()1 |5, <2,

.-.-.'1’
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where hl = H{Kl,w1 = Pr{ST > k11 s h2 = Hf:;;x;1 = PrfST < A, ' and

2

h, + h, =1 . This 1s called Wald's fundamental identity of sequential

H 2

—

analysis. (See Wald [10].) Since in our example «(m) can be shown

to be
o(w) = 1/(1+ 1aw)* (1 - ibw) ,

if u=a -b#0, by substituting m= i(l/a - 1/b) into (59) and em-

ploying (58), we get

hy-elexp{(l/a - 1/b)s Ys, > a1 + by glexp{(1/a - 1/b)s. |8 < 2}

-\ NS
- b 1 a 2 _
—fﬁ<a)R +}b(b)R =1,

where R = exp(l/b-1/a) . Noting that h, + h, = 1 , we can solve this

1 2
equation for h2 and get for 4 =a-b # 0
-}\1
(63-a) hy, =1 -h = —itob/2R .
2 1 -hz N
(a/b)R - (b/a)R

The explicit expression of h2 =1 - hl for the case where = a-b =0

can be obtained by applying 1'Hopital's rule to (63-a). Thus, we get

N, t a

(63-b) by =l =y =535 7% -

Because of the remarks given in the paragraph above, we can alsoc calcu-

late the moments of the absoprtion point ST by
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Iul
&(Sp) = £(SpISy = M) hy + &(splS. < Ay)ehy

for n=1, 2, ... . Hence, we have

2, .2 2 2 2
(64-b) &S;) = (M t2an +2a )ehy + (A5 - 2br,+2b )+h,

3, _ ,.3 2 2 3 3 2 3 i
(64-c) E’(ST) = (7\1+3ah1+6a 7\.1+6a )-h1 + (7\.2 3b7\2+6b ;\2-6b )+h,

and so on. Then, the explicit expression of g(T) can be derived from

Wald's equation (18) when u = a-b # 0,

(AQ-b){I-(b/a)R hl] + (h14-a){(a/b)R kz- 11
(65-2) E(T) = w - ;
uf(a/b)R “- (b/a)r 11

and when u = a-b =0 it can be derived from (35-a),

2 2 2 2
(k2-2b7\2+2b )(?\.1+a) + (?\1+Za?\l+2a )(7\.2~b)

(65-b) E(T) = 5
2a° (A, = N+ 22)

If we substitute (64) into (38)-(41) in Theorem 2, we can obtain

the explicit expressions of §£(x) and Var(z) . When y=a-b#0,
we have

A P

2

1yt (x’%+ Za;\l+az){(a/b)R -1}

-\

(7\2 - 2bA, + b2) {1- (/a)Rr

1
(66-a) £(x) =5 -

=X
Oy -b){1- (b/2)R 1+ (0 +a){(@/bIR -1}

) 2(a’+b? - ab)
(a-b) ’
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—-K -
(A%-Bbh§+6b2h2-6b3){1-(b/a)R 1}+(A€+3ax§+6azkl+633){(a/b)R "2
~

A

Mhapra) {@/mr 1)

W]

(67-a) Var(i) = -
(0, -b) {1-(b/a)R

-6 (a2+b2)}
2

"4

(xg-th2+b2){1-(b/a)R A11+(h%+2ah1+a2){(a/b)R
)

”k -
(D) {1-(b/a)R  TH(rpta) {(a/bR  “-1)

(a-b)

2
~ %ga2+b2-ab }2 )

when y = a-b =0 and a2+b2=#0, we have

(66 -b)

(67-b)
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We can also calculate 'Ih s Mo 14 and 12 by substituting (63) and

(65) into (27) and (30), When y = a-b # 0, we have

h A

"
(68-a) mn=l-q,= E(;) - ufEiLb)R - 1) _

(g =B){1- (b/a)R ¥+ (A +a)((asb)R

2-11

n

(69-a) i = e a(sT|sT 2 M)

-)\'Z
wOy +a){@mr 2-11

)h .

-h -~
(A, - b) {1 - (b/a)R vy (n, +a) {(a/b)R 2.1

When p = a-b =0, we have

2.=.12(}‘.2 ~-a)
- 2 2 2 2
(7\2 -a)()x1+ 2a7\1+2a )+ (?\.l-l-a)()\.z - 2a7~.2+ 2a7)

(68-b) m=1l-m

2a% (h, +2) (0, - 2)

(69-1')) jl = -1‘2

~

(- a)(?«.f+ 2ah, + 2a%) + (h1+a)(x§ - 20, + 2a%y

1f Ay = = and 0 <y =a~-b < e, then the above steady-state

formulae become much simpler. We have in this case

?s.l + a
(70) £(T) = ;

2 + 2ahl + 2a2

1 ) 2%+ b2 - ab)

; 3
?\1+a a-b

]

7L e(x)

i~

1
2
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1 7\.:;+3a7\.§+6a2}\1+6a3 2 2
(72) Var(zs) =3 7\.1+a -6(a +b7)
2
2 2 2
1 <A.1+Za?\.1+2a ) ) 4(32+b2-ab)
+
Z A T2 (a-b)2
(73) S VR -0
| Mta em o BT
(74) y=u, jp=0.

We can do similar calculations for the case where ?\.1 = o and

—e < u=a-b<Q .,
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