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THE ESTIMATION OF A DYNAMIC EQUATION FOLLOWING

A PRELTIMINARY TEST FOR AUTOCORRELATION®

by

Jon K. Peck

Section 1

This paper considers the procedure of estimating a dynamic linear
equation including testing for the possibility that the disturbance terms
in the relationship have positive first-order serial correlation. That
is, we investigate procedures which consist of first testing for serial
correlation; then either estimating the relationship using Ordinary Least
Squares if the hypothesis of no serial correlation is accepted or esti-
mating the relationship using an estimator which takes serial correlation
into account if the hypothesis is rejected.

The model considered is the simplest possible which allows for
variation in the factors known to be at least asymptotically important.

The equation to be estimated is
1 Ve =0y vPx H+ytu , t=1, ..., T

with an error process

@) S 7 P T -

*1 would like to acknowledge the computational assistance of Howard
Gruenspecht and David Weiman. An early version of this paper was
presented at the Econometric Socciety meetings in December 1974. The
research described in this paper was undertaken from grants from the
National Science Foundation and the Ford Foundation,



In obvicus vector notation vy = Oy_l +Bx +u. x 1s strictly exogenous
0ga<l, 0<p <1, and E(Wx) = 0 . The random vector T is
assumed to be distributed as N(O, U%IT) .

If Py is zero, it is known that OLS is asymptotically unblased,
consistent, and efficient although the presence of the autoregression in
y causes a small sample bias in the estimates (see Malinvaud, [10], Peck,
{11}, Hurwicz, [12]). When o, 1is different from zero, however, OLS is
known to be inconsistent and is likely to give poor estimates in finite

samples. Thus the usual procedure is to guard against this possibility

by teéting for first-ofder serial correlation before accepting the OLS
estimates.1 A variety of at least congistent estimators are available
when pu is different from zero.

~ The researcher's estimation strategy thus has three components.
First, which test should be used; second, at what nominal significance
level should the test be performed, and third, what estimator should be
employed if serial correlation is found? These are the questions inves-
tigated in this paper? In studying these questions, I shall be concerned
only with their effect on the final estimates. I am not concerned here
with the prediction problem, for which the value of P, is of interest,
nor with distortions in inference about the model which could arise be-
caugse significance tests on coefficients in the model would not have their
nominal significance.

There 1s no reason to think that testing at the one or five per-

cent levels, which is customary in classical testing theory, is optimal

I have assumed here that first-order serial correlation 1s the only pos-
sible difficulty with the disturbances. This is not meant to suggest

that, say, higher-order serial correlation need not be tested for in prac-
tice.



for the problem addressed in this paper. 1In fact, one might suspect that
never testing at all and simply assuming the existence of serial correlation
is a better strategy. The presence of autocorrelation is only of in-
terest here because it affects the propertiesof the estimators. If serial
correlation is truly absent in the population but a Type I error is made

in testing, this 18 unimportant 1f the alternative estimator does well,

and serioﬁ;mif correcting for nonexistent correlation gives much worse
estimates than OLS., Similarly, 1f correlation is present, but a Type

11 error is made, this matters only 1if this error, leading to the use

of OLS, gives poorer estimates than does an alternative estimator on the
same sample. Ordinary Least Squares estimates for this model are very
bad when Py is large, but some alternative procedures do well even when
the true fy is zero. Thus, on one hand a testing procedure at an (al-
gebraically) high significance level seems to reflect better the conse-
quences of the two possible errors., On the other hand, even a five per-
cent test may have high power against large values of e, where the con-
sequences of ignoring serial correlation are most serious. It is also
possible that which alternative estimator is best depends on the test

and significance level chosen. We are concerned with the choice of a
procedure which has three components, a test, a nominal significance level
for that test, and an alternative estimator to ordinary least squares

to be used when the null hypothesis of no correlation is rejected: de-

noted a8 (t, 8l, e) . Specifying a procedure for each parameter point

2The test for serial correlation is a pretest procedure but is in effect
performed on the unobservable variable U1 e The outcome of the test,

however, affects both the final specification and the choice of estimator.



gives a complete strategy for this simple problem. Given an evaluation
criterion, the ranking of procedures will vary with unobservable dimen-
sions of the parameter space, but we explore these rankings and look for
good strategies based only on the observable dimensions of the problem;
i.e., we attempt to find an operational decision rule for someone faced
with the problem of estimating equation (1).

Four tests and five alternative estimators are investigated using
Monte Carlo methods. Section 2 describes the teats and estimators used;
Section 3 specifies the design of the experiments, and Section 4 discusses

the results.



Section 2

First, the four tests are discussed: they are the Durbin-Watson
d statistic, the Durbin test !, Durbin test 2, and the likelihood ratio
test. All tests are used as one-sided tests for positive serial corre-
lation. The OLS residuals are denoted by @ .

1y The Durbin-Watson test (DW) based on the statistic

- ~ 2
;':(ut: T Uy)
d =
T2
ml‘.
2

is known to be biased toward accepting the null hypothesils when Y.y

is a regressor, but it is routinely calculated by regression programs
and might still be useful, especially 1f a larger than usual nominal
slgnificance level were used, The distribution of d depends on the
regréssors; thus to specify a precise testing strategy using this test,
the exact significance level must be calculated for each sample. We
have used the original procedure suggested by Durbin and Watson to ap-
proximate this (see Durbin and Watson [1]) of fitting a Beta distribution
to %d with moments depending on the sample. This distribution is then
numerically integrated to obtain the sipnificance level. 1In this pro-
cedure, of course, Y.1 is inappropriately treated as an exogenous re-
gressor. In so far as this approximation affects the behavior of this
test, it should be regarded as part of the definition of this test.

2) Durbin test 1 (D1} is performed by calculating



T ~ ~
'2’: Yl -1
h = I
T J1 -
z uy
2

where V(&) is the estimated variance of the OLS estimate of & and the
positive square root is taken. Durbin { 2] shows that h 1s asymptotically
standard normal if Py = 0, which is used to calculate the appropriate
critical region for the desired significance level of h . If the deno-
minator 1 - TV(&) is negative, the test cannot be computed. In these
cases our rule is to default to using Durbin's second test in order to
always obtain a test outcome. For most parameter points, the alternative
computation is infrequently needed.

3) Durbin test 2 (D2) is computed by regressing 4 on ﬁ-l’ X, ¥4
and the constant term and applying an asymptotically valid t-test to the
regression coefficient of 6-1 .

4) The likelihood ratio test (LRT) requires the computation of the maximum
likelihood estimator allowing Py > 0 . Then -2 times the log iikelihood
ratio for this model against the model constraining pu to be zero is
asymptotically x?(l) . Computing this test is essentilally as much work
as is computing the maximum likelfhood estimates and thus affords no com=~
putational savings, but it has a strong asymptotic justification.

Another procedure which could be used as a test would be to com-
pute an estimate of Py from the OLS residuals and to compare this Bu
to some prechosen number. It is, therefore, not a conventional test, but

if it is the magnitude of the sample correlation of the disturbances which

affects the properties of OLS, this test would have some intuitive appeal



even though the serial correlation coefficient computed from the residuals
is biased toward zero. We shall not examine the properties of this test
here, however.

Six estimators, including OLS, are examined. All except for OLS
are consistent in the presence of serial correlation, but most are not
asymptotically efficient, They differ considerably in the amount of com-
putation required, but none is too expensive to be practical in most si-
tuations. The estimators are OLS, Maximum Likelihood, Durbin's estima-
tor, Wallis' instrumental variables and generalized least squares, inétru-
mental variables alone, and Hatanaka's residual-ad justed generalized least
squares. Each is discussed in turn. Generalized least squares using the
true qu , might be the best estimator in this problem, but it would
be nonsengical to study it in the context of testing for serial correla-
tion since it uses the known value of o,

1) Ordinary Least Squares (OLS) has been discussed above and needs
no further comment.

2) The Maximum Likelihood Estimator (MLE) is computed by an itera-
tive process. It is the Cochrane-Orcutt procedure on the assumption that
the initial value of vy , y; 1n the sample is fixed. The estimator
is coneistent and asymptotically efficient as long as convergence to the
global maximum is achieved, Iterations were stopped when the residual
sum of squares changed by less than .01, In a very small number of cases
convergence was not achieved in the specified maximum number of iterations,
but the last iteration was taken as the estimate anyway.

3) Durbin's estimator as extended by Malinvaud (see Durbin [3],

and Malinvaud [10], p, 565) consigts in first applying OLS to the equation



Ve =0\ Vg P Vg Fdgx F A FdgF v g

estimating p, as &4/&3 » and then performing generalized least squares
with this estimate. 1In all cases when GLS is used in this paper, the exact
factcrization of the covariance matrix of the disturbances is used; no
observations are lost,

4) Instrumental Variables (IV) is performed uws ing the lagged values

of the strictly exogenous regressors as instruments. This is suggested

-1 and Yo.; &re

systematically related. This estimator thus corrects this source of in-

because Y1 is correlated with u, when pu>0, and x

consistency in OLS, but does not use sample information about P, to
improve the efficlency of the estimates.

5) Wallis proposed a two-step estimator (see Wallis [13] ) consist-
ing of first estimating equation (1) by Instrumental variables, then form-
ing an estimate of Py from the IV residuals, and finally performing
GLS with this estimate of LI This estimator is_denoted IVGLS. Here,
as elsewhere when gu ig estimated from the residuals, a small correc-

tion for bias is used. The estimator is

T
Uy

p = L2 + &

u T-1 T 2 T
Eﬁt_l
2

where K is the number of exogenocus regressors and {Gt} are the resgi-
duals. This adjustment to the usual formula is numerically insignificant

for the parameters used in this study.



6) The last estimator considered is the residual-adjusted genera-
lized least squares (RAGLS) method due to Hatanaka (see [ 5]). This two
step method consists of applying instrumental vgriables to equation (1)
in the first step and calculating an estimate ﬁz of ®y from the re-
aiduals U . The second step 18 to compute a modified generalized least

squares estimate., The equation estimated is

- p% = - A - *
Ve = P¥iay = A0,y = P¥pop) + Blxp = 0x; )

+7(1" p’:)+5l?t_1+vt, t=3, -o-,T-

This method loses one observation in the second step because of the pre-

gence of as a regressor. No first observation correction for exact

Gt--l
GLS, thus, applies. The estimator is shown by Hatanaka to be consistent
and asymptotically efficient without iteration.

. Of these estimators only the maximum likelihood method and RAGLS
are asymptotically efficient. All the estimators have finite-sample bias,
however, and asymptotic results may be an insufficient guide in typical
samples, especially if Py is large. Only asymptotic distributions for
the tests are available. The next section discusses the design of our

small~gample experiments to explore the properties of these estimators

and preliminary test procedures.
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Section 3

This section describes the design of the Monte Carlo experiments.
The available asymptotic distribution theory (see, e.g. Malinvaud [10])

suggests that four factors are important in determining the behavior of

estimators for the equation
p = Pl * Ty

They are O, pu , the pattern of correlation of x and the signal-
noise ratio. The signal-noise ratio is defined as %{ﬁ%}- which is

2V
-EJE*‘LE%E- . Note that a signal-noise ratio of zero corresponds to an
c.n/(l - 9,)
equation containing no strictly exogenous regressors. To reduce the var-
iation to be explored further, the exogenous variable is assumed itself

to be first-order autoregressive, x_= p X

2
¢ Kol + & v(e) = oe + This

allows a substantial range of behavior for x , but rules out more com-
plicated kinds of behavior which may commonly occur. With x autoregres-

sive, the signal-noise ratio can be written as

(=3 N

2
Bz Gi(l -0

o%( -p).

Mo~

In varying these four parameters, the coefficients P and 7y are set to 1.
The sample size for all experiments is T = 50, which means 49 available
observations for the regression (48 for the Hatanaka second step). Table

1 shows the values of Q, e Py and §/N used in the experiment.
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A full factoral design was employed,

TABLE 1

Note that only positive values of the parameters have been used. Five
values for p, were used as testing for e, > 0 precedes estimation and
thus the behavior of the procedure should be gensitive to pu . The case =0
corresponds to a misspecified equation, and Qx = Q0 corresponds to ran-
dom x .

It was desired to minimize the error in comparisons among estimators.
Because of the nature of the problem, standard variance reduction tech-
niques (see, e.,g. Hendry and Harrison [6]) are difficult to empioy.

However, the underlying random errors were kept the same for replications
at different parameter points and x was fixed in repeated realizations
of the y process. Therefore the different tests and estimators will
tend to be positively correlated and their differences will have smaller
variances than if the experiments were uncorrelated. Two hundred repli-
cations were used at each parameter point. All random numbers were gen-
erated using the McGill "Super-Duper" random number generator for normal
random numbers. The generator was subjected to several tests for random-
ness and passed them all except that a very small amount of fourth-order
gerial correlation was found.

To start the x autoregressive process the first twenty observa-
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tions from realizations begun at the process mean were discarded. The
next twenty observations were used to generate values of y which were
also discarded. The first Ye actually kept as part of the data vy ,
was kept fixed in all realizations at a particular parameter point.
Since the finite-sample moments of the estimators of equation (2)
do not exist even though the limiting distributions are well behaved the
results of the Monte Carlo study are summarized using nonparametric sta-
tistics.3 A number of statistics were computed in this study, but only
results based on the median of the absolute errors (MAE) of the estima-~
tors were reported. This statistic can be considered to be a nonparametric
analog of the mean squared error of an estimator, being an increasing

funci:ion of bias and dispersion of an estimator.

Section 4

In this section the results of the experiments are repeated. As
in most Monte Carlo studies it is impossible to summarize concisely all
of the results. The plan of the discussion is as follows. We discuss
firsi the comparative behavior of each test for autocorrelation at various
gignificance levels and each estimator used unconditionally without test-
ing; then we consider the tests, significance levels, and estimators as
compcnents of procedures, i.e. we examine the behavior of the components
of tte procedure vector conditional on the other components of the vector.

In attempting to rank procedures, we consider whether it is posgsible to

3The gample monents may be of interest even though the population quanti-
ties do not exist. Calculations using them in this study did not lead
te any different conclusions.
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choose a good test, significance level, or estimator independently of
the other components. Finally, we consider some particular procedures
and compare their performance at each parameter point with the best pos-
gible p-ocedure. In order to condense the discussion of estimators, re-
sults are only reported for the parameters & and £ ; the constant
term (which was, of course, estimated) is ignored.

We look first at the serial correlation tests. Table 2 shows the
percentage of samples in which the Durbin-Watson test, the Durbin tests
one and two, and the likelihood ratio test caused the null hypothesis
of no serial correlation to be rejected at significance levels of .01,
.05, .20 and .50 at the higher signal-noise ratlo. Each group of five
colunns corresponds to a value of P within each group 8, varies
from 0 to .9. Each page shows a different value of «& .

We consider first the behavior of the tests when Q 1is zero.

The -rue significance level of the Durbin-Watson test is usually below
its nominal value for all levels except 507%, but the significance level
rise:; as P increases. At P T .9 the test is quite close to its
true level at all four nominal levels, while for random x , it is ac-
cura-e only at the 50% level. 1In fact for e = .9 , the significance
leve! of the Durbin-Watson test 1s close to correct at all levels. As
Py ‘ncreases, the power increases with the increase being faster for
more correlated x series. A 5% test, however, never gives power above
.5 except for b = .9 and Py = .7 or .9 . Thus, much higher nominal
significance levels than are commonly used are necessary for adequate
power of this test.

The pair of Durbin tests have substantially higher power than does



TABLE 2

Percentage of Rejections of Ho PR, T 0
Significance P, = 0 P = e = .9
Test
a=20 Level =0 .2 I/ .9 0 .2 A W7 .9 0 2.1 W4 L7 .9
Durbin-Watson .01 0 0 0 g |.005 0 0 0 |.015|.010 0 |.025|.135(.190}.070
.05 0 o |.03 |.075{.080]|.005].025(.075(.125|.095]|.020{.18 |.440|.555}.215
.20 ,0651.175].3551.390.355].125{.240}.445|.455|.385}.200|.525}.790|.910}.540
.50 .545(.7701 .865|.835{.730|| .555].810}.900|.895|.730}}.550] .825|.985|.985|.860
Durbin Test 1 .01 .05 |.095|.185|.100|.025|{.055|.135|.260|.145}.030]|.015|.120/.365{.510].150
.05 .095!.245|.415].300|.135||.125|.285|.430|.325].140{|.065|.280|.640(.7501.275
.20 .285}.520|.635/{.535}.385]| .305|.500}.700|.610|.375{|.225]{.585}.835].900(.525
+50 .560|.760!.850|.800}.650||.515|.765{.870{.835|.665|]|.500(.800|.965{.970}.805
Durbin Test 2 .01 .010|.025(.055|.030].015 o |.050(.095|.075{.010(}{.010]|.045}.230|.375].085
.05 .040/|.100|.185/|.155!| .080]| .05 |.125|.260(.200|.110(|.025|.225}.540.630].185
.20 .180/.325/|.490].425{.315([.1751.375|.545.480|.290} [ .152( .465].775.875].440
.50 J450].6901] .8051.740] .605]] .445|.685,785}.765|.590}1.415].735/.950|.965}.735
Likelihood Ratio .01 .0051.015|.050]|.100| .045|.005|.010{.060|.140|.085{(.010[.02 [.25 |.635|.450
.05 .050| .055|.160|.300| .175||.025}.085]|.195!|.410|.195}|.040}.135(.415|.810}{.675
+20 .2051.240]| .4201} .650| .425!| .210}.250| .500{.690|.500]||.215{.340]|.685]|.910{ .800
.50 .535].560{.725].805}.630}| .525]|.600|.730].855|.650||.570{.650|.840].970| .895

1



TABLE 2 (continued)

Significance p =0 = .5 = ,9
Test X q‘ EK
a=,3 Level | 0 .2 A .7 .9 0 .2 WA .7 .9 C o2 A o7 .9
Durbin-Watson .01 0 ¢ |.015(.205].410 0 1.015}.055|.260].415 0 }|.065|.350|.645].495
05 0 }.05 }.165.435].625}!.015).100].290}.535{.645}|.025).265]},625},900] .765
.20 .095].330|.560]| .820 ,.885(|.160{.425| .700}.870| .885|1.215|.605].870|.990| .945
.50 610} .820;,925) .970} .975{}.605].850].945|,980].975]|.545}.865) .985}.990] .990
Durbin Test 1 .01 .050].125].260!,390(.460|| .045].140| .3101.405}.455!].010|.130(.440].750].555
05 .1304.300] .460) .595}.665(] .105).310;: ,530).645) .655]|.,055}.290] .665/.895|.775
.20 .315{.580}.755|.840|.890||.280{.545|.770{.880).870||.210}{.565|.8701.980(.940
.50 .5951.805).9157.965).950}}.535(.825] .910).965] .955]1.470.820].975].990].985
Durbin Test 2 .01 .015}.045(.120].295] .450 0 |.0751.170].310|.375 0 |.065].345].665).470
.05 .0451.135¢.320¢.520 .600/ {.055}.195) .375).530}.605{}.020].235).605}.845],705
.20 .170(.415].620|.805].830¢].195].425| .680].820|.840|]|.145].515(|.835].960|.905
.50 .480].735].850!.9451.950]|.455].720| ,875(.960/.950(!.415}.,765].970].990{.975
Likelihood Ratio 01 .0051.015|.060|.2601.355 0 |.020|.095}.345|.390]|.010;.020}.280(.7601.710
.05 .040(.085(.210!.490(.540;;.055;.095} .290.585{.560({.050{.175{.530{.875({.810
.20 .1801.275|.525|.7301.735|[.215|.330| .555]|.780]| .835||.215}.365(.720| .955}.900
.50 .480(.610!.780},865.800( |.535{.615{.785(.890(.785{({.550}.635{.880{.980{.930

o1



TARLE 2 (continued)

Significance p =0 = .5 = .9
Test X Px Px
= .6 Level = 0| .2} 4] .7].9 0 2] 4 LT .9 0 2 | 4 T .9
Durbin-Watson .01 0 |.030(.225|.710}.905 0 |.055}.320(.775(.905 0 |.120).505{.925|.950
.05 .020| .165|.490].890|.990| .04 |.251).555}.905|.990|].05 [.345].745|.975].975
.20 .180] .505{.825|.980|.995|}|.24 |.570}.865|.985],995||.195|.655|.915}.,990|,990
.30 .645) .8951{.970(.995|1.00| | .635}.895|.975}1.00|1.,00|].525.885|.98511.00|1.00
Durbin Test 1 01 040 .130(.405[.760(.9L5||.015{.135|.430}.790|.895 0 [.100]|.480|.895},930
.05 .100} .335].640(.920;.985(|.0801{.330|.655|.915|.965}|.035(.320|.720|.965|.975
.20 .320] .640/|.855|.960}.995||.255{.610|.870|.975|.995}||.155|.560|.890}.990|.990
.50 .610]|.850(.965}.995{1.00]|.550|.860}.965{1.00(1.00}|.425|.835{.965|1.00{1.00
Durbin Test 2 .01 .005].090(.315|.,720;.905 0 |.095|.345|.740].875 ¢ |.075|.410|.885|.915
.05 .050|.255|.550].880}.970{}.055}.265|.565| .880(.940}|.015|.240|.645| .955[.965
.20 .195|.535| .800|.950].995{1.195|.520|.840| .960|.990{ | .130.490(.860| .985}.990
+50 .520}.795!.9601.995(|1.00| | .451}.800}.950/1.00[1,00}{|.375|.805|.965|1.00{1.00
Likelihood Ratio .01 .005|.035{.22 |.670}.875{|.010|.060}.260} .685(.860|{.020|.040|.355}.870|.910
.05 .05 |.135|.445(.840{.915| | .040|.155|.480] .865|.920|{.060].170|.575}.950|.960
.20 .19 |.390].700}.930].950]|].225(.390(.705] .930|.945|].245|.405|.780; .975}.975
.50 .495| .680}.870|.965].965||.495|.645}.865}.970].950|].555}.650}| .900} .990].975

91



TABLE 2 (continued)

Significance p =10 p = .5 = .9
Test X X
o= .9 Level =0 o2 b .7 .9 0 .2 4 .7 .9 0 .2 A o7 .9
Durbin-Watson 01 .010}.155},585].990|1,00|1{.005|.160|.590(.980|1.00 0 |.135]|.545].965(.995
.05 .070.410},840|.995|1.00|.080|.405|.825|,995]1.00]|.050].350|.780}.990{1.00
.20 .2551.735|.935|1,00)1.00{|.235].725}.925|1.00}1.00]||.180].645}.915)1.00}1.00
.50 .645|,930/,995(1.00{1.00|}.580(.900{.990|1,00(1.00||.480).865(.980{1.00|1.00
Durbin Test 1 .01 .015}.205|.625(.985{1.00 0 |.145(.590}|.960|.995 0 [.080].470|.945(.995
.05 .115(,465],845]1.990(1,00|{.065).380|.800|,990{1.00||.025]|.255{.7051.975|.995
.20 .285).715/.935;1.00]1,00| |.205).655|.915{1.00]1.00/;.135].560|.875].995}1.00
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.20 .200/.645}.,925|1.00/1.00]).155).585/.895{1.00{1.00§]| .100/.490) .845}.995}1.00
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the Durbin-Watson test except at the 50% significance level. However,
the true significance level of the Durbin tests is much closer to the
nominal levels than is the Durbin-Watson test except at the 507 level.
The true significance level of both tests is lowest for large e -
This has the expected consequence that test 1 is generally more powerful
than the other test when compared at the same nominal level, especially
for small values of Py

The likelihood ratio test is quite close to its nominal significance
level. 1Its power 1s generally below the power of the Durbin tests and,
for some wvalues, the Durbin-Watson test when ®, is small, but it does
well at large values of pu . The largest differences among all these
tests stems from discrepancies between nominal significance and true sig-
nificance. 1If, however, for G 0 the Durbin-Watson test at the 20%
nominal level with actual significance near 5% 1s compared with the Durbin
test 1 at the 1% nominal and 5% true levels and the other two tests at
the 5% nominal and true levels, the Durbin-Watson test is the most power-
ful.

The relationship between nominal and true significance, varies
with the (unobservable) value of @ as well as the (observable) value
of Py The significance level of the Durbin-Watson test rises as &
rises. At the 20% nominal level, it rises from .065 to .255 as «Q rises
from 0 to .9, when P = 0 , but there is hardly any change for P = 9,
where the nominal level is essentially correct. In contrast, the two
Durbin tests show little variation in true significance level as Q varies,
test 1 remaining above its nominal level and test 2 below when CH is

small. For large values of @, however, and large values of P
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Durbin's test 1 falls below its nominal level. The likelihood ratio test
remains close to its nominal significance for all values of « , although
it tends to be slightly too high for large P and slightly too small

for low qx . Durbin's tests tend to decline in significance level as

gx increases.,

Whéﬁ o is large, ali }o;r tests hé;;.good power. With a= .6,
all four tests show the power approaching one as pu rises, and the power
is over 50% for all tests and nominal significance levels above 01
when Py is at least .4. At P, = .4 either the Durbin-Watson or Durbin
test 1 has highest power for significance .20 while the likelihood ratio
test is always worst. The ranking of the Durbin-Watson and Durbin test 1
varies somewhat with significance level, but the likelihood ratio test
is always lowest in power. This test 1s, in fact, the lowest in power
for virtually all cases when « is greater than or equal to 3., For
large values of ¢ even the worst test has reasonably good power, however,
In summary, the Durbin-Watson test seems to perform better than expected
especially at higher significance levels and with high values of G
The Durbin tests are stronger for low P and the likelihood ratio test
seems to perform below expectations.

We consider next the behavior of the various estimators when they
are used without an autocorrelation test. Available asymptotic theory
(see, e.g. {9], [10]) suggests that OLS will behave worst, i.e., have
largest inconsistency for small signal-noise ratios, large values of
pu , and large values of gx . Also, the larger is « , the larger
the inconsistency. For positive serial correlation OLS is expected to

overestimate « and underestimate P when e, >0 .
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Since the statistics produced in this study are voluminous, and
since we are primarily interested in comparisons of these procedures we
report only rankings of the estimators by median absolute error at each
parameter point. Table 3 shows the rank ordering of the six estimators
for the estimates of B and ¢ at each parameter point. §Six one-letter
abbreviations, standing for the six estimators, are shown in order of
increasing MAE at each point. The abbreviations for the estimators are

as follows:

Abbreviations Estimator

Ordinary least Squares

Instrumental Variables

Durbin Estimator

Wallis Instrumental Variables and GLS
Hatanaka Residual Adjusted GLS
Maximum Likelihood

et i 3 = S

In examining these rankings it should be recalled that as Qu increases,
the gap between the MAE of inconsistent OLS and the MAE of the consistent
estimators increases substantially. The medians of all of the estimators
of & except for IV are below the true & when P, is zero and all
increase with the value of Py - OLS shows the most dramatic increase

in median, overstating «& by as much as .81 when @ is zero. Some idea
of the cost of wrongly rejecting HO is found in the observation that
the ML.E, which generally has the smallest interquartile range (IQR) when
e, is greater than zero has an IQR ranging from 97% to 123% of the OLS
IQR when Py is zero. A typical value is 118%. The MLE bilas when Py
is zero is alsec slightly larger than the bias of OLS. Thus the strategy
of not testing would generally increase the dispersion of the estimates

only moderately if the MLE were used, even when a test would seem most



TABLE 3

Ranking of Estimators by Median ABS Error

.2 A .7 .9
o, Q S/N B Q 8 o4 g a B o B o
0 0 2 OMDWHI IOMHDW | MDWIHO HIMDOW | MWIDHO MDWOHI | MWHDIO MWHDOI | MHWDIO MHWDOI
.25 | OMHWDI HDOWMI | MHOWDI HMIODW | MWHDIO WMHDOI | MWHDIO MWHDOI | MDHWIO MWHDOI
.3 2 ODWMHI ODIMHW | MDWIHO IOHMDW | MWIDHO HOMDWI | MWDHIO MWDHOI | MWHDIO MWHDOI
.25 | oMWDHI DHOMWI | OMHWDI HWDMOI | MHWDIO MHDWOI | MWHDIO MWDHOI | MDWHOI MWHDOI
.6 2 ODMWHI DMWOHT | OWDMHI OHDIMW | MWHDIO MHWODI | MWHDIO MDWOHI | MWDHIO MWHDOI
.25 | ODMWHI DWOHMI | OMWDHI HMOWDI | MWHDOI MHWOPI | MHWDCI MWHDOI | MWHDOI MWHDOI
.9 2 DOMWHI MHDOWI | ODMHWI MHWODI | ODMWHI HMWDOI | MODWHI MDWHOI | WMDHOI WMDHIO
.25 | ODMHWI HMOWDI | ODMWHI MDOWHI | ODMWHI MWDHOI | MODWHI WMHDIO | WMODHI HMWDIO
.5 0 2 | OMWDIH MHIDOW | MDWOHI OMHWID | MDHWIO HMWDIQ | MWDHIO MHWDIO { MHWDIO MWHDOI
.25 | OMHWDI OHMWDI | MHWODI OMHIWD | MWHDIO HWODMI | MWHDIO MWDHOI | MDHWIO MHWODI
.3 2 OMIDWH IOMHDW | OMDWIH OWDHMI | MWHDIO MHWDOI | MWHDIO MWHDIO | MWHDIO MWDHOI
.25 | oMWDIH MOWHID | OMHWDI OMWDHI | MHWDIO HMWODI | MWHDIO MWHDOI | MDWHIO MHDWOI
.6 2 OMWDHI OMEWID | OMIDHW OIMWDH | MDIWHO WMDHOI | MHWDIC MWDHOI | MWHDIO MDHWOI
.25 | OWMDHI OMHDWI | OWDMHI OMWHDI | MWHDOI WMDOHI | MHWDIO DWMHOI ( MWHDOI MWHDOI
.9 2 MDHOWI OIMHWD | OMDHWI IOMHWD | OMWDHI MWDHOI | MWDOHI WMHDOI | MWDHOI WMDHOI
.25 | ooMuwr OHMDWI | ODMWHI MOWHDI | ODMWHI MHWDOI | OMDWHI WHMDOI | WMDOHI WMHDIO
.9 0 2 OMIWHD MOIHDW | OMIHDW MDWOHI | MHWDOI MHWDIO | MDHWIO MDHWIO ; MHDWIO MDHWIO
.25 | OMHDWI OMHWDI | OMHWDI WMHDOI | MWHDIO MWDHIO | MWDHIO WHMDIO | MDHWIO MDWHIO
.3 2 OMWHID HMOIWD | OMIWDH IOMWHD | IWHDMO MWDHIO | MHDWIO MHWDIO | MHWDIO DMHWIO
.25 | MOEDWI OMHWDI | OMDWHI MDWOHI | MDHWIO MWDHIO | MHDWIO WMDHIO | MWDHIC WDHMIO
.6 2 WHDMOI MOWHDI | MHWODI MWOHDI | MIOWDH MWDHIO | DMHWIO MHWDIO | MHWDIO HWDMIO
.25 | wpMHOI OMWDHI | OWMHDI MOWHDI | MOWDIH MWDOHI | HMDWIO MWHDIO | MWDHIO WDHMOT |
.9 2 HDOMWI OHMWDI | OMWDHI MWHDOIL | WMHDOI WMHDIO | HMDWOI MDHWIO | WMDOHI MHDWIO |
.25 | MowsDI owMuDI | OHWMDI OMWHDI | OWDMHI WHMDIO | OWDMHI MWHDIO | MWDHOI MHWDOI

12
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clearly useful, at least for the parameter values examined in this
study.

The most striking phenomenon shown in Table 3 is the uniform
mediocrity of IV. The estimator is ranked last or nearly last not only
for large valuas of 8, but also for most small and zero values of P, »
where one might expect it to be about as good as an efficient estimator.
This is true for both & and P . When pu is zero OLS is usually best,
but ML is most often the second choice, especially for the smaller values
of & . The Durbin estimator does better at low values of N than at
higher ones, as one might expect. RAGLS, although asymptotically as ef-
ficient as ML, is usually inferior to it, particularly for B . IVGLS
is rarely best but is usually superior to RAGLS and IV alone.

As the value of pu increases, OLS becomes a relatively less
attractive estimator although it remains the‘best estimator overall for
B when Py is .2. An interesting phenomenon which occurs throughout
this table and in the other results in this paper is that the rankings
of the estimators and procedures differ substantially for B and « .

As will be seen below, it is even true that the best test for autocorre-
lation, considered as part of a procedure, depends on which coefficient

is being considered. Thus whether or not one should take account of serial
correlation in estimation can depend on whether accuracy in @ or B

is more important!

As Py increases, ML becomes more clearly the best estimator.
When Py is .9, ML 1is best in thirty-six cases, IVGLS is best nine times,
and RAGLS is best twice. RAGLS and IVGLS are frequently second best.

The cases in which IVGLS is best are mostly for large « . Clearly, when

serial correlation is very high, it is important to use an efficient estimator.
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At the intermediate values of P, 0 ML is most frequently the
best estimator; the OLS, IV, and Durbin estimators do least well (except
for OLS at p= .2 ); RAGLS and IVGLS are inbetween. While ML is
usually best for both coefficients, when P, = +2 OLS does better for
B but not for o . IVGLS seems to be relatively better for < than
for B .

While ML seems clearly superior when Py is positive, 1f it is
excluded from the list of possibilities, IVGLS is most often best when
Py = .2 for both coefficients; RAGLS seems to be the next best estimator.
Correspondingly, when pu is zero, among the estimators which are con-
sistent in the presence of autocorrelation (but ignoring IV), ML is the
best, while IVGLS is least often best. It seems, therefore, that ML
is less sensitive to an autocorrelation misspecification than is IVGLS,
and one would expect the quality of the autocorrelation test to be more
importan: for IVGLS than for ML.

Having discussed testing and estimation in isolation from each
other, we now examine the behavior of procedures, i.e. triples of the
form (t. sl, e) . For the four tests and five alternative estimators
considered, I have tried seven significance levels in these procedures.
The significance levels, which extend (algebraically) much higher than
thogse usually considered, are .01, .05, .10, .20, .35, .50, and .75.
Hence, there are one hundred and forty possible procedures. Table 4
shows the best procedures at each parameter point. The entries are of
the form tse for the three components of the procedure. The estimator
abbreviations are the same as the ones used in Table 3. The test abbre-

viations are as follows:
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Abbreviation Tegt
W Durbin-Watson
D Durbin Test 1
E Durbin Test 2
L Likelihood Ratio Test

For example, the entry L35H stands for a likelihood ratio test at the
35 percent significance level followed by the RAGLS estimator if H,
is rejected.
In a number of cases there are several ties among procedures.
Usually this is either because the best test-significance level combina-

tion almost always accepted H and hence the alternative estimator

O )
was rarely chosen or because all the tests usually rejected HO and
were, therefore, equivalent. When all possibilities for an element of
a procedure were tied, an asterisk is used. The shorthand DWO5M stands
for DOSM and WOSM. Similarly DWOSWM stands for DO5W, DO5M, WO5W, and
WO5M. '"Factorizations" are also used for the significance levels.

The first approach to the aralysis of the behavior of these pro-
cedures is to see which tests, significance levels and estimators occur
frequently as components of the best procedures at various parameter
points: a sort of marginal analysis of the joint behavior of the pro-
cedures studied. The best combinations of two elements of procedures

are considered, and the best single procedure or cluster of procedures

ig found.

Tables 5a, 5b, and 5c show further data on the performance of the
tests, significance levels and estimators, respectively, as components
of the best procedures. Table 5a shows the ranking by MAE of the tests,

5b shows rankings for the significance levels, and Table 5¢ shows rank-



TABLE 4

Minimum MAE Test-Significance Level-Estimator Procedures

Signal-Noise Ratio = 2
fy a=90 a= .3
o | .2 4 .7 .9 0 .2 4 .7 .9
Il
p,=0 B| L3sH L35H D10M E20M L10M LOSHWM W751 L20M | L20-10M | 1L50M
L20H W20H W20M L20M
al  LO5I 1201 DEW75M |{DEWS0~75M| W75M LO11 L50M DEW75M |DEW75-35M| DEW75,50M
D5
p.=.5 Bl L20M 1351 120K L35M | L75-05M { LS50H DEW35 T DOIM  |DEW75-20M| DE75M
EW10I D20M 1L35H L75-35M { W75-50M
D201
& LO5SIDW L75M DW5075M DEW35, 50 L35-75M 1.0l DEW7550M ES50M DEW75-35M| DW75-20M
E75M 75M DEW75M ' L75-50M | E75-35M
L5075M
o =.9 B] LOIDHW | DEWISM L50M EOSM | L10-01M | LOSHW ESOT W20M EO5M | L75-05D
X w2oM LO1HWD DW751 E75-35D
DW75-20D
al o1 ELO1TM | w35-75M |pLw75-10M| 1L75-35M | LOlI DEOIM | L75-35I | L75-10M | L75-10M
D50-75M | E75-20M | DE75M DEW75-201} DE75-35M | E75-35M
E75M W7550M W75-20M | DW75-20M

T4



TABLE 4 (continued)

0, o= ,6 a= .9
0 .2 A .7 .9 0 .2 4 .7 .9
0,=0 B| L75-500 | EOSM L20M | 1L75,10M |DEW75-35M| L10T L50M L20M DLOIM | L75-05W
E10M [E75-35,05M E20M DEW10M DEW*W
D75-35M
W75-35,05M
al 75D DOSM DE7550M |DEW75-35M| DE75-10M | 1.75-35D | LO1I LOIM  DELW7S-05M 175-05W
W75-35M W75-05M DEWAW
o,=.5 B wrst L10T | 135,100 | L75-20M | DE10-05H | w751 DEW75T L75M | 120,10w | DELOW
F10-051 b10-05D E75-10M WO5H E75,50M DE10,05wW
DOST WOSD D*M DW75-35M |  WOSW
WM
&l 110-051 | 110 | 175,50M | 175,50M | 1L75-35M | 1osD L10D | L10,01M |DEL75-05M|DEL75-05M
DE75-35M | E75-35M | E75-20M L10M EQ5M WA WM
W75-20M | DW75-20M | DW75-10M
o =.9 Bl LolmwD | DE7SM 1754 |DEL75-10M| EL75-208 | DElOW D75M L75W 135M | L75-10M
DEW75-35M WOSM DW75-10H E75, 50W E20M DEW75-05M
DW75-35W | W10-05M
&l 1200w D20M L75M {DELO5-01D| EL75-20M { W75, 50H L01M E75,50W | L75-35H LW
E75,50M | WOlD | DW75-10M DW75-35W | DE75-20H | E75-10W
DW75-35M - W75-05H | DW75-05W

92



TABLE 4 (continued)

Signal-Noise Ratio = .25
a=290 a= 3
u
0 .2 4 .7 .9 0 .2 A .7 .9
0, =0 B| L5H WL75H DE75M L50M W75M W75D DLW75H L35M | L50-35M | DEW7S5M
al wio-o1% D35M W50M W75M W75M W05,01% W20M E75M |DEW75-50M| DE75M
EOIM W75-50M W75-50M
o =.5B| L200w | EOLHWM D1on L75M W75M L10M LOSHWM 135w | L75-35W | E75M
— EOLHWM E35W WS0M
DOSH
af Ewol® ESOM DW75M W75M W75M LEWO1* W20H ESOM | E75-50M | DEW75M
W7S5M | DW75-35M
o = -9 BlLOS,0tHUDM  L50W E75M E75W W75M LOSHDW L75M D35M L75W  |DEW75-50W
DW75,50M | DW75, 50W DE75-35W
W75-20W
a| Ewoix LOLHDM [DEW75,50M| DW75M W75M L20M E20M D35M W75M  |DEW75-35M
LO1T
LOSWM

XA



TABLE 4 (continued)

e, o= ,6 o= .9
0 .2 4 .7 .9 0 .2 A .7 .9
o =0 B| owisp | 175,35M | 1Llom E75,35M |DEW75-35M| E75-50M D10M L20M | LE75-20W *kH
x EOSH DW75M D75-35M E1OM | DW75-10W !
W20H W50-35M
&) Ewols WOlw W20M E75-50M | L75-35M | LOIHWDM | WOLDM 101D DO 1M o
D75-35M |DEW75-05M
W75-20M
p.=.5B| LlOH DO1D L50-20D | E20,10D | E20,10M | L1OM LO5D L75M |DEL75-05W| **w
x D35-20D | DW10D DW1oM DO5D DEW75-35M| W75-10W
D20-10D
G| Ewol* WOLHTIM L35M E75,50M | DE75-10M | L20M WO 1M LO1M *75-05M oy
DW75-35M | W75-05M 105, 01HWDM
DEQ1*
p,=-9 Bl L05,01H | 1L75M |DEWS0,35M| L75-35M | E75-20W | LOSI |DE7S5,50M { L75,10W | L75M LM
105, 01w DE75-20M | DW75~10W W50,35M | E75,50W | DE75-35M | DEOS-01M
W75-10M DW75-35W | W75-20M
&l L7sw WOlDWM | L75,01M { L10,05H L75M DE75D DOSHDM LO1H  [L75,10,01W DE75-10M
E75,50M EOS5H E75, 50M E75-35W | W75-05M
DW75-35M DW75-35M D75-35, O5W
W75-20W

82



TABLE 5a

Ranking of Autocorrelation Tests by MAE
as Components of COptimal Procedures
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.7
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L/ED/W/LED
L/EDW/ L/ W/
L/EWLD/L/E
L/EDWL

L/EWL/EDWL

L/EDWL/L/D
W/ L/W/L/EW
L/W/L/DW/E
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TABLE 5a {(continued)
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a

.2

A

.7

.9
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L/EDW
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LEDW/L/W/L
W/D/E//D/
LEDW/LEDW/
W/ED/L/W/L

EDW/DW/ EDW
EDW/ED/EDW
EDW/E/LW/L
EDW/EDW/E/
LEDW/ LEDW/
EDW/D/LEW/|

EDW/LED/LE
LEDW/LEDW/
LEDW/LEDW/
EDW/LD/LEW
LEDW/LEDW/
LEDW/LEDW/

LEDW/L/EDW
LEDW/LED
LEDW/LED/L
LEDW/LED
LEDW/EDW/L
EDW/IEDW/L




TABLE 5b

Ranking of Significance Levels by MAE as Components of Optimal Procedures

B
o e, S/N o, = 0 .2 b .7 .9
0 0 2 |35 20/05/10 05/ |35 20/50/35 20/ 10 20/75 50/35 20 20/50 35 20 75/75 10/50/05/50/
.25 |75/50/35 20/75 75/50/75/35/ 75/10 20/75/50 50/75 35/50 35/ 75/50/75/35/
.5 2 |20/05/35/75 50 35 10 20/05 20 10/]20/10/20/75 50 35 20/75 50 35 20/ 75 50 35 20 10 05/75
.25 |20/35/20 10/35 01/10/01 05/20 10/35 20/10/50 75/50 35/75/10 75/01/50/75/
.9 2 |01/10/50 35 20 10|75/50/75/50/ 50 20/35 50/50 20 05/10 05/75 50 35 10 05 01/75 50 35 20
.25 |05 01/05/10/01 50/75 35 50 20/75 |75 50/75 50/35/ 75 50/75 50/75 50 75/50/75 50 20/
3 o 2 105/20/01 05 10/ |75/50/05/35 20 20/10/35 20 10 05 20 10/05/75 50 35 50 20/75 35/20/
.25 175/50 35/50/35 75/50/75/01 20 35/50/75 50 35/ 50 35/75/50 75/ 75/50/35/20/
.5 2 |50 35/50/75/20 35/05/50/75/ 01/50 20/75 50 35 75 50 35 20/10/05 75 50/35/75/50
.25 |10/20 05/20/10 05 01/05 01/05 01 |35/75 20/35/20 75 35/75 35/50 05 75 50/75 50/50 35
.9 2 105 01/75/01/05 50 75/50 35/75/ 20/75 50 35 20/75 05/20 10 05/75 50 75 50 35 20 10 05/05
.25 {05/01 05/10/01 75/50/35/20 35 35/75 35/75 50 35 75 50 35 20/75 50 35 |75 50/75 50/35/
610 2 |75 50/35/50/05 05/10/05 10/05 20 10/05/20 10/ 75 10 50 35 05/50 35 |75 50 35/20 10 05/
.25 |75/50 35/50/75 75/35/50 35/50 35 {10 05 20/10 05/05 75 35/50 10 35 20/ 75 50 05 35/75 50 35
.5 2 |75/10/35 20 10/ |10 05/75/01/75 35 10 05/35 05/01 75 50 35 20 10 01 05/|10 05/10 05/10 05
.25 |10/05/35 20/10 01/50/01/05/ 50 35 20 10/35/75 20 10/75 50 35 20 05 {20 10 05/75 50 35 20
.9 2 |01/05/75 01 50 35}75/20/50/35 50 75 50 35/50 20/35 75 50 35 20 10 05/01 |75 50 35 20 10/05 Ol
.25 |05 01705 01 05 01|75/35/50 35/50 50 35/75/50 20/ 75 50 35 20 10/20 10 |75 50 35 20 10/75 50
9] 0 2 |10/50/05 35 10 75|50 20/35 05 10/20 |20 10/75 50 35 20/ |[01/75 50 35 20 10 05 [75 50 35 20 10 05 01/
.25 175 50 35/05 10/20|10/20 10/35 10 05 |20 10/75 50 35 20/ |75 50 35 20 10/05 10 |75 50 35 20 10 05 01/
.5 2 {75/01 10 05/05 01{75/01/10 0O1/75 75 50 35/50 35 20/ (20 10 05/75 50 35 05 |01/75 50 35 20 10 05
.25 |05 10/05 01 10/20105/01/20/01 10 75 50 35/20 SO 35 10|75 50 35 10 05 20/05 |75 50 35 20 10 05 01/
.9 2 |10/75 10 20 05/20}{75/50 35/50/35 75 SO 35/75 50 35/ |35 20 10 05/75 50 20 |75 50 35 20 10 05/01
.25 |05/10/05 10/50 75 50 35/75/10/ 75 10 50 35/20 10 05|75 50 35 20/50 35 20 |75 50 35 20 10 05 01/

1t




TABLE 5b (continued)
X

S/N 8, = 0 .2 A .7 .9
2 }{05/75 05/75 50 05 20/35/50/35 20 75 50/50/35/50 75 50/75/50 35/ 75/50 35 75/20/
.25 |10 05 01/05 01/05 35/75/50/75/ 50/75/50/35/ 75/50/75/50/ 75/50/75/50/
2 |05/10/05/01 05 75/50/75 50/35 75 50/35/75/50 75 50 35/20/10/ 75 50 35/20/10/
.25 {01/10 05 01/10 05 50/75 35 20/75 75/50/75/35/ 75/50/75/50/ 75/50/75/50/
2 (01/10 01 05 35 20 50|01/05/01/05 10 75 50 35/75 50 35/ [75 50 35 20 10/05 10 |75 50 35/20 50 35/
.25 |01 05/05/10 05/ 01/50 10/01/05 75 50/35/75/35 75/50/35/20/ 75/50/35/20/
2 |o1/05 01/75/05 50/35/75/20/ 75/50/75 50 35/ 75 50 35/75 50/35 75 50/35/20/75
.25 [05 01/10 01/10/01 20/10/50/10 20 75 50/75/50/35 75 50/35/75/50 75 50/35 20/20/
2 101/05 01/10/35 75 50/50/35/05 50/75 35 50/75 35 75 50 35/20/10/ 75 50 35 20/75 50 10
.25 {01/05/01/10/ 20/10 05/20/35 50 75/50 35/75/ 75 50 35/20/75 20 75/50/35/20/
2 }01/05 01 50 35 20 10{01/05/20/01 10 75 50 35 20/75 50 35{75 50 35 20 10/10 20 |75 50 35 20 10/05 20
.25 (20/10 35 75 50 20/ |20/35/01/20/ 35/75 35/75 50 35 75/50 35 75 20/10 75 50 35/20/75 20
2 |75/0, 05/75/05 05/20 10/05/10 75 50 35/75 35/20 75 50 35/75/20/ 75 50 35 20 10 05/75
.25 [01/05 01/05/01 01/05 01/05 01/ |20/50 35/35 20/ 75 50 35 20/75 50 35 |75 50 35 20 10 05/20
2 |10 05/01 35 05/20 10/01/05/10/ 75 50 35 20/10/75 75 50 35 20/35 20 10 |75 50 35 20 10/20 10
.25 101/05 01/10 05 20 01/05/01/05/ 35/10/35/75 50 75 50 35/75 35 20/ 75 50 35 20 10 05/75
2 {20/75/10 05 50/ 20/50 35 20/75 50|75 50 35/20 10 05/ |05 01/75 50 35 20 10 |75 50 35 20 10/05 01
.25 }75/50/35/75/ 01/10 01/01/05 75 01 50 35/20/10 10 05/75 50 35 20 10 |75 50 35/50 35 20 10
2 150 35 75/01/05 01 01/05/01/10/ 01/75 50 35 20 10 05]75 50 35 20 10 05/01 |75 50 35 20 10 05 01/
.25 |01/10 05/50/05 01/05/01/05/ 01/05/01/05/ 01/75 50 35 20 10 05 |75 50 35 20 10 05 01/
2 |05/50 75/50 35/ 10/05 01/01 05/ |10 01 05/10 05/10 75 50 35 20 10 05 01/|75 50 35 20 10 05 01/
.25 {05 01 20/05 01 10/ |o1/05/10/05/ 01/05 10/50 35/ 75 50 35 20 10 05/01 |75 50 35 20 10 05 01/
2 175 50/35 20 05 50/ |0l1/05 10 01/20 1075 50 35/20 10 05/ |75 50 35 20 10 05/75 |75 50 35 20 10 05 01/
.25 {75/20 10 05 35 50 75|05/10 05/10 05/ |01/05 01/75 50 35 75 10 01 50 35 05 20/|75 50 35 20 10 05/75

(A3




Ranking of Estimators by

TABLE 5c
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MAE as Components of Optimal Procedures

=

$,=0

o2

4

.7

.9

H/M/H/T/H/
H/1/D/1/M/
M/H/M/ T/ W/
WD/H/W/M/H
HWD/ W/ MHIW
HWDM/D/BEIW

HWM/ W/ D/u/
D/w/8/1/H/
H/W/I/H/1/
M/HM/R/W/H
HWD/H/I/DM
HWD/HWDM/H

D/W/D/W/M/
D/w/n/w/ 1/
I/u/ oM/ W/
H/WDM/HIWD
HWD/M/HWD/
HW/M/D/I/H

I/W/D/IM/W
M/HWDM/W/H
I/HIWDM/HI
DM/HIWDM/H
W/ HIW/H/W/
I/HWDM/W/H

H/M/u/mM/ 1/
H/M/H/M/ 1M
I/M/ M/ T/H
HWM/H/ IDM/
M/ W/ M/W/ D/
w/M/w/ M/

I/H/T/HIM/
H/M/1/M/D/
I/HI/HIWDM
HWM/HWDM/H
/M 1/M/ 1/
M/D/w/D/M/

M/WDM/WDM/
M/H/M/ 1M/ H
I/HIWDM/ 1/
D/HWM/HWDM
M/ IW/H/W/T
M/ I/HWDM/H

M/H/M/H/ M/
M/ W /M/HWM/
1/MD/1/D/M
D/M/DM/W/M
M/W/H/DW/D
M/H/ TWM/W/

M/D/M/D/w/
M/W/M/HM/W
B/wW/H/M/ Y/
H/W/H/D/W/
M/H/D/W/D
M/w/M/ WM/

M/H/M/H/M/
M/H/W/M/u/
M/ w/a/ M/ B/
Ww/H/M/a/M/
M/W/M/W/HW
M/wW/M/w/M/

M/H/M/H/M/
H/W/H/M/ W
D/M/D/W/MH
p/w/M/w/ D/
M/W/M/W/ M/
M/w/M/D/W/

M/ H/W/ M/
M/w/M/w/ M/
M/w/M/Mm/u/
M/u/M/D/M/
W/M/w/ M/ W
W/H/M/H/

M/W/ M/ WM/ W
M/u/w/u/v/
M/H/W

M/W/H/M/W/
M/D/wW/M/H/
Ww/M/H/w/H/

M/D/W/D/M
M/W/ M/w/M/
M/W/H/W/D
w/M/Dfw/M/
M/H
W/M/W/M/W/

M/ D/
M/w/M/w/M/
M/ w/
D/W/D/W/M/
M/H/W
M/wW/M/W/H

M/D

W/M

w/M/
w/n/w/a/w/
M/D/
M/W/H/

M/H/M/u/ M/
M/H/Ww/M/H/
M/u/M/ WM/
M/H/wDM/ W/
M/D/H

M/D/M/D/M/

M/W/M/W/H/
M/W/M/w/M/
M/W/M/w/M/
M/H/M/H/ D/
D/M/ DM M/
w/D/w/u/D/

M/w/

M/W/
H/D/M/D/
M/ W/M/H/ M
H/W/D
W/D/w/D/w/

W/M
H/M

WM/

W/M
M/H
M/H/W




TABLE 5¢ (continued)
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o
S/N o, 0 .2 R .7 .9
2 | I/MD/HIWM/ | I/M/ ID/M/ LM/ D/M/ T/WT M/ W/ M/ WM/ | M/ BIM/ /M
.25 |HIWDM/HIWD{M/W/H/WDM/ [M/W/R/W/8/ | M/ w/u/w/m/ |M/p/u/m/D/
2 | IWD/HM/HTW |M/H/M/B/M/ | M/ D/M/D/H/ | M/W/M/W/D [M/H/MH/M/H
.25 |HIWDM/HIWD|M/H/M/H/M/ IM/W/M/W/D/ | M/w/M/W/H/ 1M/ D/R/DIM/
2 | I/HIWDM M/ HIWD/HW | M/H/M/w/M/ [M/D/M/H M/H/M/H/D
.25 |HIWDM/ I/D/ |HDM/HTIW/DMIM/W/H/W/ R/ | M/W/M/W/D/ | M/ D/U/D/u/
2 | I/4IWDM/D/ |M/D/M/W/D/ {M/W/T/W/ D/ | MW MmN [ M u MM
.25 | HIWDM/HIWD |M/HM/W/M/D M/H/M/H/M/ |M/Ww/M/w/M/ {M/D/M/W/D/
2 | 1/uIwDM/ 1/ [M/D/HWM/ D/ (M W/M/ WM/ MW/ M/N/H | M/W/M/H
.25 |HIWDMWHIWD |H/M/H/M/H/ |M/0/W/H/W/ M/ W/ M/w/M/ | M/D/W/D//
2 |1/HwoM/H/ |M/ IM/HWM/D| 1/W/1/W/HD|M/H/ M/H/W
.25 |M/wW/HDM/ IW | M/ IWM/HIWD |M/H/M/D/H/ [M/H/D M/w/D/W/D/
2 | D/HIWDM/D/ |M/D/wM/DM/ |M/HM/D/W/H M/ W/M/W/H/ | M/W/D
+25 |HIWDM/HIWD|W/IM/BD/H/ IM/H/W/M/H/ (M/1/ M/W/
2 | I/HIWD/M/I|I/M/w/H/TWIM/D/T/M/D/ M/ R/ M/w/
.25 |RIWDM/ I/HI|HIM/W/D/HI{M/W/M/W/H/ |M/H/W M/W/1
2 |WD/H/WD/HW|M/ TW/M/WHD|M/ 1/M/ 1/M/ | D/T/H/ 1/W/|M/H
.25 |W/D/M/H/WD |WDM/HIWM/ IiM/ I/M/ T/M/ | v/v/ M/W/
2 |D/HID/W/HI|I/HWDM/D/H|M/D/M/D/M/|M/D W/M
«25 |HWDM/HIWDM|DM/D/I/PM/|D/M/D/M/D/|M/D/ W/M
2 | D/H/D/MI/H|DM/HDM/HWD |M/W/M/WD/WiM/W M/W
.25 |HIWDM/HIWD|M/D/HWDM/H |M/D/W/DM/D{M/D W/M
2 |H/WD/HWD/H |M/HDM/HIWD |W/H/WM/HWM{H/M/H/D W/M
.25 | D/WDM/HIWD |HDM/DHWM/H | H/M/W/HD/MIW/M/ D/ M/W
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ings for the estimators. The abbreviations used are the same as in
Table 4, A slash (/) is used to show differences in rankings. For
example, L/EDW/ indicates that the LRT was the test component of all
of the best procedures at that point and tests D1, D2, and DW were
each used among the procedures ranked second. These tables are based
on the fifty best procedures at each point.

Over all parameter points with pu equalling zero, the likeli-
hood ratio test and significance levels of ten percent or less are most
often the best choices as components of best procedures in the estima-
tion of B . On the other hand, the Durbin-Watson test and the 01 gig~
nificance level are the best choices in estimating « with the LRT the
second choice. The choice of alternative estimator is less clear in this
case as It 1s often not chosen when CH is zero, but RAGLS for B and
the Durbin estimator for « are overall, most frequently part of the
best procedure. ML is rarely more than second, however. Only IV is sub-
stantially worse than the others for B and it is about as good as the

other for estimating « at the higher signal-noise ratio.

At inéerﬁé&iate vaiues of -pu , tﬁe EﬁémDurbin tests are most
often part of the best procedures for estimating 8 , but the Durbin-
Watson test is the best choice for «@, and Durbin test 1 is second best.
The 75% significance level is best for both coefficients followed by 50%.
The ML estimator is overwhelmingly the best in estimating both coeffi-
cients, but the IVGLS estimator is a clear second choice for B though
no clear second choice can be made for & . At the highest value of
P, the Durbin-Watson test is best overall for both coefficients and
ML is the best estimator, followed by IVGLS. The 75% significance level,

as might be expected, is preferred most often at this point.
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Over the entire parameter space, the LRT, the 75% significance
level, and the ML are most often best for B , and the Durbin-Watson,
the 75% significance level and the ML are best for « . Of course, such
simple head-counting concliusiens are affected by the selection of para-
meter points.

Examining the procedures by the other dimensions of the parameter
space, the signal/noise ratio has little effect on the relative performance
of procedures except that at the lower ratio, IVGLS is superior to ML
in estimating P (but not & ). The ML estimator is the first choice
and IVGLS the second for all values of P Either the Durbin-Watson
or the LRT is best for each value of P but when o, = .5 there is
no clear indication of the best significance level, The only significant
effect on these conclusions as @ varies is that for the combination
of low @ and high signal-noise ratio the IVGLS estimator does very
poorly for both coefficients, relative to the other estimators.

Having considered the components of procedures separately, we shall
now consider the relative behavior of procedures as a whole. When Py
is zero, the best procedures for f use the LRT at the 0l or 05 level
and IVGLS or RAGLS as the alternative estimator. The best procedure for
¥ 1is WOl with any estimator. This is essentially OLS. At intermediate
and large values of Py ML is usually the best estimator component for
both coefficients, and 75% the best significance level component. All
of the tests are about equal for B but the Durbin-Watson test is ranked
first for @ and the LRT does least well. At low ® valueg and P
equal to zero, (L,75,H) and (W,75,D or H) are good for B, but (W,01,%)
are best for <« . 1In contrast (L,0l or 05, Wor H) and (L,01,T or M)‘

are best for B and @ respectively when -] is .9.
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At higher values of P, » ML is the best estimator component at
all values of e - For N of zero (D,E, or W,75,M) and (L,20,M)
are good for P and (W,75,M) 1s best for « . When R is .5,
(L,E, or W,75,M) and (W,50,M) are ranked highest for B and (W,75,M)
remains best for & . At o = .9, (W,75,M) 1is best for both {5 and
o but is tied with (D,E, or W,50,M) for £ . The IVGLS estimator also
does well for B, but the LRT is not among the best procedure components
at any of the P, values. The Durbin-Watson test performs better at the

lower signal-noise ratio than at the higher, where the LRT does well in

estimating @ , especially at low Py values.

Assuming that the best estimator for each procedure is used, we
briefly consider which combinations of test and significance level fare
best., When G < .2 the combinations most frequently best for B are
l. (L,05) ; 2. (L,01) ; 3. (W,73) ; 4. (DB,75) ; and 5. (L,75) . The cor-
responding ranking for « is 1. (W,01) ; 2. (E,0Ll) ; 3. (L,01) ; 4. (L,05)
and 5. (W,05) . For the cases when R, > .4 , the rankings are 1. (W,75) ;
2, (E,75) ; 3. (B,75) ; 4. (W,50) ; and 5. (D,50) for P and 1. (W,75) ;
2, (D,75) ; 3. (E,75) ; 4. (W,50) ; and 5. (D,50) . These rankings are
sengitive to e, > however, as (L,75) and (W,75) are best for B8
when o, is zero even for low values of Py

It is clear from the discussion above that no single procedure
will be best at all parameter points, and that the best procedure will
generally depend on unknown parameters. The optimal procedure will,
therefore, rarely be chosen even if attention 1is restricted to procedures
which are generally good. As the last part of this analysis we compare

some particular operational procedures and groups of procedures to the



38

best procedure at each point in order to see if there are some operational
rules which are not too much worse than the best (but nonoperational)
procedures at each point. The estimators are generally dominated by ML;
comparisons of procedures to the optimal procedure for each point confirmed
this again. Therefore, only comparisons among procedures including the

ML estimator are shown here. Table 6 shows the performance of four of

the best groups of procedures at each parameter point: (W or L , low
gignificance level, M) and (W or L , high significance level, M ).
The table shows for each procedure group the ranking of the best member

of that group at each parameter point for each coefficient. The entry

1, for examble, indicates that the best“meQber of the procedure group

was no worse than the best procedure at that point. An asterisk indi-
cates that the best group member was not among the top best fifty proce-
dures. In computing these rankings, no adjustment has been made for

ties; thus, for example, a procedure ranked second could be inferior to
séveral superior procedures which were tied with each other,

Table 6 shows clearly where the choice of significance level is
most important. The conventional significance levels do relatively well
when pu ig zero and when pu is .9, but fare less well at the inter-
mediate £, values. At the high °, values even the tests heavily
weighted to accept HO have good power; at low Py values high power
is undiserable, but in between the power is relatively low when high power
is better. It is apparent from Table 6 , however, that the Durbin-Watson
test procedures are generally inferior to the LRT at significance levels
of 01-10, but at the 20-35 levels the comparison is much closer. It is
once again apparent that the choice of test and significance level depends

upon the parameters and upon which coefficient is of most interest, but



TABLE 6

Ranking of Procedures WOIM, WO5SM, W1OM

P, S/N Ratio = 2 S/N Ratio = .25

.2 e W7 .9 0 .2 A .
aopN B B o g al B « B« B« B« o 58 « o
0 0 * 8§ * 5 % 5 * * % * 1 19 35 * * K *
0 .5 * S 18| 11 = * % LA 6 1 6 * * * Kk *
0 .9 * 10 4 * 8 2 1 * 6 4 1 * 4 * *  * *
3 0 5 6 21 2 * 2 9 5 7 * 1 * 2 29 15 17 8
3 .5 * 7 6 * X 3 3 * 3 * 1 3 8 * * 12 8
I3 .9 * 14 2 L 2 2 * 2 4 4 * 3 * * 5 4
b 0 * 3 3 2 4 1 4 2 1 14 1 8 2 8 2 3 1
b .5 5 7 7 2 2 1 2 3 1 * 1 7 1 2 g 3 1
6 .9 4 14 8 6 3 1 =% * 1 5 17 7 1 9 1 * 2
9 0 10 7 4 1 3 2 1 * K 3 2 2 1 7 * 2 *
9 .5 3 * 2 4 3 4 1 * 1 * 2 4 1 16 * 1 *
.9 .9 ¥* * 3 12 =* 1 2 1 * L 9 2 7 2 * 1

6¢



TABLE 6 (continued)

Ranking of Procedures W20M, W35M

S/N Ratio = 2 S/N Ratio = .25
.2 4 .7 .9
@ B « B« a 8 B a | B « B8 «
0 0 3 15| 1 12 13 16 14 9 |32 36 | 21 24
0 .5 3 7 8 2 12 * * 8 * 14 | * 19
0 .9 15 * 1 1 2 9 9 2 6 4 | 36 9
3 0 7 10| 4 10 2 * 3 8 5 2 4 3
3.5 * 3 3 2 1 * 19 4 {11 1 3 3
3.9 11 4 1 * 1 10 3 3 2 2 (17 1
6 0 * k 8 1 1 1 6 1 2 1 1 1
6 .5 P 6 1 1 * 10 4 * 1 2 1
6 .9 3 2 1 1 1 3 1 1 1 6 * 1
9 0 3 * 3 16 * 2 4 % * 2 * X
.9 .5 14 19 | 1 10 1 3 A * 1 * %
9 .9 3 6 3 4 3 1 * 7 1 * 2 1

o%



" TABLE 6 (continued)

Ranking of Procedures LOI1M, LOS5SM, L1OM

G S/N Ratio = 2 S/N Ratio = .25
.2 4 .2 A4 . .
@ p» B 8 « B« o B B« B o B« B
0 0 2 6 14 6 * 5 * 8 34 7 % 18 * * *
0 .51 10 5 22 | * % 3 4 4 * 13 * 5 % * %
o .9 3 14 1 * %* 3 1 * 1 * * * 10 9 19
3 0 1 6 19 10 =* 10 * 9 7 * * 15 15 21 19
3 .5 * 7 6 6 * 6 1 1 10 21 * 9 18 22 22
g .9 5 11 4 * * 1 2 12 8 * * * 6 * 9
b 0 7 3 4 15 * 2 14 8 5 6 11 11 6 5 2
6 .5 3 3 3 9 * 2 2 4 4 * 16 * 5 8 2
b .9 2 * 8 6 5 2 2 7 2 * 1 3 5 * 2
H 0 * 7 2 2 1 3 3 3 8 7 5 5 2 2 2
.9 .5 3 * 1 * 1 1 1 8 3 * 1 * 1 2 2
9 .9 * * 1 * * 3 3 4 2 5 4 * 3 1 2

%



TABLE 6 (continued)

Ranking of Procedures L20M, L35M

°, S/N Ratio = 2 $/N Ratio = .25
.2 N 7 .9 0 .2 . . .
@ oeN P o B « a B « = P « g oy B « B o
0 0 * * 8 3 x 3 6 2 ¥ 5 28| 4 21| 2 14 | 11 15
0 5|1 5 16 | 4 12 2 11 4 * 18 | * 15| 2 10 | 17 18
0 .91 3 11 10! 5 5 1 2 1 9 12 * 16 7 19 6 5 7
3 0 9 * 2 1 * 3 1 6 9 9 12| 1 11| 1 8 9 10
3 .5 ] 10 * 6 6 17 2 7 4 2 * 7 39 2 7 |12 12
3 .91 5 * 3 10 * 1 5 1 * 8 2 * ok 2 2 * 5
6 0 7 4 2 1 4 4 4 2 * 10 18 | 6 3 5 2 2 1
6 5 * * ok 2 8 2 6 1 4 *x 17 | 8 1 * 3 6 2
6 9| 4 * 5 303 * * 1 6 2 7 5 3 1 6 * 2
9 0 | 14 2 16 | 1 16 1 3 3 8 2 31| 1 27| 5 2 2 2
.9 .5 | = 18 6 2 8 1 4 1 4 9 22| 6 =* * 1 2 2
9 .9 [ * * *x  k 2 1 3 * * 5 * K 2 12

iy
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if one had to choose one procedure to use at all parameter points examined
in this study, good choices would be W20M,W35M or L20M,L35M , that

is, to test with the Durbin-Watson or likelihood ratio tests using a
significance level much more iikely to reject H. when it 1is true and

0

to use the maximum likelihood estimator when H, 1is rejected.

0

In conclusion, we have considered the process of testing for serial
correlation and estimating the coefficlents of the model a8 a three com-
pounent procedure involving a cheoice of test, significance level and esti-
mator. The maximum likelihood estimator was found to be generally superior
as a component of good procedures, and the Durbin-Watson and likelihood
ratio tests used at unconventional significance levels to be superior.
This is Iin contrast to the finding that the LRT is inferior to other tests
in terms of power when considered alone. For the Durbin-Watson test the
choice of algebraically high significance levels is particularly impor-
tant.

As with any Monte Carle study, one mugt be careful in generalizing
the conclusions outside of the parameter values studied. Not all parameters

of importance for this problem have been varied, and many plausible values

for the parameters which were varied were not examined. Further,

the compressed presentation of results as rankings makes it difficult to
decide just how big losses really are in adopting a particular strategy.
Even random variation may account for some of the observed behavior.
But, this study can at least be viewed as a demonstration that for plau-
gible but simple problems the strategies which are usually adopted are

not optimal compared to computatiomnally feagsible alternatives.
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One final puzzle which is left with the reader is why the RAGLS
estimator, which is asymptotically equivalent to the maximum likelihood
estimator and is asymptotically efficient, fared so poorly as a procedure

component, being in fact Inferior to the less efficient but similar IVGLS

estimator?



[1]

[2]

[3]

(4]

[5]
{6l

[7]

{8}

(9]

[10]

[11]

(12]

[13]

45

BIBLIOGRAPHY

Durbin, J. and G. S. Watson. '"Testing for Serial Correlatiomn in
Least Squares Regression,' Biometrika (1950).

Durbin, J. "Testing for Serial Correlation in Least Squares Re-
gression When Some of the Regressors are Lagged Dependent Variables,
Econometrica, Vol. 38 (1970}.

YEstimation of Parameters in Time-Series Regression
Models," Journal of the Royal Statistical Sweity, Series B, Vol.
22 (1960).

Crether, D, and G. §. Maddala. "On the Asymptotic Properties of
Some Two Step Procedures for Estimating Distributed Lag Models,"
International Economic Review, Vol. 13 (1972).

Hatanaka, M. "An Efficient Two-Step Estimator for the Dynamic Ad-
justment Model with Autoregressive Errors,' mimeo, 1974,

Hendry, D, and R. W. Harrison. '"Monte Carlo Methodology and the
Small Sample Behavior of Econometric Estimators,' mimeo, 1973,

Hurwicz, L. 'Least Squares Bias in Time Series," in T. C. Koopmans,
ed., Statistical Inference in Dypamic Economic Models. John Wiley
and Sons, New York, 1950.

Kendall, M. and A. Stuart. The Advanced Theory of Statistics, 3rd
ed. London: Charles Griffin and Co., Ltd., 1967,

Madalla, G. S. and A. S. Rao. '"Tests for Serial Correlation in
Regression Models with Lagged Dependent Variables and Serially Cor-
related Errors,' FEconmometrica, Vol. 41 (1973).

Malinvaud, E. Statistical Methods of Econometrics, 2nd ed. London:
North-Holland Publishing Co., 1970.

Peck, J. K. "A Comparison of Alternative Estimators for a Dynamic
Relationship Estimated from a Time Series of Cross Sections When
the Disturbances are Small,' CFDP No. 325, 1972.

Rao,'P. and 2, Griliches. '"Small Sample Properties of Several Two=
Stage Regression Methods in the Context of Auto-Correlated Errors,"
Journal of the American Statistical Association, Vol. 64 (1969).

Wallis, K. 'Lagged Dependent Variables and Serially Correlated
Errors: ‘A Reappraisal of Three-Pass Least Squares,' The Review
of Economics and Statistics, Vol. 49 (1967).




	The Estimation of a Dynamic Equation Following A Preliminary Test for Autocorrelation
	Recommended Citation

	tmp.1624150422.pdf.dwYFA

