Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

8-1-1975

Invariant Competitive Equilibrium in an Infinity-Horizon Economy
with Negotiable Shares

Joseph J.M. Evers

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Evers, Joseph J.M., "Invariant Competitive Equilibrium in an Infinity-Horizon Economy with Negotiable
Shares" (1975). Cowles Foundation Discussion Papers. 634.
https://elischolar.library.yale.edu/cowles-discussion-paper-series/634

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F634&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/634?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F634&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSTITY

Box 2125, Yale Station
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 401

Note: Cowles Foundation Discussion Papers are preliminary
materials circulated to stimulate discussion and
critical comment. Requests for single copiles of a
Paper will be filled by the Cowles Foundation within
the limits of the supply. References in publications
to DiscussionPapers (other than mere acknowledgment
by a writer that he has access to such unpublished
material) should be cleared with the suthor to protect
the tentative character of these papers.

INVARIANT COMPETITIVE EQUILIBRIUM IN AN «-HORIZON
ECONOMY WITH NEGOTIABLE SHARES

Joseph J. M. Evers

August 20, 1975



INVARIANT COMPETITIVE EQUILIBRIUM IN AN ®-HORIZON

ECONOMY WITH NEGOTIABLE SHARES™
by

Joseph J. M. Evers™*
Tilburg School of Economics, Netherlands

Introduction

In the economic model under consideration, productive activities
of the firms take blace during a sequence of periods with equal duration
and in such a manner that inputs at the beginning of a period result in
outputs which become available at the end of that periocd. Inputs are
financed by individuals which also play the role of consumers. The re-
wards of the outputs of a firm at the end of a period are distributed
among the individuals in the same proportion as each of them contributes
in financing the inputs at the begimming of that period. Under the as-
sumption that only firms are able to transfer goods from preceeding
periods to succeeding periods, the exchange of goods and services between
individuals and firms take place at the moments of period changing--to
be called time-points. |

At each separate time-point, all agents (i.e. individuals and firms)
are subject to budget constraints which are based on a price-system for
each separate time-point. For an individual, the budget constraint requires

that, at each time-point, the value of his consumption and his contribution

*The research of this paper was carried out at Cowles Foundation and sup-
ported by a fellowship of the Netherlands Organization for the Advance-
ment of Pure Research (Z.W.0.).

**The author is indebted to Herbert Scarf and Martin Shubik for helpful
discussions,



in financing inputs of firms may not exceed his income which is consti-
tuted by the value of his (labor) supply and his part of the rewards gen-
erated by the outputs of the preceeding period. For a firm, the budget
constraint requires that, at each time-point, the wvalue of its inmputs
may not exceed the budget generated by the contributions of individuals
at that time-point.

For each period, firms are supposed to maximize the value of the
outputs, relative to given prices at the end of the period, by choosing
a technologically feasible input =output combination which satisfies the
budget constraint relative to given prices and a given budget at the be-
ginning of that period. Apart from optimal input-output combinations,
this process also determines, for each firm and for each period, a dividend-
factor defined as the ratioc between ocutput value at the end of a period
and the budget at the start of tﬁat period.

Individual's choice criterion consists of the discounted sum of
a utility function representing his preference with respect to consump-
tion-supply combinations for each separate period, and where the discount
factor represents his time preference. Given a sequence of prices and
dividend factors, individuals are supposed to maximize such a criterion
function by choosing, within their consumption-supply possibilities and
budget constraints, a sequence of consumption, supply, and contributions
in financing the firms. It will be shown that, in the context an "in-
variant competitive equilibrium," to be defined later, these multi-period
(or even ®-horizon) decision processeas can be replaced by a single-period
decision process for each individual.

It is assumed that the economic system is invariant over time,

i.e.: the number of firms and individuals, the technology of the firms,



individual's consumption-supply possibilities, and individual's preferences
are the inchangeable over time. Then, the concept of invariant competi~
tive equilibrium can be defined as an invariant price-dividend system
together with invariant action plans for each individual and for each

firm such that: (1) the action plans are compatible with the optimiza-
tion behavior of individuals and firms, (2) the dividend-factors repre-
sent the ratio between output-values and the budget of the firms,

(3) for each period, the total supply of commodities is equal to the

total demand.

Under assumptions which correspond with Debreu's suppositions con-
cerning production and consumption sets, and under the assump;ions of con-
cave utility functions (for the sake of simplicity), the following results
are deduced: (1) there exists an invariant competitive equilibrium,

(2) the'"physical” side of an invariant competitive equilibrium is compa-
tible with any degree of inflation or deflatiom, {(3) under certain cir-

cumstances (for instance linear technology) invariant competitive equi-

libria are Pareto efficiént with respect to two different =-horizon op-

timality criteria.

The paper is organized as follows. Section 1 gives an axiomatic
model of technology and of individual's consumption-supply possibilities,
and analyzes the consequences of the overall balance of goodé and services.
In Section 2, the economic behavior of the firm is studied. In Sectiomn 3,
we study the economic behavior of individuals. In addition, we show that,
in invariant circumstances, the behavior can be characterized by a single-
period decision processes. Finally, Section 4 gives the definition of
the concept of invariant competitive equilibrium and deduces the existence

and the properties concerning inflation and Pareto efficiency. The



Appendix contains some general properties concerning convex sets and ®-
horizon difference inequalities. A 1list of symbols is added at the end.
We emphasize that, for the sake of simplicity, a lot of important
aspects are ignored. For instance: the case of multi-point input-output
production technology, money and monetary institutions (which may be ruled
out the property concerning inflation),* overlapping generations of the
Samuelsonian type, minimum income and taxes (especially progressive income
tax). Finally, we observe that the concept of invariant competitive equi~-
librium might be considered as a combination of the competitive equili-
brium concept and the concept of invariant optimal solutions in convex

=-horizon programs, (viz. {31, [5], [81.)

1. Basic Elements of the Economic_System

1.1. Periods, time-points, time-horizon

Economic activities take place at a sequence of 'periods" with
equal duration. The periods are numbered t =0, 1, ... . The period,
numbered 0, is considered as the last passed period. The moments of
period changing are called "time~point." They will be indicated as '"thestart
of period t ," "the end of period t ," or as "(t~1)/t ." The total
number of periods over which the economic activities take place is indi-
cated by a positive integer h , and is called the "time~-horizon."
Without further specification, the time-horizon may be taken either as

finite or as infinite.

*This aspect ‘will be the topic of forthcoming studies by Shubik and Evers.



1.2. Commodities

Commodities are goods or services specified by a number of attri-
butes which provide an adequate description with respect to the specific
nature of the commodities in the context of the economic system. We assume
that there is only a finite number g of distinguishable kinds of commo-
dities; which specification is invariant over the time-horizon. 1In addi-
tion, it is assumed that the quantity of any kind of commodity at any
time-point can be any real non-negative number; implying that, at each
time-point, the commodity—spéce can be represented by RE « Quantities
of goods will be considered only at time-points; they will be denoted
by non-negative g-dimensional vectors, sometimes endowed with a sub-index
referring (dependent of the context) to the preceeding or succeeding

period.

1.3, Prices

With each commodity-=-say the kth one--real non-negative numbers
P, ¢ t=1, 2, ... are associated, representing prices of commodity
k at the starting points of the periods t =1, 2, ... ; 1i.e.: pk,t
gives the value of one unit of commodity k at the start of a period
t . Clearly, the price system at the start of a period t can be repre-
sented by a vector P, € RE . The value of a bundle of commodities ¥y
relative to a price system p, at time-point (t-1)/t 1is the inner
product péy ; l.e.: z§=lpk,tyk . The effective meaning of the concept
"value'" will be clarified in the context of the budget constraints of
the economic agents (viz., 2.2 and 3,2)., In this study the concept of
invariagnt prices (or invariant price gystem): P, =Py t=1,2, ..., h,

takes a central place.



1.4, Individuals: consumption and gupply

All individuals choose, at the start of each period, a plan for
consumption and (labor) supply, consisting of a specification of the quan-
tities of their consumptions and supplies for (at least) the first forth-
coming period. We assume that there are m individuals; they are all
immortal (at least until the time-horizon). Each individual is indicated
by an index 1 =1, 2, ..., m . The consumption of the i°" individual
at time-point (t-1)/t will be represented by a vector z: e Rf , his
supply at that moment by w: & Ri . A sequence of consumptions and supplies
by the ith individual over the whole time-horizon will be represgented
by [(z:, w:)]gzl . Invariant consumptions and supply
(zi, w:) 1= (zi, wi) , t=1,2, ..., h, will be denoted simply by

the pair (zi, wi) ] R28

. The period-index also will be omitted in cases

where reference to time-points has no relevance.

Generally, individual's consumption consists of commodities related
to food, clothing, housing, education, recreation, etc. That means, many
components of the consumption vectors zi always will be zero. The similar

t

can be said of individual's supply vectors w: , which generally will
represent only labor. The use, and ownership, of durable consumption goods
(1.e.: goods for consumptive purposes with a life-time of two or more
periods) can be taken as a particular activity of a particular private
firm (viz. 81.6).

In the light of these considerations, it should be clear that, at

each time-point (t-1)/t , the set of consumption-supply combinations

(z:, wi) available to the ith individual will cover only a small part
of Ri'g . We assume that, for each individual, these sets of consumption-

supply combinations will be invariant over time; they will be represented



by sets Ci CiRig »y 1=1,2, ..., m,

i

1.5. Assumpt ions on consumgtion-sugplx getg C°

1.5-a1: ¢l c r%8

+ (discugsed above)

1.5-42: (0,0) ¢ Ci (possibility of inaction)

1.5-4A3: (zi, wi) € Ci ==3> Vﬁi > Olﬁi < wi : (zi, Gi) e C

i
(free disposal with respect to supply)

1.5-44: v ¢ RE : V(zi, wi) € Ci : wi < w

(the set of individual's supply is bounded)

Next two assumptions are imposed, rather on mathematical considerations

than on economic relevance:
i .

1.5=-A5: C is closed

1.5-A6: C1 is convex

Later, the possibility of a particular consumption (nom-saturation £3.3)
and of a particular supply (productive supply B4. ) will be added to these
assumptions,

For some reason, to be clarified later, an arbitrary bound will

be imposed on consumption, giving rise to the following sets:
1.5-p1: €% := {(z}, wh) ect|zt < 3}

zZ ¢ Rf being the arbitrary bound. Evidently, we have the following

property:



Proposition 1.5-F1l: Each of the assumptions 1.5-Al1 to 5, implies a simi-

lar property to the sets ¢t . Im addition, definition 1.5-Dl together

with assumption 1.5-A3 implies boundedness of each set o .

1.6, Firms; inputs and outputs

Production is understood as an activity of taking inputs at the
start of a period and transforming these into outputs which become avail-
able at the end of that period., The notion of inputs/outputs may be taken
very general. For instance, inputs at the begimning of period t may
include a machine at a certain age, which supplies productive capacity
during that period, and leaves the process as a part of cutputs at the
end of period t , being another commodity, namely: the same machine
but one period older,

In that context, firms are systems which choose, and carry out,
producdive activities. We assume that there is a fixed number of n
firms over the time-horizon h ; each of them is indicated by an index
j=1, 2, seey n .

The production of a firm j during period t will be denoted by

3

a pair (xg, yg) e Rig , where Xy stands for the inputs at the start

of period t , and where yJ represents the outputs coming out at the

end of period t . The set of feasible productive activities of each

2g

firm j is assumed to be invariant over time and is denoted by Fj C1R+ »

being a set of input-output combinations. Thus, a production plan
[(xg, yg)}?=1 of the jth firm over a time-horizon h , always satis-
fies (xd, y}) ¢F, j=1,2, ..., h . The period-index will be onitted

for invariant productions, or in cases where the period-index is not rele-

vant. The sets F° will be called production sets.



1.7. Assumptions on production sets FJ

1.7-Al: Fj ClRig (discussed above)
1.7-A2: (0,0) ¢ F1 (possibility of inaction)

1.7-A3: (xj, yj) € Fj =2 V§d € Rf|§j < Yj : (xj, ?j) € Fj

(free disposal)

1.7-a4: (o, y) erd =>vs>1: Ia>1: (&d, aydy o F

{(possibility of expansion)
1.7-A5: (0, yj) € Fj =2 yj = (0 (impossibility of free production)
1.7-46: F 1s closed
1.7-A7: F! s convex

Propogition 1.7-Pl: Under 1.,7-Al, 2, 6, 7 and boundedness of the set

({0}xr®) N Fd (which is slightly weaker than 1.7-A5), positive numbers

@, B exist such that, for every o, v eFl ; ”yj[| ai-B“xjH .

A

(Direct consequence of auxiliary proposition A-P3.)
With respect to any subset of Fj s defined by
1.7-D1:  F = {3, y3) eFI| ¥ <x}, 1=1,2, ...,n,

X e Rf being an artificial bound we have:

Proposition 1.7-P2: Each of the assumptions 1.,7-Al, 2, 3, 5, 6, 7 implies

an equivalent property with respect to the sets fj . In addition, assump-

tion 1.7-A5 implies (by 1.7-«Fl) boundedness of the sets F .
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1.8. Total balance of goods and the non-substitution condition of

individual's supply

We assume that the economic system is closed; i.e.: all consump-
tion and supplies {(zz, w:)}2=1 s 1=1, 2, ..., m of the individuals,
and all inputs-outputs [(xj, YJ)}::I , t=1,2, ..., n, together

have to satisfy:

mo W n o, n o,
(1.8.1) z z, - let + I xg - yi_l €0, t=1,2, ..., h .
i=1 i=1 J=1 j=]_

Briefly, demand excesses are not permitted. The time lag in the outputs
of the firms is caused by the fact that production takes exactly one period.
The initial outputs yg , i=1,2, ..., n are supposed to be the given
result of the past. Note that stock-holding of goods may be considered
ag a particular productive activity which carries goods from preceeding
time-points to succeeding time-points, implying that the inequalities
(1.8.1) do not rule out the possibility of stockholding.

In case of invariant consumption-supply (zi, wi) , 1=1,2, ..., m,
and of invariant inputs-outputs (xj, yj) ; i=1,2, ..., n, the balance

of goods represented by (1.8.1) reduced to:
m i : n .
(1.8.2) Tz - Tw + Zxl - Tyl<o.,
For that case, it is clear that the necessity of supply by individuals

for invariant non-zero production can be expressed by the following as-

sumption:



i1

1.8-A1: There exists no invariant non-zero production

(Xj; YJ) € Fj » y=1,2, ..., n satisfying:

n n
1.8.3) £xl- zyi<o.

=1 =
We observe that this assumption implies the condition formulated by
1.7-A5. Next propositions relate the non-substitution condition of in-
dividual's supply to the boundedness of the set of productive actions
under limited supplies by individuals.

In order to simplify the notation, we introduce the concepts of

"total-production set” F and "total consumption-supply set™ s de-

fined by:

1.8-D1: F := F* + F> + ... + F"

1.8-D2: C :=Cr +C% 4 ... + ™.

Clearly, we have:

Proposition 1.8-Pl: FEach of the assumptions 1.7-Al to 7 implies an equi-

valent property with respect to F . Assumption 1.8-A1 implies:
{x,9) e F|lx <y} = {(0,00} . Each of the assumptions 1.5-Al to 6 implies

an equivalent property with respect to C .

Theorem 1.8-P2 and 3: The assumptions 1.7~Al, 2, 3, 6, 7, and the assump-

tions 1.8-Al, 1.5-A4 imply the following properties:

P2: Vectors Xx, z e Rf exist such that, for every (z,w) eC,
(x;¥) € F, the inequality z -w+x -y < 0 implies:

Z

VAN

z and x <x .
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[+ -] o
P3: Sequences {(zt, wt)}tal cc, [(xt, Yt)}tnl CF, satisfying
- - = g
z, =W +x -y 50, t=1, 2, ... for some Yo €R{ s
are bounded.

Proof of P2: Assumption 1.5-a%4 implies the existence of a vector w

such that C < (Rﬁ:c[o,iﬂ) . Then:

(1) v(z,w) eC, (x,¥) ¢F | z-Wtx-y<0: z+x-y§;

Defining A := {(a,v) := (z#x,y)|(z,¥) € C, (X,y) ¢ F}, we have:

(2) A 1s closed and convex. (To be deduced from closedness of C ,
F and C, FC Rig , and from convexity of C, F .)

(3) (0,0) e A. (Bysimilar property of C and F .)

4y AN ({0}xRE) is bounded (By 1.8-Al, 1.8-PL, C, F R .)

5y do, B eR_]I'_ : V(a,v) e A : Hv“l < a+f3||a|[1 . (By A-P3, and by
the properties (2), (3}, (4).)

Clearly, the definition of A and the properties (1), (5) imply P2.

Proof of P3: For the set A as defined above we have, in addition:
6) {(a,v) eAlagv}={@©,0)}. (By 1.8-A1, 1.8-P1, and C, F CRf'_g
{ Y,cc, | } CF
For sequences (zt’ wt)_t=1 R (xt, Yt) t=1 :
[+~
(7 {(at, v.)Y defined by (a_, v.) = (z,+x%, ¥), t=1,2, ...

is a sequence in A .

(8) In addition z ~w +x

t t-yt—l 5 0 > t = l’ 2, .o implies

A

Ve SV, U= i, 2, ..., for Vg =Yg - (By (1).)

o0
9 {(a,, v )} _, is bounded. (By A-P5, (2), (3), (6), (7), and (8).)
Clearly, (9), the definition of {(at, vt)}i;l and non-negativity of

the vectors Z. 5 X, imply P3.

)
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Corollary of 1.8-pP2: Imvariant actions plans which have to satisfy the
balance of goods are situated in bounded subsets of Ci and Fj defined

by 1.5-D1, 1.7-D1, provided the artificial bounds are large enough.

Corollary of 1.8-P3: A similar statement can be made with respect to

variable o-horizon action planms.

2. Economic Behavior of the Firms: Shares, Budget Const

raints, Profit-

Mazimization, Dividends

2.1. Introduction

Budget constraints include that, at each time-point, an agent is
not allowed to expend more than he earns. All expenditures and earnings
are expressed in units of values; i.e. as products of prices and quanti-
ties of goods; representing only a bookkeeping reality. All economic
agents accept prices as given quantities, in addition, prices constitute
the only information, concerning the system as a whole, agents use by

choosing their action plans.

2.2. Budget constraints of the firm; shares

The proprietary rights over a firm during a period t , are dis-
tributed among the individuals in the same proportion as each of them
contributes in financing the inputs at the beginning of that period.
These contributions, from now on to be called shares, will be represented
by a sequence of non-negativé mxn-matrices [St}? , where a matrix-

element s:’j stands for the contribution of the ith individual to

the jth firm at the beginning of period t . Thus, given a share-
distribution {St}:;l , the budget comstraints of the jth firm can

be formulated as follows:
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(2.2.1)  plx) < ;s:’j , t=1,2, ...

i=1
Further, we introduce the possibility that shareholding of some of the
firms is open to only one or to part of the individuals. Two extreme
examples are: (1) a firm open to one single individual; all others are
excluded from shareholding, (2) the complete "open-ownership" fim.,
Assuming that restrictions like this are invariant over time, we express
the possibilities of share holding by a subset Q in the space of real

mxn-matrices Moo s defined by;

f

sl’j =0, 1in case firm 3} 1is closed for
2.2-pn1; 0:= {8 e 0 individual 1

si’j >0, otherwise

The corresponding sets of shares gtsd ; owned by individual 1 with
respect to firm j , will be denoted a4, Self~evident, we assume

that, for each firm, share holding is open for at least one individual.

2.3. Choice criterion of the firm: profit maximization, dividends

Within the technological restrictions, represented by the produc-
tion set, and within the budget const:aints, the firms are supposed to
maximize the value of the outputs by choosing feasible combinations of
inputs and outputs. Thus, the economic behavior of a jth firm can be
characterized by the programs:

e |
2.3-D1: SUp P, .Y, over (x C o1 3 "
- 3 ] LAY ] -

sub ject to: péxz < 8 .

3

Evidently, the yields of the outputs Pé+1yt

are distributed among share
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holders according to the ratio of shares they owned over period ¢t .

So, the ith individual receives:

J t=1, 2, ..., h,

..o omo
1] iyiy,r o
(2.3.1) (s, /izast D)2 pa

where: §g s, t=1,2, ..., h are the 0ptimél outputs of the programs
2.3-D1, provided optimal sclutions exist and provided the amount of issued

shares is positive. One can look at the quotients:

. m o,
~ 1
2.3-D2: di‘.+1 = 1:,1':+1yt/-§:‘lst.)j s t=1,2, «u., b,
1=

appearing in (2.3.1) as a sequence of dividend-factors of the jth firm,

With this concept, (2.3.1) can be written dg+ls:’3 , £=1, 2, ..s, h

2.4, Economic behavior of the firm under invariant prices

yUnder invariant prices p and invariant number of shares S, the

economic behavior of the jth firm can be described by:

2.4-D1: Yj(p;S) := sup p'y’ , over (xj, yj) eF,

m
subject to p&jg EsLj.
i=1
Limiting ourselves to the bounded production sets 7 (viz. 81.8), and
to an arbitrary maximum « with respect to dividend-factors (to be clari-

fied in 83.5), we replace the original description 2.4-D1 by:

2.4-D2; ?j(p,s) 1= gup p'yJ , over (xJ, yJ) ¢ 7

. mog g =" g
subject to p'x’ < Is d 0 py <azrs 21,
i=] i=
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The supremum @} will be taken as a function from RE):M$xn to Rl .

Proposition 2.4-Pl: Compactness of the sets fj and the.possibility of

inaction, (0,0) e FI (viz. 1.7-A2), imply: for every (p,S) e Rijtmgxn ’
. w g n 1
the existence of an optimal solution, implying that ?5 : R4}cM$x - R
g n g
is well-defined. Moreover, for every (p,8) eR_I_xH-ix : ‘fj(p,s)
e 1]
e [0, of_;s77] .
The existence of optimal solutions is a direct consequence of

Weierstrass' theorem: a continuous function on a compact set possesses

a maximum.

Proposition 2,4-P2 and 3: Under the expansion capability assumption

1.7-44, the following properties hold: If the program 2.4-D1 possesses

a feasible solution (xJ, y1) such that p'y’ >0, then:

P2: every optimal solution (£J, §J) of 2.4-D1 satisfies:

p'fj = gl .

i=1
P3: every optimal solution (ﬁJ, §3) of 2.4-D2 satisfies at least one
of the equalities: p'fj = Z§=191’J or p'ﬁj = 65;;131’3 .

Proof: 1f (x), y)) 1s a feasible solution of 2.4-DI, such that p'yl >0,
p'xj < E?Elsi’j , then a number &8 > 1 exists such that p'(&xj) < E$=lsi’j .
Moreover, by 1,7-A4, a number A > 1 exists such that (&xj, hyj) € F. .
Clearly, (6xj, ij) is a feasible solution of 2.4-D1, with p'(byj) > p'yj .
Obviously, (xj, yj) cannot be optimal, which proves P2. Taking into

account the inequality p'y” < 52?=lsi’j appearing in 2.4-D2, property

P3 can be found in a similar manner.

For each firm, the set of optimal solutions of 2.4-D2 corresponding

to any (p,8) ¢ Rf:cnﬁxn y will be represented by a multi-function
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] . o8 mXn 2g
F- R+XM "'G"-}R+

" --further to be called input-output functions,

formally defined by:

C . _ . m o _
2.4-03:  Fl(p,8) := (I, v eF lp'x g gt pryd = ¥ 0,9] .
i=1

Proposition 2,4~P4 to 6: If the sets Fj possess the following proper-

ties: (1) M CRf_g , (@) 0,0) eF , (3) F, is compact, (4) M oia

convex, then:

P4: The functions T5 : Rf}:MTRn - Rl are concave and non-decreasing

in the second argument.

P5: The functions ¥, are continuous in every (p,S) ¢ REJ{MmRn .

b
P6: The input-output functions Fl . RE!{men > Rig are upper-semi-

continuous® and convex in every {p,S) ¢ RE::men .

Proof: The proof of P4 1is straightforward. 1In order to prove P5, let

(", s9] < _Exu™

" be a sequence which converges to (po, So) [ Rf:{fon .

We distinguish the cases: (a) BO S si’j’o =0, (b) BO >0 . Since

i=1
by 2.4-pPl, for each (pk, Sk) : W}(pk, Sk) e [0, a§$=1si’j’k] , convergency
of {SR}T to & satisfying Z?glsi’J’o =0, implies:

T&(pk, Sk) *'Tj(po, SD) for k = « . This proves P5 for case {(a). In

case BO 1= Z$=1si’j’0 >0, convergency of {(pk, Sk)}: to (pO; SO) ’

boundedness of FJ . (0,0) s 7 s, and, finally, convexity of Fj s

*We follow the definition of Arrow and Hahn [1]: a multi-function
@ : X >Y (X and Y normed spaces) is called upper-semi-continuous,

if for any {(xk, yk)}g<: XxY , the conditions yk € ﬁ(xk) , k=1,2, ...,

and (xk, yk) - (xo, yo) for k =« , dimply: yO e ﬁ(xo) .
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offers the possibility to construct a sequence of numbers {5k1? c [0,1]

with the following properties: (1) 8 =1 for k=w, (2) (x,y) ¢F:
] . _
Pk % S Z[;-.z]_sl’j’k impiies 6k(x,y) e Fj , Bp-x '_..(. I—";Flsi,j,o ,
- ' -
(3) *,y) eF , PO x < Ty gt 150 implies bk(x,Y) ¢ Fj ’

= i=1
1
89 x < &_ s 1% | Clearly, (2) and (3) also hold for optimal selu-

2

tions of 2.4-D2, implying-~together with the fact that (1, po) is the

limit point of {(Sk, pk)]? --that {Q}(pk, Sk)}T converges to ﬁ&(po, So) .

Proof of P6: Starting from the definition of the multi-function # ,

using closedness of F, and continuity of [ s the proof that the con-

J

dition for upper-semi-continuity are satisfied is a straightforward ela-

boration of the definition of upper-semi-continuity.

2.5. Firm'’s dividend-function under invariant prices

The dividend-functions of the jth firm under invariant prices

p 8 Ri and invariant shares § ¢ szn » provided that the budget

E$=1si’J is positive, will be represented by a function:

m :
2.5-p1l: 7.(p,8) := ¥.(p,8)/ T si’J .
J J 1=1

Proposition 2,5-PL to 3: If (1) ¥4 c Rig , (2) (0,0) ¢ T, (3) F is

compact, (&) fj is convex, then:

Pl: 7j(p,s) is non-increasing in the second argument.

i=1
artificial upper bound introduced in 2.4-D2.

P2: Vp e RE, S e Mixn[ﬂn si’J >0 : 7j(p,s) ¢ [0,5] s o being the

P3: 1In every point (p,8) e Ri:cuixn gatisfying E.Tglsi’j >0, the

function vy is continuous.

3
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Proof: P1 is implied by -‘i;j (p,8) ¢ [0, a)f;=lsi’j] and concavely (viz.
2.4-pP4) of ﬁj in the second argument. P2 ig implied by
¥j ®,8) e [0, '&i;;lsi’J'] . P3 is implied by continuity of ﬁj (viz.
2.4-p5).

In order to include the zero-budget case in the dividend-factors,
we define, for each firm, the following multi-valued function
i LI

. pE . X
D- R+1cM+ - R

2.5-D2; Dj(p,S) i= 7j(p,s) , 1in case ﬂ:glsi’j >0,

otherwise:

j _ 1¥8 eM+ :
D’ (p,8) :=(8 ¢ [0,a]|_ 1, ]
Yi(p,8) S 8%y 8

where' Q 1is the artificial upper bound for dividend-factors.

Proposition 2,5-P4 to 6: 1If (1) < Rig , (2) (0,0) e 7 s (3) i

is compact, (4) 'f"j is convex, then in every point (p,S) e Rf_x Mimn »

the multi-valued function DJ : REx M " o> R1 » possesses the properties:
+7

Ph: p? (p,S) 1is upper-semi-continuous

P5: Dj(p,S) is convex

p6: DI(p,8) e [0,0] .

Proof: P&4: Dl is upper-semi-continuous in a point (po, SO) € Rf_xM_;mm
if, for any sequence {(pk, Sk, Gk)}r in Rixcnixnich the conditions
ak € Dj (pk, Sk) , k=1,2, ... and (pk, Sk, Sk) - (po, SO, 60) for
k =+, imply é) € Dj(po, SO) . Let ((pk, Sk, 6k)}T gatisfy these

conditions. If E?zlsi’j’o >0, then é) € Dj(po, SO) is implicated

by continuity of the function 7j (viz. 2,5-D1, 2 and 2.5-P3). Now,
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let o 11,0

i=1
2,5-P1) , the definitions of vy

s = 0 ., Since 7j(p,S) is non-increasing in § (viz.

and Dj , and 6k € DJ (Pk: Sk) ’

h|
k=1, 2, ... imply: iG(pk, 8) < 6k2$=181’j , for every 3§ > sk .

Clearly, since the function ¥9 1is continuous in (po, SO) (viz. 2.4-P5),

and since [(pk, Sk)}T converges to (po, SO) » WwWe may conclude;

“i."j (po, 8) < BOI:?:lsi’j for every § 2 S0 + In connection with the defini-
tion of Dj in points (po, SO) , satisfying Eﬁ;lsi’j’o =0, this
lmplies the validity of P4 in these particular points. The properties
P5 and P6 can be deduced by straightforward elaboration of the definitions

2.4-p2, 2.5-pl and 2.5-D2,

3. Economic Behavior of the Individuals: Budget ~Constraints and Utility

Maximization

3.1, Introduction

The budget constraints of the individuals differ in one remarkable
aspect from that of the firm. Namely, individual's budget constraints
on adjacent time-points are linked, by the delay in payments and proceeds
of shares. 1In fact, the entire dynamic character of the economic system
is concentrated in this feature. Another particular aspect comes out in
the assumption of a utility function which covers, in the form of a dis-

counted sum, the utility of all actions over the time-horizon.

3.2. Budget constraints of the individuals

Given a sequence of prices [pt}T and a sequence of (liquidating)
b .
dividend-factors {dt}l (where the jth component dg represents dividend-
factor of the jth firm over period t-1 ), the budget constraints of

the individuals i =1, 2, ..., m are formulated:
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S SN S T B
3.2.1) plz_-pw_ + T s - £d
tt tt . t .
j=1 j=1

In this, the initial distribution of shares SO is supposed to be the

given result of the past; the consumptions and supply {(z:, w:)]2=1

51’2, cens si’n)}2=1 are

together with the quantity of shares {(si’l,
hig decision-variables.

Since the amount of shares an individual buys constitute a part
of his decisions, the linked structure of the budget constraints caused
by share holding, implies that all individual's budget constraints over
the time-horizon has to be considered, simultaneously. However, in the

case of invariant prices and dividends, some of the properties of the re-

sulting budget constraints:

n R n
(.2.2)  p'zt-pwis ge¥ri g alghid
t t j=1 t j=1 t -1

A
o
-
re
1]
[y
g
N
-
L]
L]
-
b= g

can be transferred to the following single-period budget constraints:
1 i, 0 i 1,] noii,d

(3.2.3) p'z -pw + £ (1-mhs™d < (1-m £4d 85’
j=1 i=1

where M 1is any positive number swaller than one. Some relations between

(3.2.2) and (3.2.3) will be deduced in £3.4,

3.3. Individual's choice criterion

Within the sets of admissible actions (i.e. consumption, supply
and share holding), we assume that individual's choice criterions can

be expressed by utility functlons possessing the following structure*

*For a fundamental study relating this structure to postulates about a
preference ordering on a set of feasible actions, see Koopmans [6],
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h
t i 1
(3.3.1) E(m) oz, w5,
17 "1 Tt
t=1
where the scalars e J0,1[ are time-discount factors, representing
individual's time preference. Assuming that prices are the only avail-
able information about the economic system as a whole, earning-capacity--
being effectuated in the budget constraints~-is the only attractive aspect
of share holding. For that reason, shares are not adopted in the utility

function. Concerning the single-period utility functions P ¢ Ci -+ R1

2

we make the following assumptions:

3.3-A1; 9 is continuous
3.3-A2; ® is concave

3.3-A3: @, (0,0) = 0

i

’

3.3-44: 351 eRf : V(zi, wi) € ct ; A>0: (?s.g_i+zi, wi) eC

i

¢1(AE?4—2 3 wi) > c&(zi, wi) , (non-~satuation condition; a

vector 5? with these properties will be called a non-satuation
direction)

3.3-85: (25, W, @, T ech, W< - g h, W) 2 g G T

{non-increasing with respect to supply).

A next aspect which has to be specified is the time-horizon h ,
appearing in the choice criterion. Technically it makes sense to assume
an infinite horizon, meeting the intuitive notion that individuals do
not specify any terminal point, but, implying the dubious supposition
that all individuals have, and actually use, full insight about future
prices and dividends. Clearly, this objection can be relieved by assuming

invariant prices and dividends. 1If, in addition, we restrict ourselves
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to Invariant action plans under «-horizon optimization with invariant
prices and dividends, then it turns out that the «-horizon can be reduced

to single~period optimization problems.

3.4. Infinite horizon choice criterion versus single-period approximation

under invariant prices and dividends

Summarizing: given the consumption-gsupply sets Ci s and possi-
bilities of share holding () (viz. 82.2), the objective functions
0, * Ci i R1 , the time-discount factors e 10,1 , and given the

invariant price-dividend system (p, {dJ}?) , the econcmic behavior of

each individual is characterized by the ®-horizon programs:

L]

3.4-D1: sup I (1 )tw.(zi, wi) s, over
i it t
t=1
Kzi, w;) eCh, s:’l elﬁi’l, veny st’n € E?’n], t=1, 2, ...
n .
sub ject to: p'zi-p'wi4— T (si’j -djsi’J) <0, t=1, 2, ...,
t t7 ¢ t-1/ =

where 8o is the initial share distribution, and where, dependent of the

Tl g g T .- b

context, a- or (0 73 n[o,w] , ® being an artificial

upper bound. The single-period approximation is defined by:

3.4-D2: sup @i(zi, wi) , over

(zi’ wi) € Ei ’ ot € E?’l: seey sl € o » Subject to
n n

przt-pwi+ £ a-malsid < a-n) salsdd.
j=1 * - i j:.-..]_ 0

t=1

Proposition 3.4-Pl to 4: TFor every feasible action {(z:, w:), {s:’j}?=11

of 3.4-D1, the following properties hold:
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Pl: Under boundedness of the sets Ei , ol » the series
N AU RS D P | in, .=
{22=1(“i) (z, W, .77, oou, st’ )}h=1 converges. In the next pro-
position we denote the limit point: (Ed, Gi, {Ed’3}2=1) .
P2: Under convexity and compactness of the sets ctc Rig ’ e Ri s

3
to 3.4-D2, provided the initial share distribution is the same.

(- ni)/ni)(gi, Gi, { =1) 1s a feasible action with respect

P3: Under compactness of Ei and continuity of o : Ei - Rl ; the

t i i, q=
series {E£=1(ni) ¢ (z,, wt)}h=1 converges.

P4: Under compactness of Ei ; continuity and convexity of ¢E :

q&(;d, & > <<1-ﬂ1>/“1>if;1(“i>twa<z:: W:) .

Proof of Pi: This property is a direct consequence of the boundedness

b

of the sets ¢, and of T, € jlo,1[ .

Proof of P2: Since the series {E:;l(ﬂi)t(zt, w:, s:’l, sesy s:’n)}g;l

converges, property PZ can be deduced from the auxiliary propogitions

A-Pl and A-P2.

Proof of P3: Compactness of Ei and continuity of P, Ei - R1 implies
i i, 4 =i i i,
that, for every [(zt, wt)}t=1 < C¢” , the sequence {wi(zt, wt)}t=1
is bounded, and henceforth (by m, e 10,1 ) convergency of
t i i,
{Z€=l("i) o3 (zs W) oy -
i i 4» — o Sl R
Proof of P4: Let {(zt, wt)}t=1(: C". Defining a sequence {(zh, wh)}h=1
. =1 =i +1 t, i i
by the convex combinations: (zh, wh) 3= ((1-ni)ﬂhi'-ﬂ2 ))Z¥=1(T&) (zt, wt) ,
h=1, 2, ..., concavity of Dy implies:

M) oGy, W) 2 (A-m/ -t R e, El, wh, w1, 2, .
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Further we have:

(2) (;:, ;ﬁ) - (Ei, Gi) for h =« , (By compactness of Ei and
T, e 10,1 .)

3) ¢&(;§: ;ﬁ) - wi(gi; ai) for h = . (By (2) and continuity of o, .)

Combining P3, (3}, and (1), one can find P4,

Theorem 3,4«P5: Under (1) compactness and convexity of the sets Ei s

??’1, E?’z, ceey ??’n ; (2) continuity and concavity of the function

P ¢ ch - Rl , the following property holds:

I1f, for any initial share distribution sé’j y §=1,2, ..., n,

(Ei, ﬁi, §i’1, §1’2, eer, 8™y 15 an optimal action of the single-period
program 3.4«D2 satisfying & LI . i’j y =1, 2, ..., n, then, for

i i,2 Ai Ai nl 1 ﬁi n
the same (so’ , sO’ s seey 30’ Y, {( t, s ey )}t=l de~

al Al ~i,1 Ai,n »i Ai ~i,1 al
fined by (2, ¥, st’ 5 eees st’ Y= (2, w, 87, ..., &7 ) , t=1,2,
is an optimal action of the ®-horizon program 3.4-D1.
Proof: It is clear that the invariant sequence [(E:, ﬁ:, Q:’l, ceus sty

defined above is a feasible ®»-horizon action plan for the same initial

gshare distribution, in addition: qk(ii, ﬁi) = ((L-mn)/m )ZE 1(-rri) ¢, (zt, wi)

Now, suppose that the =-horizon program possesses a feasible solution

{(zt, w:, _i 1, sany ;i’n)}:;l for which the corresponding value of the
objective function is higher. Then, by 3.4-P1, 2, 3, and 4, the single-
period program possesses a feasible solution--say (Ei, 34, Ei’l, essy 8 ’n)

--guch that q&(gd, Gi) > ¢i(21, %) . However, this contradicts optimality

of (2, o, el .. &by

Note: the opposite 1s not stated; i.e. an invariant optimal action plan
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of the @-horizon program will not necessarily generate an optimal action
with respect to the single-period approximation. Anyway, theorem 3.4-P5
ensures that the 'best' invariant e-horizon action plans will be selected
by the single-period approximations with appropriate initial share distri-
butions. For that reason we accept the single-period programs 3.4-D2 as
adequate descriptions of the economic behavior of the individuals under

invariant prices and dividends.*

3.5. Individual's invariant action-function under invariant prices and
dividends

Starting from the single-period description 3.4-D2 and from the
non-satuation assumption 3.3-A4, we call an invariant price system p
consistent if, for all non-satuation directions [gi]T : p'E} >0,
i=1, 2, ..., m . An invariant dividend system {dj }‘1‘ will be called
consistent if Qi’j # {01 implies: ﬂidj <1.

The meaning of this concept should be clear: 1if a price or a dividend
system is non-consistent then, omitting the artificial bounds on consump-
tion and share holding, at least one individual is able to increase his
utility by increasing his consumption above every limitation. Formally,
this would imply that the total balance of goods (viz. 81.8) cannot be
gatisfied.

Further, we observe that the consistency condition on invariant
dividend-systems generates upper bounds with respect to the dividend-

factors. These may be defined by:

*For a fundamental study concerning convex ®=-horizon programming, see
Evers [4].
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3.5-D1; pj 1= min(l/ﬂi) y over i=1,2, ..., m,

subject to (P34 {0}, 1=1,2, ..., m.

Consequently, the artificial upper bound for dividend-factors O appear-
ing in the description of the behavior of the firm (2.4) can be any number

larger than max(pl, Pps +uvs pn) .

Proposition 3.5-P1 and 2: Under non-satuation (3.3-A4) and under a con-

sistent price and consistent dividend system p , {dj}?=1 ; necessary

conditions for any feasible solution (zi, wl, si’l, senp si,n) of 3.4-D2

to be optimal, are:

i i j i j i,j
. ' — - 2] _ - ’
Pl: p'=z p'w + Z?=1(1 ﬁid )s (1 ﬂi)fjl:lso

P2: g - 0 , 1in case ﬂidJ <1,

Procf: Both properties are straightforward consequences of the defini-
tions of non-satuation and consistency,
=i =i,] ;
Introducing the bounded sets ¢~ and (0 , the invariant economic

behavior of the individuals give rise to the following definitions:

1 i i
3.5-D1: u.i(p, das, ..., dn, SO) 1= sup cpi(zl, w') , over

(zl, w') e G s gl € ot d ; j=1,2, ..., n, subject to:
i i n i, 1,3 1
p'z” - p'w + E(l*ﬂidJ)s ’Jg(l-ﬂ
j=1 j=1

3.5-D4: Ai(p, dl, eeny dn, 8 = {(zi, wi, si’l, seny si’n) e-C'ix'ﬁi’lx ...xﬁi’nl
. n n .
o, (25wl =, (p,d,8 ), przt-pwi+ T (1-malystic -y £alsi s
s 1 0 o1 : 1 5%

Proposition 3,.5«P3: Compactness of the sets Ei , ??’j ; the properties
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(0,0) e ¢t , 0O ¢ ??’J , and continuity of @ * Ei - R1 imply that,

for every p >0, dl, seny at 20, S0 e fon s the programs defined
1

by 3.5-D1 possess optimal solutions. (Consequently, Ai(p, d, «hu, dn, SO)#Q o)

Proof: The properties (0,0) e Ei ; 0O e fﬁ’j , 1imply that, for every

P20, d, ..., d 20, s, su‘f‘“ , the problems defined by 3.5-D1

possess feasible solutions. Hence, compactness of Ei ’ ??’J s and

continuity of 9 imply (by Welerstrass' theorem) the existence of optimal

solutions.

Proposition 3.5-P4: Compactnegs and convexity of the sets Ei ClRig

, the properties (0,0) & Ei y 0 e ﬁi’j R

of the functions ¢, : & - R implies: the multi-functions

i, g 0, mxn 2g . n
A R+}CR*}(M#_ 4}>R+ 1cR+

and fﬁ’j € Ri continuity

defined by 3.5-D2 are upper-semi-continuous

and convex in every point (p, dl, veey dn, SO) of the domain, provided

a (zi, w') g 61 exists such that p'zi - p'wi <0 .

Proof: This property is, in essence, a standard result in competitive

equilibrium studies.

4, Invariant Competitive Equilibrium

4.1, Definition

Starting from the economic behavior of the agents as described in
sections 2 and 3, an invariant competitive equilibrium of this economy
is defined as a combination of: (1) prices 7 e Ri , (2) dividend-factors
31, 32, eee, @, (3) shares § ¢ Q‘:'Mﬁxn , {(4) consumption-supply:
(z', w) ¢6C, ..u, (Em, ﬁm) eC" s (5) input-outputs

(X, ¥) eF, ..y (fn, fn) € F* , such that simultaneously:
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(a) For each individual i : (27, w, 877, 7%, ..., §7?) 1is an
optimal action plan with respect to:

i W,1

. i )
sup ¢a(zl, w') , over (zi, wi) eC , § i,n i,n

i,1
e 077, ..., & e,

subject to: ﬁ'zi-ﬁ'wi4-2?=l(l- Tridj)si’j < Q@ -f&)i?zldiﬁi’j .

As pointed out in B3.4, such an optimal action plan may be considered

as a 'best" invariant ®-horizon action plan.

(b) For each firm j : (ij, §j) is an optimal action plan with respect to:

sup ﬁ'yJ y over (xJ, yj) € Fj s subject to: ﬁ'xj < o 8

|
[

L
et

(c) 1In addition, the dividend-factors dY, &2, ..., d® satisfy

& j 2j aly j :
pI§J = dJZ$=1S & y i=1,2, v, 0

(d) The total demand and total supply of commodities are equal; i,e,:

g -dh + B @ -5h -0

It will appear that, under certain assumptions (viz. 4.,2-P7), condition

(d), can be replaced by:

(d') Total demand is smaller or equal than total supply of commodities;

te.: T (8 -ah + ﬁj‘:l(;zj -$h <o .

A direct consequence of the equilibrium conditions (a) to (d) (or (d'))

is the following homogeneity property:

Proposition 4.1-Pl: 1If [p, [3J}?, 5, {(Ei, Gi)}T, {(ﬁj, ﬁj)}T] is an
invariant competitive equilibrium, then, for every A >0,
[AS, {aj}?, AS, [(&%, ﬁl)]T, (@, fj)}?] is an invariant competitive

equilibrium, as well.
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The existence proof of the equilibrium is organized in two parts.
In the first part a number of necessary conditions are deduced for com~
binations to be an invariant competitive equilibrium. Most of these
conditions contain some economic relevance. The second part gives the
final proof. Finally, some results are deduced concerning inflation and

Pareto efficiency.

4.2, Total effects of non-satuation, expansion capacity, and of

individual's productive supply

Starting from the non-satuation assumption (3.3-A4) we introduced
already (83.5), in the context of individuals' economic behavior, the
concepts of consistent price-systems and consistent dividend-systems.
Now, extending these concepts to firm's economic behavior, we call a

price~dividend-system (p, dl, dz, caey dn) consistent if, simultaneously:

(1) p 1is a consistent price-system, (2) (dl, d2, cany dn) is a con-
sistent dividend-system, (3) there is a number w > 0 such that for each
firm--gsay the jth one-~-the relations (xj, yj) € Fj P p'xj <w imply
p'yj < djw . Violating (3) means that, under price-system p , there

is at least one firm } with a profit ratio higher than dj , implying
that dj cannot be a well-defined dividend-factor. It should be clear
that under the non-satuation assumption, consistency is a necessary coun-
dition for a price-dividend system to enter into an invariant competitive

equilibrium. We memorize the following implications of the consistency

concept (see also E3.5).

Proposition 4.2-P1 to 4: Under non-satuation (3.3-A4) the following

properties hold:
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Pl: Consistency of p implies p #0 .

P2: Consistency of a dividend-system (dl, dz, ceoy dn) implies dj < pj ,

i=1 2, ..., n, where the numbers s Py »eep P are defined

by 3.5-D1.

P3: If there is a production (if, Z?) € Fj such that, for all A > 0 :
A (E?, z?) ¢ FJ , then p'z' < de'ﬁf is a necessary condition

for a price-dividend system (p, dl, vaey dn) to be consistent,.

P4: 1f the combination [p, {33}?, s, {4, Gi)]T, [(ﬁj, §j)]?] satisfies
the equilibrium conditions (a), (b), (¢), and (d'), then the price-

dividend system is consistent.

Proof: The properties Pl and P2 are discussed in 83.5. The properties

P3 and P4 are straightforward implications of the concepts of consistency.

Proposition 4.2-P5: If the assumptions 1.7-Al, 1.7-A%, and 3.3-A4 are

satisfied, then every combination [p, {3j}T, S, {(ﬁi, ﬁi}T, [(fj, fj)}?} :
satisfying the equilibrium conditions (a), (b), (c), and (d'), also satis-

fies '8 =8 &9, 5=1,2, ..,

Proof: For every j=1, 2, ..., n, we distinguish three cases:
W G0, @ M0, -0, ® g s,
J

1

0 . In case (1), non-negativity of § and X° implies

5'§j = E? #93 | In case (2), we have il -0 , 1implying (by 3.5-P2):
=0, 1=1, 2, ..., m . Clearly, this contradicts the assumption

# #H3 50 . 1ncase (3), proposition 2.4~P2 implies ﬁ'fj = I?zlﬁi’j .

Proposition 4.2-P6: Under non-satuation (3.3-A4) and the possibility of

expansion (1.7-A4), a necessary condition for a combination
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" ~ be ol al ~ -~
(e, {dj}T, s, (¢, @ )}T, {(xj, yj)}?} --the price-dividend system con-
sistent=--to satisfy the equilibrium conditions (a), (b), (c), is consti-
s Ay Al a3 al ajy _
tuted by the equality: »p (I$=lz -+Z§=lx E$=1w Zggly Yy =0 . (This

property may be considered as an analogy of Walras' law.)

. Proof: Non-satuation and a consistent price-dividend system [f, {&j}?]
implies (viz. 3.5-P1) that §'z' -g'w + g, - el (1-ni)>:‘j'=1§i’j ,
i=1,2, ..., m, is a necessary condition for [§, [(ﬁi, ﬁi)}T] to
satisfy equilibrium condition (a).

Trivially, a necessary condition to satisfy equilibrium condition
@ 1s: -p9 + A _ebd -0, 5=1,2 .., n. Next, by 1.7-p4

. Apad s 21,5 _

and 3.3-A% we may conclude (viz., 4.2-P5): p'%” - q=15 =0,

j=1, 2, ..., n . Adding these three necessary conditions, one will

. . Ay al - ~1 "‘j - “j =
find: »p [E$=l(z w) + §§=1(X yyl=0.

Proposition 4.2-P7: 1If the assumptions 1.5-A1, 1.5-A3, 1.7-Al, 1,7-A3,

1.7-A%4, 3.3-A4, and 3.3-A5 are satisfied, then for every combination
(3, {él}rl', s, (&Y Y }T, {7, ;3')}‘1‘] which satisfies the equilibrium
conditions (a), (b), (c), and (d"), supply and output vectors fai}m »
—j.n =i al . =i ~ .
{yJ}l, w <% , i=1,2, ..., m, (¥9 < yj , i=1,2, ..., n)

. » *j-‘n - Al =i, .m S ]n £
exists such that: [f, {d S (g, w )}1, (&, v )] satisfies

the equilibrium conditions (a), (b), (¢}, (d).

Proof: Suppose condition d' is satisfied with at least one inequality.

Then, 1.5-A3 and 1.7-A3 implies the existence of vectors GE‘]T R [;i}?
satisfying: (1) T, (8" -¥h) + z’;:l(fej =0, @ ¢t ¥ ect,

i=1,2, .vo, m, (3) (fj: ;j) e F s 1=1,2, .os, n, (4) w 5‘3 s

i= (5) y- < §j , §=1,2, ..., n . Moreover, by

|
o)
-
N
-
L)
L
-
8
b ]
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4,2-P6, and hy the properties (1), (4), (5), we may conclude:
6) p'w = ﬁ'ﬁi , i=1,2, vo.,m, () BV = 514 , §=1,2, vo., n .
Further, 3.3-A5 and property (4) imply: (8) ¢i(£i, Gi) > wi(ii, Gi) s
1=1,2 ..., m. Clearly, if [§, (&'}, § (&', H¥, (&, $H M
satisfies the equilibrium conditions (a), (b), (c), and (d'), then by

the relations (1), (2), (3), (6), (7), (8), the combination

5, &%, § fest x?i)}'ln, (@), ¥H1 satisfies the equilibrium con-
ditions (a) to (d).

Although 4,2-P1l ensures that, under non-satuation, the price system
is not zero, the possibility of an invarilant competitive equilibrium where
none of the consumers earns any income is still present. Next assumption--
to be called "productive supply capacity'--rules out the possibility of

such an equilibrium and, at the same time, indicates how an equilibrium

with complete inactions can be excluded.

4,2+A1: Each individual--say the ith- -~has the capability of a supply

E? $#0, (O, EF) € Ci , such that a production {(E?, z?)}?
exists satisfying the conditions:

@ wzo: A&, yher, §=1,2 ..,

(b) | El;=1(lj - pjﬁj) + '\g >0 , where P Pys cees B, are the

numbers defined by 3.5«D1,

Clearly, condition (a) states that [(Eﬁ, zﬁ)}? can be produced in one
multiple; (b) requires a net output of all kinds of commodities with a
rate of productivity which is high enough to attract share holders (viz.

3.5-p2).
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Propogition 4.2-P8: Under non-satuation (3.3-A4) and productive supply

capability (4.2-Al), a positive number v exists such that, for every

congistent price-dividend system (p, dl, arey dn) , there is a eequence

of vectors [ﬁi]TC r® satisgfying: (0, Ei) ¢ (’.‘.i s p'E > v”p”l P

i=1, 2, ..., m .

Proof: Let E} be a supply vector of the ith individual as described

in 4.2-Al, and let {(Eﬁ, Xﬁ)}?nl be the corresponding productive actions.

i i i i i i
Then, defining u := Z§=1(Z - pjﬁ?) +w , and v, 1= min( 17 Ygs sees un)

which is positive by 4.2-Al, we have, for every p ¢ RE :

1 i i 1 i
(4.2.1) I 'y - e Hety 2 Vel

j=1

Since by consistency of [p, [dj}?] : p'z} < djp'xj

~

A

pjp'ij, 3=1,2, ..., n

A%

(viz. 4.2-p2), the inequalities (4.2.1) imply p'g} > vin||1 .

Propogition 4.2-P9: 1If the sets Ci satisfy the assumption: 1.5-A2,

and 6, and if the functions @ satisfy the assumptions 3.3-aAl, 2, 3,
and 4, and 1f, for some individual i , there is a supply E} as described

in 4.2-Al1 satisfying

(4.2.2) 1im c&(O, Aﬁ})/h >0,

A=0,2>0
then, under a consistent price dividend system [f, {3j1?] s 4 necegsary
condition for [Ei, ﬁi, {§i’J}?=1] to satisfy equilibrium condition (a)

is: (Ei, WY #£0.
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Proof: Let E} be a supply vector as mentioned iIn 4.2-Al. Then a posi~
tive number vi exigts (viz. the proof of 4.2-P8) such that, for every

congsistent price-dividend system [P, {&J}?] s

ay 1 "
(4.2.3) rut > VB, -

Let E} be a non-satuation direction of individual i (viz. 3.3-a4).

Then, by convexity of Ci (1.5-46), concavity of @, (3.3-a2),

©0,0) ¢ cl (1.5-a2), ©,(0,0) = 0 (3.3-A3), and by positivity of v’

in (4.2.2), for every A ¢ 10,1[ , we have:
(M A, a-Huh ect

i i i i
(2) wi(qu » M1l-8w™) > K[5¢1(§,, 0)*‘(1‘5)®1(0, Y/
@) A&zl - -9t <o .
By continuity of @, (3.3-Al), assumption (4.2.2), cpi(ﬁi, 0) >0 (3.3-a4),
and by property (2), it is possible to choose a A (close enough to zero)

such that:

4) o, (25, A1-BwD) >0 .

~

By virtue of (1), (3), (4), and q&(0,0) = 0 (viz. 3.3-A3) we may conclude

that a (zi, wi) € Ci exists such that 5'zi - 5'wi

i i
<0, mi(z y W) >0,
implying that a necessary condition for [(fi, ﬁi), {§i’J}?=1] to satisfy

equilibrium condition (a) is: (£i, ﬁi) # 0.

4.3. The existence of an invariant competitive equilibrium

Theorem 4.3-Pl: The assumptions 1.5-Al to 6, 1.7-Al to 7, 1.8-A1, 3.3-al

to 5, and assumption 4.2-Al, imply the existence of an invariant competi-
tive equilibrium,
Before giving the final proof, we construct some auxiliary defini-

tiong and propositions. First of all, we observe that we may restrict
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ourselves to consistent price-dividend systems [p, [3112] (viz. 4,2-p4},
implying that J # 0 , and next, by the homogeneity property &4.1-Pl,

that it is sufficient to consider invariant prices p of the set:

4.3-01: P := {p GR_%_I”PHI =1} 2

only. Starting from this set of prices we have the following property:

Proposition 4.3-P2: Under the assumptions 1.5-A4, 1.7-Al to 7, 1.8-Al

and 3.3-A4, the artificial bounds appearing in the programs 2.4-D2 and
3.5-D3 can be taken such large that: a combination

(5, {aj]?; 5, {(iiy ﬁi)}T, [(fj, fj)}?] -- p being a vector in p --
satigfies the equilibrium conditions (a), (b), (c), (d') if and only if

simultaneously:

ay ¢t ot bl

@ &, eS8, 11,2 ..., n

i i.a 21 42
, C.., g’n) eAl(p’ d, ...’ d

3) aj eDj(ﬁ,ﬁ) y 1L 2, .., n

@ F@E-ah + g dt-9h co

Proof: The property is a straightforward consequence of the propositions
1.8-p2, 4.2-P2, and 4,2-p5.

In order to combine the multi-functions Ai s fj s and Dj ’
we define a multi-function G : Px [O,E]nxﬁ 6> [0,0)"x Gx U by the

relation:

4.3-D2: G(p, d, ..., d"

..—':l [(ziywi) }T: {(xj:yj)l? < RZg :

@t oWt sbh L, sh Y eal, 4 L., &

» 8) = f_(dl, . dn, S, u) e [l,a]nx?lx Rsl

;s 8, 1=1,2,
&, v eﬁj(a,ﬁ), ad Dj(p_,g‘,_) » 3=1,2, ..y,

u = z‘Ll(zi-wi) + L‘;._.l(xj -yhy.

’ s) » 1=1, 2, raey M

ceey M,
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With respect to the domain, the set U is defined by:

6.3-03: U= {u o RE[[lully < IIxl, + (2113,

——

X and z being vectors as described in 4.3-P2, Further, the numbers
w (appearing in the definition of G , 3.4-D1) and Q@ are chosen in

such a mamner as mentioned in 4.3-P2. The definition of the multi-function

G implies the following property:

Proposition 4.3-P3; 1If the multi-functions Ai (3.5-D4), fj (2.4-D3)

and Dj (2.5-D2) are upper-semi-continuous and convex in a point
(p, gl, ceey Qn, 8) ePx [o,&]“xﬁ , then the multi-function
G : Px [O,E}nxﬁ - [O,E]nx Qxu , is upper-semi-continuous and convex
in (p, E‘_l: sees Qn’ E))
Finally, we introduce multi-functions P ;: U -=> P and

GP : Px [O,E]nx Qx U-6>P x [O,a]nx Ox U , by the relations:

4.3-D4: 1?(9 = {§ eP|p'u = (max p'uy, over p e P)} .

1 n

1 A 1
4.3-D5: GP(p, d, v, 45 8 w = {(pyd, +o., d, 5, u) 6P (W RGP, d, cves dy 5}

Proposition 4.3-P4 and 53: If the assumptions 1.5-Al to 6, 1.7-Al to 7,

1.8-a1, 3.3-Al1 to 5, and 4.2-Al are satisfied, then

P4: A combination [p, {&j}‘l‘, 8§, {24, ﬁi)'}?, {(&], §j)1?] is an invariant
competitive equilibrium (i.e. satisfies the conditiomns (a), (b), (c),

(d') mentioned in 84.1) 1if, and only if [§, {d7V], §, 4] --where

L

g := Zn; 1(£i-v?i) + Z?=l(ﬁj -§j) --i8 a fixed point of the multi~-

function GP defined by 4.3-D5 (i.e. (B, 4%, ..., 4%, §, &

¢ GP(F, 4, ..., d" g

P5: Multi-function GP possesses a fixed point.
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Proof: P4: If [P, {&j}T, 5, {(21, ﬁi)]T, {(ij, §J)}?] satisfies the
equilibrium conditions (a), (b), (c), (d4') then, by 4.3-P2:

(fj: 37:1) ﬁﬁj(ﬁyg) F aj GDj(ﬁ:g) y 1=1,2, ...y m

g, @b, #bh, L, by cales, & ..., & %) . Defininmg
i := Z?=1(£i-ﬁi) + j=l(ij-§3) , wWe may conclude:

al Fe ~ ~ ~ ~ Fe ~ R
M @, .., &8 & eci d, ..., &8 (viz. 4.3-D2)
(2) a<o

(3) B'@=0, (by (2) and 4.2-P6)
(4) B e P(8) by (2), (3) and 4.3-D4

1

al AL A A A A - A .
, 8, &) ecr(p, 4", ..., &% 5, B , by (L), (3

() B, d, ..., d
and by 4.3-D5.

n

The other way round, if (f, 51, ces, d 1 "

, 8 0) eGP(P, d, ..., d", §, B,
then (viz. 4.3-D5 and 4.3-D2) there is a sequence [(Ei, ﬁi)}T and a
sequence {(fj, §j)}? such that:
© &, eFE8H, i=1,2 ..,

Ai al Al,1 Ai n i ~ ~l “n ~
(7 @, w,§77, ., 8?)YeAa(®,d, ..., d, 8, Li=1,2, ..., m

®) T

_1(21-‘31) + th;l(x -'y-) =4 .

In addition we have

o dend@,8, i=1,2 ..., n (by 4.3-D5 and 4.3-D2)
(10) 8'G =0 (by 4.2-P6, (8), and by (6), (7), (8), and &4.3-P2)

(11) § <0 (by (10) and definition 4.3-D4).

clearly, (8, (@12, § (&Y, oD, (@), $HTN sarisfies the equili-

brium conditions (a), (b), (¢), (d').

P6: The domain of the multi-function GP is compact and convex. Further,

the propositions 2.4-P6, 2.5-P4, 2.5-P6, 3.5-P4, 4.2-Pi, and the
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definition of GP (4.3-D5) imply that the multi-function GP is upper-
semi-continuous and convex in every point of its domain. Hence, by
Kakutani's fixed point theorem we may conclude: GP possesses a fixed

point.

Corollary of 4.3-P4, 4.3-P5, and 4.2-P7: The assumptions 1.5-Al to 6,

1.7-A1 to 7, 1.8-Al, 3.3-Al to 5, and 4.2-Al imply the existence of an

invariant competitive equilibrium.

4.4. Invarisnt competitive equilibrium and inflation®

As pointed out in 2.4 and 3.4, an invariant competitive equilibrium

(8, {&3}?; 5, {(21, Gi)}T, {(fj, 93)}?] contains optimal ®-horizon action

i 1,1 i,n K

i al ~i,1 ai,n
plans (z,, w, 8.0y eeny 8.77) = (27, W, 8777, L., 8777), t=1, 2, ..,

and J, yly = @3, $, £=1, 2, ..., for individuals and Firms

t? Yt
. 1 n a 21 “n
under an invariant price-dividend system (Pt’dt’ ...,dt) =(p,d, ...y d

)
t=1, 2, ... . Now, it will be shown that, with an appropriate modifi-
cation of the sequence of share-distribution, these action plans remain

optimal under every degree of inflation (or deflation) with respect to

the price-system. The latter is described by:

where {ét}; is any sequence of positive scalars. The basis of this

property is constituted by the fact that, the set of actions {(z:, wi)1t=1 ’

1=1,2, ..., m, {(xg, yg)}:;l , 3=1,2, ..., n, satisfying

*This section is based on a suggestion of Martin Shubik.
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1 4., 2 i,j 23 1,] ~
ay - aly ] _ Al s
(4.4.2) th (zt wt)+-jfl[6tst (6t/6t_1)d (St__lst Y1 <o
i=1,2, ...,m
m
~ j Ai | >t=l 2 LI
étp'xgg thst’J, j=1,2, ...,n e
i=1
61“!"j = (6 /5 )aj 1';‘ 5 “i.’j =1, 2
Py e/ -1 £-1%¢-1 » 3=1: % e m
i=1 <
with 60 := 1, 1is independent of the sequence of positive scalars,

{Gt}f . From (4.4.2) one can deduce the following property:

i 1,1

i,n al al Al +1,n
£? St » 7Y = (2 w ? eey 8707)

Theorem 4.4-Pl: TIf (z:, w t = ) > 87

vy s

t=1, 2, ... and (xg, yJ) 1= (ﬁj, §J) , t=1,2, ..., are optimal
action plans relative to the invariant price-dividend system
1 n Al an

(P dps ovey d)) i= F, d, ..., d), t=1,2, ..., then, for every

sequence of positive scalars {§ }m the action plans
9 1

i i i1 i,n Al W1 ai,1 al,n
(2, ¥, st’ s ey 8.70) 1= (27, W, 877, ..., 87), t=1, 2, ...
and (xg, yg) e (fJ, §J) , t=1,2, ... are optimal under the price-

.o 1 n » ~1 An
dividend system (p_, di, ..., d.) = (8P, (bt/Gt_l)d,..., (5t/at_1)d ) ,

=1, 2, ... .

4.5, Pareto efficiency

In order to study the concept of Pareto efficilency in the context
of =-horizon action plans, we introduce two different concepts of effi-

clency: Given the initial outputs {Yg}?=1 , an action plan

P o .
{{(zt, wt)]?=1, [(xg, yg)}g=l}t=1 will be called strictly efficient if:

i 1,4 -1

@ {(z, w)Hl_;cC, i=1,2 ..., m
1, 4 —

® (e, yhi_ cF, 51=1,2, ..,n

(c) Z‘:=1(Zi'w:) + )L?zl(xg -yg"].) =0 »

)
'—l
™
~N
-
.
.
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. =i =i 4m =i =i, q=
(d) There is no action plan {[(zt, Wt)}i=1’ {(xt, yt)}j=1}t=1 ,

which satisfies the conditicns (a), (b), (c), and, in addition:

o= t ~i —i o t i i
rt“l(ni) (pi(zt.’ Wt) g Zt=1(“i) mi(zt, wt) 2 i= 1) 2: ceey M,

with strict inequality for at least one 1 .
In the concept of weak efficiency, condition (d) is replaced by:
n

(- -]
§=1’t=1 ~
satisfies the conditions (a), (b), (c), and, in addition:

(d') There is no action plan {{(z,, wh ¥, {&Gl, ¥} which

o =i i i
cpi(zt’ wt) 2 Cpi(zt’ wt) y 1=1,2, «o0ym, t=1,2 ...,
with strict inequality for at least one (i,t) .

Note that, by virtue of 1.8-P4, we may restrict ourselves to bounded con-
sumption-supply sets and to bounded input=-putputs sets. Evidently, we

have the following property:

Proposition 4.5-P1l: Strict efficiency implies weak efficiency.

In the next part it will be shown that, under some extra assumptions,
every invariant «-horizon action plans generated by an invariant compe-
titive equilibrium is strictly or weakly efficient. These assumptions

are:

]

4.5=Al: For each production set Fl . (x7,

X320 a0, j

yj) e ) implies, for every
yj) €F (such a technology will be called linear).

Note that this assumption implies the assumption 1.7-A4.

4,5«A2: The numbers {pj}T defined by 3.5-Dl are equal; i.e.



42

4.5-A3: The time-discount factors {“1}T are equal; i.e.
ME T e =T (Note: 4,5~A3 implies 4.5-A2 in such a

manner that: l/ﬂi =9 .)

Proposition 4.5-P2: Assumption 4.5-Al implies the following property:

If (fj, §j) is an optimal solution of

4.5.1) max $'y) , over 3, v e 7 , subject to ﬁ'xj <w,

% being some non-negative number, then, for every 6 satisfying ﬁ'?J = &,

the vector (ij, $#3) 1is an optimal solution of:

(4.5.2) min(uﬁ'yj + &ﬁ'xj) , over (xj, yj) € Fj

Proof: Let (ﬁj, §j) be optimal with respect to (4.5.1) and let &

satisfy ﬁ'§j = v . Suppose (fj, fj) is not optimal with respect to
(4.5.2). Then a G, ) e Pl exists such that (-§'y7+ 8'x) <0,
implying the existence of a number A >0 , satisfying: ﬁ'(th) <w,

ﬁ'(X;J) > & . Since h(gj, ;J) € Fj (by 4.5-Al), these relations con-

tradict optimality of (ﬁj,lﬁj) with respect to (4.5.1).

Proposition 4.5-P3 and 4: Given a price-system P e Ri , consider, for

each i=1, 2, ..., m, the following optimization problems:

i i i i i
(4.5.3) ui(ri) = max mi(zl, wl) , over (z°, I ) eC ,
subject to ﬁ'zi-ﬁ'wi <y o
(4.5.4) v; (8;) := min przt - 6'wi , over (z, wi) ¢ ct s
subject to wi(zi, wi) > 61 .

Under non-gatuation (3.3-a4) the following properties hold:
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P3: 1f, for some 7, , (£, ¥*) 1is optimal for (4.5.3) then (2%, &%)

is optimal for (4.5.4), with 6i = ui(yi)

P4: TFor every 71 such that (4.5.3) possesses an optimal solution:
every optimal solution of (4.5.4), with 6i 1= ui(yi) ; 1s optimal
for (4.5.3).

Proof: Let, for some 7y (21, ﬁi) be optimal for (4.5.3). Then,

from 3.,3-A4, one can deduce:
ayal » i ’

(Ly $'¢° - p"¥ =y, , implying

(2) vi(ui(ri)) =7, , and hence:

(3) (Ei, ﬁi) is optimal for (4.5.4) with 8 := u;(7,) , which proves P3.

In order to prove P4, let, in addition, (;i, ;i) be optimal for (4.5.4)

with 6i 1= ui(7i) « Then:
@ §'7 - gt gt - 5, tmplying By 8 1= (7)) ):
(5) (z', W) is a feasible solution of (4.5.3) such that

=i =i
(Di(z J. w ) Z u‘i(?i) .

Clsarly cpi(?.'i, W) = (7)) , implying optimality of (21, W) with

respect to (4.5.4).

Proposition 4.5-P5: Under the assumptions 3.3-A4 (non-satuation) and

4.5-A2, every invariant competitive equilibrium

[s, {&j}‘j‘=1, 5, (¢gh, dhHY, (&, §j)]‘;=11 satisfies:

ﬁ'fj ='Bﬁ?=1§i’j , i=1,2, ..., n, where p is the number such that

= pj » j = 1, 2, cery n (Viz. 4-5-A2)0

ol

Proof: Equilibrium condition 4.1-¢ states:

ay p9d =g NI, 5=1,2, 0.
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Under 3.3-A4, equilibrium condition 4.1-a and the propositions 4,2-p2 and

@ <o, 5=1,2 ...,0.

In addition, from 3.5-P2 and from definitions 3.5-D1 one can deduce:
3) d < pj implies IP gbl_ o,

Clearly, with p, = ?, j=1,2, ..., n, the relations (1), (2), and

]
Ar A - al,j
(3) imply: p'yj = Pf; g3 y =1, 2, ...

Theorem 4.5~P6: Under the assumptions 3,3-A4 (non-satustion), 4.5-al

(linear technology), and 4.5-A2: every invariant e-horizon action plan

al i A n @
{§2 Zes i )}i =1’ {( Xy yt L 11t =1 generated by an invariant competitive

eq:ilibrium is weakly efficient. 1If, in addition, 4.5-A3 is satisfied,

than such an ®-horizon action plan is strictly efficient.

Proof: Let [B, {&J]?=1, 5, (& ﬁl)}T_l, {(:7:'j .j)}n ;] be an invariant
al ai
competitive equilibrium. Let [{(zt )}i=1’ [( R yt)]j o1 Y= 1 be the

=-horizon action plan generated by this equilibrium. Then:

(1) Each (Q:, ﬁ:) is optimal with respect to max. problem (4.5.3) with

7g i 2?=1‘i’3 . (By equilibrium condition 4.1-a.)

]

(2, Each (zt, w:) is optimal with respect to min. problem (4.5.4) with

5, := o, (8%, &%) . (By 3.3-a4, (1), and 4.5-P3.)
(3, Each (fg, §g) is optimal with respect to min. problem (4.5.2) with

§ = ; ) E such that = 3 y i=1,2, ..., n . (By 3.3-A4,

®
4.5-A1, 4.5-A2, 4.5-P5, and 4.5-P2.)

i=
i=1 2, ..., n . (By equilibrium condition 4,1-d,)

Ai hi A. ﬂ.
@) T (G -9 + z;.;l(xg-yt_l) =0, t=1,2, ... with 3?3 §

Defining a set H c g8 by:
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(4'5'5) H := {V GRSIH{(‘Z[{” wti;.)‘}:;]_ eC, 1= 1; 2: sesy My
{(xgi Yg)}:;l G:-E:j, j o= ]_, 2, cer, D ‘:

ai
0., (Zt: W) cPj_(z sy W), i=1,2, ..., m,

v = z(llp) [ ?(z -up) + E(x - /oy,
t=1 j=1

one can deduce from (2) and (3) that

v (lfp) [("i “i) + EP - (1/p)yt] is an optimal solution of

the min. problem:
(4.5.6) min p'v , over v e¢H .

Further, from (4), one can deduce that $'v = (1/$}ﬁ'i§=1§3 , implying

(bv optimality of ¥ ):
(5) vveH:p'v> (1/?bﬁ'iﬁ=1yo

m -
Now, let {{(z R v )11 12 {(xt, y )]J 1'e=1 be an action plan satisfying
the conditions 4.5-a, b, c (with y0 1= fg > j=1,2, ..., n) and in
addition: uk(E:, G*) > q&(fl, ¢y, i=1,2, .., m, t=1,2, ...

Then, defining v = I% 1(1/p) [in 1(2:-;:) + Zﬁzl(;g -(1/Eb§g] s we have:

3
6 Vv eH .
(7 v < (1/?bi§ 1y3 . (By 4.5-c and guxiliary proposition)
(8. P'V = (1/p)p'zP 1y0 ; i.e. vV 1is an optimal solution of (4.5.5).

(By (5), (6), (1).)

(9) Each (;:, ;t) is an optimal solution of a corresponding problem

(4.5.4) with 8 1= ¢&(£i, ﬁi) . (By (8) and the definition of min.

problem (4.5.6) and (4.5.5).)
(10) Each (;:, ;:) is optimal with respect to (4.5.3) with 7y = E§§i’j

(By (8), proposition 4.5-P4 and (1).)
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. _i -i hi .i
Hence, the suppositions imply qh(zt, wt) = Qi(zt, yt) , proving the
first part of the proposition (viz. the definition of weak efficiency).
In order to prove the second part concerning strict efficiency,
we observe that assumption 4.5-A3 implies mo= /e, i=1,2, ..., m.

Putting 1 := 1/3 , we replace set H (definition 4.5.5) by:

i 1 =i
= {v nglz‘[(zt: wt).l:zlec sy 1=1,2, ..., m

[(Xg, Yg)]:;l G.F-j: i=12, ..., n

[~} o
Tt ey, v 2 I, 9D, 121, 2, .o
t=1 t=1
-] m n
vi= T[T (z:-w:') + T l-myD1Y .
t=1 i=1 j=1

Further, strict efficiency can be deduced in a similar manner as weak

efficiency.
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APPENDIX

Auxlliary Propositions A-Pl to 5:

Pl: Let Q< R® be a closed convex set, and let {qt];l © Q . Then,
for every p ¢ ]0,1[ such that {Z§=lptqt}¢;1 converges:
o t
(A-p)/ME _,0q €0 .

P2: Let f{(u, v )}w jos ka Rk be a sequence which satisfies u -
B t? Tt/ 'e=1 + d a eV

t=1, 2, ..., for some vy € R: and some W ¢ Rk . Then, for
t o

every 0 e 10,1{ such that {Z;lp (u, - Wt)}r=1 converges:

O - -

Za P U - ) S v+ (p/1-p)v .

2
P3: Let WCR k be a ciosed convex set containing the origin (0,0) ,

and gsuch that W ("’,O}ka) is bounded. Then numbers o, B >0

exist such that, for every (w,v) eW : ||le <a+ BHle .
P4: let U C R2k be a closed convex set containing the origin, and such

that U N {(u,v) ¢ R‘k|u < v} = {(0,0)} . Then numbers « >0,

B3>0, 7>1 exist such that the relations: (u,v) eU, u-yv<w,

imply: ||v||; € a+ Flw]l;

P5: For a set U as mentioned above, every non-negative sequence

-]
{(ut, vt)}t___l C U satisfying u_ - v, _,

some V. € RE and scme w ¢ Rk , 18 bounded.

Proof of Pl: Suppose [qt}:____l is a sequence in Q , and suppose ¢ ¢ ]0,1]
t o
is a number such that {Z;lp q, .‘r=1 converges. Defining a sequence

Gr}:;l by the convex combinations:
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A.1.1) Q= (ep/ (e YY) Elptqt , t=1,2, ...,
t

r
we may conclude: E; €eQ, r=1, 2, ... (by convexity of Q). 1In
addition, convergency of {E{=1prqt]:;1 and p e ]0,1[ implies convergency

of {a;}:;l . Clearly, by closedness of Q , this implies

-0/ % 6%, eq .

Proof of P2: u, - v, , &

w, Vv
t
t +1
every >0 : 2‘:=1p (ut-pvt) < W0+ ((p- pr Y/ (l-p))w , r=1,2, ...

0, t=1, 2, ... 1implies, for

n

Clearly, p € 10,1[ and convergency of {E{glpt(ut- pvt)}:;l implies:

NP (u m ) S k(o (L))

Proof of P3: Following Rockafellar [7 ], we define the recession cone

rec(A) of a set A C'Rk by: rec(d) := {a ¢ Rk[Vb €A, N2>20 :b+ra e Al .

Now, defining a set V := {(w,w) ¢ Rzk[Hw1|1 <1}, we have, with respect

to a set W as assumed i P3, the following properties:

(1) rec(WN V) = rec(W) N rec(V) . (By closedness a;d convexity of W
and V . See Rockafellar 8.3.3.)

(2) rec(v) © {0} x Rk . (By the definition of V .)

(3) rec(w) N ({0}:{Rk) = {(0,0)} . (By boundedness of the set
wn ({01xRrS .)

(4) rec(W N W) = {(0,00} . (By (1), (2), and (3).)

(5) (W NV) is bounded., (By (4), and by closedness of the set WNV .
See Rockafellar 8.4,

6) J86>0 :v@w,v) eW OV : ||v||1 < 8. (By (5).)

(7) v(w,v) e W : (1+—”w|Ll)-1(w,v) eWNV . (By the definition fo set

V , convexity of W, and by (0,0) eW .)
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8) J&>0 : V(w,v) eW : lvll, € 8+ |lw]l) « By (6), (7), and by

the definition of set V .)

Proof of P4: Defining T := {(u,v) € R2k[u < v} s we have, for a set

U as assumed in P4, the following properties:

(1) rec(U N T) = {(0,0)} . (By closedness and convexity of U, T,
and by boundedness of UM T . See Rockafellar 8.4.)

(2) rec(® NT-={(0,0)}. (By closedness and convexity of U, T,
by (1) and rec(T) = T . See Rockafellar 8.3.3.)

@ Fr>1: {@wv) erR™| u<wInrec) = {(0,00} . (By (2) and
closedness of rec(U) . See Rockafellar 8.2.)

4y Hr>1 : rec({(u,v) ¢ RZklu <wlinuy = {0,001 . (By (4), and
by closedness and convexity of the sets U and {(u,v) ¢ R2k|u§ ywl .
See Rockafellar 8.3.3.)

Now, defining for a 7y > | the set W by:

W= {(w,v) e RZkf Ju e R (4,v) €U, u-pv <w}, we have:

(5) W is closed, convex, and contains the origin. (By the assumptions
concerning U .)

6y wn ([0]::Rk) is bounded. (By (4), (5), and by the definition of
W . See Rockafellar 8.4.)

(7 dr>1, 8§20 : vV, v, w eRkI(u,v) eU, u-yvgw:

Ivil; < 8llwll, + 8 . (By A-P3, (6) and the definition of W .)

Proof of P5: Let a>0, B>0, 7 >1 be the numbers as mentioned

[ =]
- [ -
in A-P4., Let {(ut, vt)}t=1 U be a sequence satisfying u -V W,
t=1, 2, ... , for some Vg € Rt and some W ¢ Rk . Defining a sequence

[(G;, G;)}:;l by the convex combinations
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— 1- t~
(g, v)) = (D=7 NI g7 @, v), T=1,2 ..., we have:
(1) (:r’ ;r) elU, r=1, 2, .... {By convexity of U .)

- - - 1~
@) u - Sw OOy Dy, t=1,2 .. (By

u <w, t=1,2, ... and thO, t=1, 2, ... .)

t ~ Veel
Since the coefficient 7_r(7-1)/ (y - 71-1:) is non-increasing with respect
to r (implied by ¥ > 1 ), property (2) implies the existence of vector
w such that:

(3) u_ -~yv_<w, =1, 2, ... , and henceforth.

r r

A

By virtue of A-P4, the relations (1) and (3) imply: ||x7r|11 < o+ s]]EHl ,

r=1, 2, ..., and henceforth (by the definition of {(;t, ;t)-:=1 ’

and by v, V. >0, uooC Vg <w, t=1, 2, ... ) boundedness of

(o v leey -

List of Svmbols

R" , n-dimensional vectorspace.

R_I: = {x e Rn|xi 20, i=1, 2, ..., n} , the non-negative orthant.

llell; , the & -norm, for x ¢ R" defined by =l := [y b+ lxp [+ eat x| o

x'y , the inner product of a pair of finite dimensional vectors.

(x,y] := {z ¢ R"}z 2x%x z<vh

it

1x,v] {z eRllz >x, z gy} .

{z eRllzgm z<yl.

[x, ¥l

1x,v( = Ix,¥y] N [x,y[ .

Al + a2 4. +A" - {x := (x1+x2+...+xk)|xr ed, r=1,2, ..., n}.
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