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A DYNAMICAL MODEL OF POLITICAL EQUILIBRIUM*

by

GCerald H. Kramer

In a democratic society many social decisions are made by a poli-
tical mechanism based on majority voting by the citizenry. In many such
choices the alternatives can be represented as points in an appropriately
defined multi-dimensional commodity or policy space of some sort. Hence
a fundamental task in analyzing the performance of a democratically struc-
tured public sector is to characterize the behavior of competitive vot-
ing processes over such multi-dimensional choice spaces, and in particu-
lar to see whether such processes lead to consistent social choices, or
can be characterized by an equilibrium of some sort. These questions
have been extensively studied, from several points of view. However the
major results in this literature, which we review in more detail below,
are either essentially negative, in the sense that they show that an equi-~
1ibrium can exist only in very restrictive special cases, or rest on es-
sentially ad hoc assumptions and formulations, or pose serlous difficul-
ties of interpretation (e.g. concerning the meaningfulness and existence
of mixed strategies for certain agents in the process).

In this paper we take a different approach, more explicitly dyna~

mical in character, in which we assume the political process to be driven

*Thig research was begun during the author's stay at Center for Advanced
Study in the Behavioral Sciences, and continued at the Cowles Foundation
for Research in Economics, under a grant from the National Science Foun-
dation. I am indebted to Peter Fighburn, Stephen Smale, and especially
to Donald J. Brown for helpful comments.



by competition for votes extending across & series of elections. We show
that the sequence of successively enacted policies generated by thig pro-
cess tends over time to converge on a relatively small subset of the fea-
sible points. This subset, for which we give an explicit characterization,
seems to provide a useful and natural equilibrium concept for this class

of problems. It can also be given a more abstract social choice inter-
pretation, as the set of maximal elements with respect to an essentially
Arrowian soci#l ordering, Before developing these results in detail,
however, we firgt review the major results on voting over multi-dimensional
choice spaces, to provide a setting and motivate the particular approach

taken in this paper.



Majori ot over Multi-Dimensional Choice Spaces

In the special case where there is only a single variable or public
good to be decided upon, majority rule is generally well behaved. The
convexity of voter preferences often implies satisfaction of Black's
"single-peakedness'" condition, which in turn implies that the majority
preference relation is transitive, and that there will exist a majofity
equilibrium, i.e., an alternative which cammot be defeated by any other
alternative in a pairwise majority vote (Black (1958)). Even when the
single-peakedness condition fails because of non-convexities in individual
preferences or techmology, there will generally exist "local" equilibria,
i.e., alternatives which cannot be defeated by neighboring alternatives
(Kramer and Klevorick (1975)). Thus in one dimensional choice problems,
the behavior of political mechanisms based on majority rule can normally
be described in terms of an equilibrium.

The situation is quite different, unfortunately, when there are
two or more goods or quantities to be voted on. The usual conditions
for transitivity of majority rule (e.g. Black (1958), Sen (1966)) fail
in higher dimensional spaces, in general (Kramer (1972)). A variety of
rather different conditions for the existence of a "majority winner" in
such situations have been proposed (Davis and Hinich (1966); Tullock (1967);
Plott (1967); Davis, de Groot and Hinich (1972); Wendell and Thorson (1974)).
Most of this '"spatial modelling" literature has assumed voter preferences
to be of particular form, in which each voter i has a unique satiation
point si s and a point x 18 preferred to y by the voter if and only
1f x 18 closer to si (usually in the sense of ordinary Euclidean dis~-
tance) than is y . (We shall refer to this type of preference ordering

as a Type I ordering; most of our subsequent resulta will be for Type I



preferences.) The preference structure in the Plott conditions is more
general, since preferences are assumed only to be representable by quasi-
concave, continuously differentigble utility functions. All of these
conditions, however, whether or not based on Type 1 preferences, are ex-
tremely restrictive. They in effect require the distribution of preferences
to satisfy severe symmetry requirements, and are not robust against even
small departures from the exact symmetry required. If a majority winner
exists in a particular soclety, arbitrarily small perturbations in voters'
preferences will destroy it (even if, in the case of the Type I conditions,
the "perturbed" preferences are also Type I). In this sense, existence

of a majority winner is not a stable property, and will virtually never
occur in multi-dimensional choice problems. In game-theoretic terms, if
the social choice process is viewed as an n-person majority game, its core
will generally be empty.

Although in general majority rule is not transitive and does not
yleld a majority winner in multi-dimensional voting problems, it is still
conceivable that it might be "well behaved" in some weaker sense. Buchanan
(1968), for example, has argued that even when majority rule does cycle,
the cycles will be confined to the set of Pareto Optimal alternatives,
while Tullock (1967) has argued (at least for Type I preferences) that
the cycling will tend to move toward a central area in the interior of
the Pareto set, and remain there, If true, this would be an important
result, for this central region would constitute a kind of equilibrium
set, and we would have a useful 1f partial characterization of the behavior
of majority voting on multi-dimensional problems. In the social choice
literature there have been several proposals to define a social indif-

ference class in terms of the majority cycles (so that any two alternatives



belonging to the same cycle are socially indifferent) (Kadane (1972),
Good (1971)) presumably based on the hope that one of the cycles will
be confined to a relatively small subset of the alternatives, akin to
Tullock's "central region."

However, a result by Richard McKelvey (1975) shows that in multi-
dimensional choice problems, in general there will be a single majority
rule cycle extending over the entire feasible region., McKel~
vey's result is essentially the following: Suppose all voters have Type
I preferences, and that no majority wimmer exists. Then for any two al~-
ternatives x, y , a sequence of points (x, x', x", ..., ¥) can be
found, which begins with x and ends with y , such that each point is
preferred by a majority to the preceeding point. An illustration of a
typical majority rule trajectory is given in Figure 1. There are seven

------------ - -

Insert Figure 1 about here
voters, whose most-preferred points are labelled sl to 57 , respec-
tively. Each voter has a Type I preference ordering and hence, given
the choice between any two points x and y , will prefer the point
which is closest to his satiation point. The set of Pareto-optimal points
is the shaded area. Beginning from an arbitrary initial point xl R
each subsequent point is preferred by a majority to the previous one.

2 is closer to al ’ 52 R 93 and a4 than is x! , 80

The point x
the majority composed of voters 1, 2, 3, 4 prefers x2 to x1 ;s similarly
{3,4,5,61 prefers % to x> , and so forth. The trajectory begins

at a centrally located point xl ; but soon moves outside the Pareto

set itself, and clearly could be extended to move further and further
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away from it, or to eventually reach an arbitrarily chosen point anywhere
in the feasible region. Though the McKelvey result (and the example)
invokes the assumption of Type I preferences, it seems clear that the
conclusion is a general one, and that except under very special conditions
or restrictions on voters' preferences, in multi-~dimensional choice prob-~
lems majority rule can quite literally wander from anywhere to anywhere

in the space.



Competitive Political Processes

Most of the work described above has been primarily concerned with
majority rule in the abstract, and not with the institutional mechanisms
used to implement it. A related body of literature has been concerned
with a two-party competitive political mechanism, in which two political
parties are assumed to compete for votes by advocating particular policies,
or alternatives. In every period an election is held, with each voter
voting for the party whose platform he prefers. Whichever party receives
a majority is elected, and enacts the alternative it advecated. The par-
ties are interested only in winning elections, not in policies as such;
thus each party is motivated to adopt policies which maximize its pros~
pects in the next election. The original Downs-Hotelling analysis argued
that when the policy space is one-dimensional, eventually both parties
will tend to converge, in their platform choices, on the "majority winner"
or "median" policy (Downs (1957)). From a more rigorous game-theoretic
point of view, the competition for votes can be viewed as a two-player,
zero-sum game, in which the feasible policies are the pure strategies
available to each player, and the parties' vote shares (or perhaps their
respective probabilities of winning) are the relevant payoffs. A pure
strategy equilibrium for this game exists if, and only if, the electorate's
preferences are such that some feasible policy is a majority winner. 1In
the one-dimensional case this is ensured by the single-peakedness of voter
preferences, implicitly assumed by Downs and Hotelling.

when the underlying policy space is multi-dimensional, however, the
situation 18 quite different, since in general there will be no majority
winner policy and hence no pure strategy equilibrium for the parties.

shubik (1970) and McKelvey and Ordeshook (1975) have explored the possibility



and nature of a mixed strategy equilibrium for the parties. It has been
shown that the set of policies which are played with positive probability
in such an equilibrium constitute a subset of the Pareto Optimal policies.
No sharp characterization of this subset has yet been given, however,

and indeed, it is still an open question whether such a mixed strategy
equilibrium exists at all.* There are also serious interpretive diffi-
culties with this approach. In particular, the mixed strategies cannot
be interpreted as ambiguous or uncertain policy committments by the par-
ties** (Ordeshook (1971)), and it is not clear that the equilibrium mixed
strategies, even if they do exist, are operationally or descriptively
meaningful in the electoral competition context ,***

A rather different approach proceeds from the premise that some
citizens will (stochastically) abstain from voting under certain condi-
tions, for example if they dislike both parties' policies. Particular
versions of this type of assumption yield a pure strategy equilibrium

for the parties (Hinich, Ledyard, and Ordeshook (1972), (1973); Riker

*The usual versions of the minmax theorem do not apply, since the pure
strategy sets are infinite and (as {s easily shown) the payoff function
1s neither continuous nor concave in each party's strategies.

**1f they were so interpreted, voters would be in the position of voting
on lotteries over policies. The relevant pure strategies for each party
would then be the set of possible lotteries, and within these expanded
strategy sets no pure strategy equilibrium will exist, in general.

***Mixed strategies require the parties to simultaneously and randomly
choose policies in advance of the electoral campaign. However either
party could benefit by postponing its choice until its opponent commits
itself to a policy, and then choosing (non-stochastically) a policy
which ensures its victory. Hence both parties have strong incentives
to abandon their equilibrium mixed strategies.
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and Ordeshook (1973)). However this type of equilibrium does not seem
a very robust or compelling one. Its existence is sensitive to the ape-
cification used, and the particular formulations needed to ensure exis-
tence seem rather ad hoc, and not particularly consonant with the avail-
able empirical evidence on voter abstention (Slutsky (forthcoming)).
In any event, such an equilibrium would fail to exist whenever compulsory
voting laws or the salience of the election resulted in high voter turm
out, and seems of little normative interest.

The approach taken in this paper is more dynamic in character.
We assume the two parties to compete for votes repeatedly over an in-
finite series of elections. In each period one of the parties is elected,
and enacts the policy it advocated. In the next election the incumbent
party must defend this same policy, but the "out! party may adopt any
policy it wishes, to maximize its prospects in the next election. Since
in general there will be no "majority winner" policy, the incumbent's
policy can always be defeated by some other alternative. Hence the "out"
party will always win, and the two parties will alternate in office.
Thus a sequence of successively enacted "winning" policles will be gen-
arated by this process, and in general will continue indefinitely to
move about the space in some fashion. We shall refer to a sequence of
points as a trajectory. The basic purpose of this paper is to investi-
gate the behavior of the trajectories generated by a two-party compe-
titive process.

A majority rule trajectory is one in which each point is preferred
by a majority of voters to the preceeding point. The McKelvey result
referred to earlier shows that i{n general, the majority rule trajectories

are not well behaved, since from any initial point there is a majority
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rule trajectory which eventually reaches any other point. However many
of the majority rule trajectories will not be generated by the political
process described above, except under strong and implausible assumptions
about the objective functions of the parties. In particular, to argue
that every majority rule trajectory can be generated by such a process,
it must be assumed that a party may choose any point y which defeats
the incumbent's policy x , 1irrespective of the margin by which y de-
feats x ., The party thus has zero marginal utility for votes, once a
bare majority is achieved: it satisfies Riker's "size principal’ with

a vengeance (Riker (1958)). This assumption is not a very plausible one
for electoral competition. Uncertainty about the election outcome itself,
or in a parliamentary system, about future defections or deaths among

the majority party, encourage parties to strive for a larger~than-minimgl
majorities, as risk insurance. A large winning margin is generally valued
in itgelf, as a "mandate" for the victor, and in many systems brings tan-
gible benefits such gs increased patronage, and the election of legisla~-
tors from marginal districts whose indebtedness to the party leadership
ensures a more cooperative legislature. Recent U.S. Presidential elec~
tions, particularly the 1964 and 1972 contests, certainly provide little
empirical evidence of any tendency for leading candidates to "satisfice"
and gettle for minimal margins,

The original Downs-Hotelling analysis of two-party competition
was explicitly based on the contrary premise, that the parties are in-
terested in maximizing the votes they receive. We shall also make this
assumption, Under it, the trajectories generated by the political pro-

cess will be such that each point is vote-maximizing against the preceed-
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ing point. Clearly these trajectories constitute a proper subset of the
majority rule trajectories. We shall show that unlike the latter, the
vote-maximizing trajectories are relatively well-behaved, and display

strong convergence and stability properties.
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Definitions and Assumptions

There are n voters, denoted by N = {1, 2, ..., n} . The alter-
natives are points in the Euclidean k-space Rk , where k <n/2 , Each
voter 1 has a preference ordering over the points in Rk » represent-

able by a Type I utility function, satiated at a unique point si + Thus

1/2

1 t X 2
x>y 1iff [[x-87| < |ly-s'{[ , where |z = ( zizi) . The set
i=

>

i
B k

of feasible points is a compact, convex body in R, and each voter

is satiated in the interior of aE) .
For any two points x , y , we define the vote for y against
x , n(x,y) as the number of voters for whom y 1is (strictly) preferred

to x, f.e. n(x,y) = |[{f : y>x}| . For any x , we denote by v(x)
i

the maximum vote against x , i.e. v(x) =max n(x,y) . If y is a
y

point for which n(x,y) = v(x) , then y 1is vote-maximizing against x .

1f v(x) < n/2 for any x , then (and only then) x is a majority winner,
since no other point can defeat it in a pairwise majority vote. In the
typical case, however, no majority winner will exist, so v(x) > n/2 at

all x . The smallest value of v(x) 1s the minmax number (Simpson

(1969)), which we denote by n* : thus n* = min v(x) . (It is straight-
x

forward to verify that the various maxima and minima referred to in these
definitions all exist.) The difference between n* and n/2 is a meas-
ure of "how close'" a particular society comes to having a majority winner.
Moreover, the get of points x for which v(x) = n* ; the minmax set,
will turn out to be an important one.

We can now characterize the trajectories of interest. A trajectory

from x to y is a finite sequence (x, z, z', «.., ¥) » A trajectory
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is an infinite sequence ( xl, xz, ess ) o (Trajectories will be under-

stood to be infinite unless stated otherwise.) A vote-maximizing trajec-

i1+1

tory is a sequence (xi) in which =x is vote-maximizing against

xi s 1l.e. n(xi, xi+1) = v(xi) , all 1 >0 ., (other types of trajec-

tories will be defined later.)
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Some Preliminary Results

With these definitions in hand, we first note two straightforward
but useful consequences of our assumptions, and then prove a fundamental
result.

For any set of voters CCS N, let P (C}) be the set of points
which are Pareto-Optimal with respect to ¢, 1i.e, 09(0) = {x : for no

y is y>x, all {1 ¢C } . Then we have:
i

Lemma 1. P(C) is the convex hull of the satiation points {si : 1 ec).

Proof. Omitted. (A straightforward consequence of the assumption of

Type 1 preferences.)

Next, let M(m) be the set of points which can be defeated by no
more then m votes, {.e., M(m) = {x : v(x) <m} . Clearly these
M(+) sets are nested, in the sense that wm' >m implies M(m') 2 M(m) .

Lemma 2, If m<n, then M(m) = N Py .
{caw: |cl>m}

Proof. Omitted. (Follows immediately from the definitions, and does
not depend on the Type I assumption. In particular Lemma 2 would still
be true if the Type I assumption were replaced by the weaker assumption

that voter preferences are quasi-concave.)

Te obtain M(m) it thus suffices to examine the Pareto sets of
each of the mtl-membered coalitions. The set M(m) will be given by
the intersection of these Pareto sets. These M(m) sets are important'
for characterizing the behavior of the vote-maximizing trajectories.

A simple example (the same as that of Figure 1) with k=2, n =7
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is given in Figure 2. M(6) 1is simply the Pareto Optimal set p(N) .
M(5) 1a given by the intersection of the 49(0) of all the 6-membered
coalitions, and M(4) by that of the 5-membered coalitions. The Pareto

L T e L T - - -

Insert Figure 2 about here
sets of the 4-coalitions have no common point, so M(3) 1is empty, and
the minmax number n* {8 4. Note that the minmax set M{4) 1lies well
within the interior of the Pareto set ﬂ’(N) . The minmax set, as we
shall see, is the "equilibrium set' on which the vote-maximizing trajec-
tories converge. Though it i8 not a unique equilibrium, it is a small

one relative to P N) ,

We now use these two Lemmas to prove a fundamental result, Define
the distance d(x,A) from a point x to a (nonempty) set A in the

obvicus fashion: d(x,A) = inf ||x-y” . Then we have:
Y eA

Theorem 1. Let x , y be two feasible points for which n(x,y) > n*,

and =m an integer such that n(x,y) >m 2> n* . Then d(y,M(m)) < d(x,M(m)) .

Proof. The general ildea of the proof is illustrated in Figure 3, The
set f{z : |lz-y|| < ||]z=x||} of points closer to y than to x consti-
tutes an open halfspace H , bounded by the set of perpendicular bisectors

Insert Figure 3 about here

L T P Y L T T e Y TS Y



FIGURE 2.

Construction of M(m) Sets

L1



FIGURE 3,

Construction Used in Proof
of Theorem 1

18
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of the line segment [x,y] . A voter j prefers y to x 4if and only
if his satiation point sj is cloger to y than to x , 8o the set

C*

of voters who vote for y 1is the set whose satiation points lie in
H . From Lemma 1, thelr Pareto set P (C*) 18 a convex hull of these
gsatiation points, which is therefore contained in H also, i.e,

P(c*) cH . since |[C*| =n(x,y) >m, it follows from Lemma 2 that

M(m) = N Pcy < FP(c*), so M(m) 1is contained in H also.
{on:{c|>m]

Let q be the point in M(m) closest to x ( M(m) is non-empty since

m s n* and clearly compact from Lemma 1, so such a point exists), i.e.

such that d(x, M(m)) = |[x-q|| . Then since q ¢M(m) CH, q must

be closer to y thanto x , i.e. d(x, M@)) = [[x=q|| > [[y=q|] > d(y, ¥(m)) ,

which proves the Theorem. Q.E.D.
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Vote-Maximizing Trajectories

We now turn to the task of explicitly characterizing the behavior
of the vote-maximizing trajectories. The number of such trajectories is
enormous, since at any point x1 there are many points which are vote-
maximizing against xi , any one of which could be chosen as the next
point x1+1 in a vote-maximizing trajectory. The point a in Figure 4
lies outside of the Pareto optimal set JED(N) ;, 80 any point preferred
to a by all seven voters ié Qoﬁé;maximizing against a . The:set of
such points lies in the 1nteriof Bf tﬁe shaded region, A , the intersection

LT T P T T T R L L

Insert Figure 4 about here

g O gy e W - - -

of the sets of points preferred to a by each voter, t.e. Nfx : x > al .
i i

At the point b, wv(b) = 6 , and there are two six-membered coalitions
c, = {1,2,3,4,5,6 and 02'-{2,3,4,5,6,7] whose Pareto sets do not con-

tain b . Any point in B1 is preferred by all members of C, to b,

1
and B, 1is the set preferred to b by all 1 ¢ c, , 80 the set of vote-~
maximizing points is By UB, . At point c, v(c) =4, and the set

of vote-maximizing points is even more complex, as shovn on the figure.
Though at any point xi the number of votes v(xi) by which x1+1 must
defeat xi is unique, it is clear that the get of individuals who cast
these votes, and the direction and distance from xi to x1t1 » arae
quite indeterminate. Despite the multiplicity and indeterminacy of the
vote-maximizing trajectories, however, we can nevertheless obtain a use-
ful - characterization of their behavior. In particular, every

ﬁote-maximizing trajectory must tend to move ingide the nested M(m)

sets, in the following sense:



FIGURE &.

Vote-Maximizing Moves

12
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Theorem 2. Let (xi) be a vote-maximizing trajectory and M(m) # @ .

Then for any 1, x1 ¢ M(m) implies d(x1+1, M(m)) < d(xi, M(m)) .

Proof. Since xi+1

is vote-maximizing against xi R n(xi, xi+1) = v(xi) .
x1 & M(m) implies v(xi) >m, and M(m) ¥ ¢ implies m < n* , so the

conditions of Theorem 1 hold and the result follows immediately. Q.E.D.

This result implies that on any vote-meximizing trajectory the dis-
tance to any non-empty M{(m) set (which the trajectory has not already
entered) must be strictly decreasing, and in this sense the trajectory
must approach the set. Theorem 2 does not guarantee that the trajectory
will actually reach such a set, since the trajectory could conceivably
get "stuck" outside, by taking ever-shorter steps or getting caught in
a limit cycle of some sort. Only a slight strengthening of the conditions
of Theorem 2 18 required to preclude this possibility, however. We can

141 1
™ - x|

think of as the distance a trajectory moves in period 1,

i+l - 1”

t
and of T (|x
i=1

t periods. It is then natural to think of a non-degenerate trajectory

X as the total distance it travels in the first

as one which keeps moving forever, in the sense that this distance is

unbounded. More pregisely, a trajectory (xi) is non-degenerate if for

* th 1 4
all K >0 there exists some t~ for which I {|x - =x"|| > K . We
i=1 .
ghall alsc say a trajectory (xi) enters a gset A 1if x1 e A for

k

some 1i* , and that a set ACR 1is a body if it contains an interior

(relative to Rk ). With these definitions, we have:

Theorem 3. If M(m) 1is a body, every non-degenerate vote-maximizing

trajectory must enter it.
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Insert Figure 5 about here

- ey gy W G S N wn Sy G e A e T S R Ay

Proof. Let M(m) be a body and x1 » xiﬂ‘ be any two points such that

1 ¢ M(m) and xj‘+1 is vote-maximizing with respect to xi . On Figure

5, L 1is the line through xi' and xﬁl » 61 = ”xi+1

1+1” < ||z -xi“} is the set of points closer to x

-xi” , and

={z: |lz-x 1+

than to xi ; an open half space bounded by the plane P formed by the

perpendicular bisectors of the line segment [xi, x“'l

] .+ Prom Theorem

1, M(m) €H , as shown. By assumption M(m) 18 a body, and from Lemmas
1 and 2 1is compact, so there exists a largest ball B contained in M(m) .
Let p be the radius of such a ball, and the point ¢ be its center.
Define h = d(c,L) , the distance from ¢ to L, and a , the point
in L such that |Ja=c|| = h , and similarly let k be the distance

from ¢ to P,and b ¢P , such that |jb-¢c|| = k . Finally let

i+1 -c” ]

i
d, = f[x" =c|| and dey = [l%

is parallel to P, so d(a,P) =k, and is perpendicular to L, which

Clearly the line segment [a,c]

implies d> = h% + lla «x || = h +(k+261) , and

1
2 2 i+ 1“2 2_42

d = h +"a-x =-h +(k--2-61) . Hence di 1+1-26k>26 P,

i+1
since M(m) €H implies k > p .

Suppose now there existed a non-degenerate trajectory (xi) which
never entered M(m) . Then the above inequality would hold for all { >0,
which after rewriting and summing for 1 =1, 2, ..., t , would imply

£ o2 2 2 2

2p T8, < TS -d5.,) =4 -4d%,,
et SIS Sl 25 1" %ent

and hence that

t
2 i_ i+l
diyy <dj - 291;21”:: x|



FIGURE 5.

Construction Used in Proof of Theorem 3
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i i+
-x ]

(since 61 = ”x by definition). But since the trajectory is

non-degenerate the sum on the right is unbounded, so for sufficiently
large t 1t would be true that d§+1 < p2 » contradicting the hypothesis

that the trajectory never enters M(m) . Q.E.D.

The condition that M(m) be a body is an extremely weak one, which
will nearly always hold. In special cases-~for example if there happens
to exist a majority winner, or if all voters' satiation points lie in
some affine subspace of Rk -~there may exist an M(m) which does not
contain interior points. It is clear that such instances are exceptional,
however, and are not preserved under arbitrarily small perturbations of
voters' utility functions.* For all practical purposes, Theorem 3 ensures
that every non-degenerate vote-maximizing trajectory moves inside the
nested M(m) sets, and hence eventually enters the innermost one, the

minmax set M(n*) .

*These remarks can be made precise, for example as follows: Le yIL be
the set of all n-membered societies, and induce a topology on by de-
fining the distance between two societies §, §* as

T min [[sl-e*d||
1

where ai and s*j are the satiation points of voter 1 in § and

j in §* , respectively. It can then be shown that the set of socleties
for which M(n*) 1is a body is open dense in ::B . It follows from this
that the set of societieg for which some non-empty M(m) 1s not a body

is of measure zero in ,gE , and hence that this property is essentially
unobservable. The converse property, that every M{(m) 1s a body, is
generic, and will hold for "almost all" socleties. See Hirsch and Smale
(1974).
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An {llustration of a typical vote-maximlizing trajectory is given
in Figure 6. The trajectory enters the ID(N) = M(6) and M(5) sets

Insert Figure 6 about here
in straightforward fashion, and then (at xS ) temporarily jumps outside
of the M(5) set This does not contradict Theorem 2, since x4 ¢ M(5)
and Theorem 2 pertains to M(m) sets the trajectory has not yet entered.
After returning to the M(5) set, the trajectory then alternates between
the five-membered coalitions {1,2,3,4,7} and {2,3,4,5,6}, approach-
ing and eventually entering the minmax set M(4) . The continuation of
the trajectory after x12 is not shown, but it is clear (for example by
examination of the point ¢ in Figure 4) that having entered the minmax
set M(4) , a vote maximizing trajectory may then jump outside of it.
Such departures may occur repeatedly, and as Figure 4 shows, they may
be substantial in magnitude. In this sense the minmax set is not a stable
equilibrium. It is also true, however, that Theorems 2 and 3 ensure that
after each such departure the trajectory must immediately begin to move
back toward the minmax set, and eventually reenter it. Hence there is
another sense in which the equilibrium is stable, since it tends to re-

store itself whenever it is disturbed.



FIGURE 6.

s3

A Vote-Maximizing Trajectory
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Discusgion, Interpretation and Some Further Results

The results reported above provide a rather general characteriza-
tion of the behavior of a Downsian two-party political system acting over
a multi-dimensional issue or policy space. Competitive vote maximization
in such a situation will lead the two parties to converge on the minmax
set. Most previous work on party competition in multi-dimensional choice
spaces has been based on the much more restrictive equilibrium concept
of a "majority winner" (or Plott equilibrium, or "multivariate median').
The minmax set 1s identical to the majority winner if the latter exists.
As we pointed out earlier, however, in multi-dimensional issue spaces
the existence of a majority winner is an extremely rare, and unstgble,
phenomenon. Thus any attempt to characterize the behavior of party com-
petition in terms of such an equilibrium will be of little practical in=-
terest. The equilibrium suggested here, the minmax set, always exists,
and hence our convergencemfeéﬁifﬁm;iIE“;bpigmquite generaliij—“ﬁeﬁce tﬁea;
results generalize the Downsian model of party competition to multiple-
issue elections, and show that the minmax set is the natural generaliza-
tion of the "median" (of the distribution of voters' most-preferred points),
the point on which the parties' platform choices tend to converge in the
unidimensional case.

The size of the minmax set is in some rough sense a measure of
the degree of concensus within the society. 1In a purely distributional
question, in which a limited amount of a single private good must be dis-
tributed among the citizenry, each citizen will want to maximize his own
gshare, at the expense of everyone else. In this case, the minmax set
will coincide with the entire Pareto optimal set, ﬂj(N) , and the voting

process will be relatively indeterminate. Such redistributional questions
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are the most divisive a society must face, and it is not surprising that
voting 18 unable to resolve them. In a more general public good-type
problem, in which the interests of the citizens are not so diametrically
opposed, we will have a situation more like that of Figure 2, where the
minmax set lies well within the interior of JD(N) ;» and the voting pro-
cess becomes more determinate. Moreover if the number of voters increases
in such a way that their satiation points become spread more smoothly
across the space, the minmax set will shrink, and there is thus a sense

in which the process will tend to become more determinate in large so-
cieties.* These qualitative characteristics of minmax sets seem eminently
reasonable to us, and reinforce ocur feeling that the minmax equilibrium
concept 1s a compelling one which deserves to be taken seriously.

The basic motivational premise of our model is that partieé are
primarily interested in maximizing votes over the current election period.
The vote maximization assumption is a plausible abstraction, which we
think is at least as defensible (for a competitive two-party system) as
the assumption of profit maximization by firms. Nevertheless it is clear
that political parties (like firms) may have other objectives as well,
and in particular may have preferences for policies as such, independgntly
of their electoral consequences. In a more general treatment, we might
suppose the parties to be maximizing an objective function involving both
policies and votes, and to be willing to sacrifice some extra votes in
favor of these policy objectives in elections in which g comfortable mar-

gin of victory is already assured. Some generalization of our results

*These assertions are precisely formulated, and proved, in a forthcoming
paper,
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in thig direction is possible. 1In particular, if the vote-policy trade-
offs are such that no "out" party would ever settle for fewer than n*
votes, then the sequence of successively enacted policies wouid consti-
tute a subset of the n?;trajectoriea (i1.e. trajectories (xi) for which
n(xi, xi+1) > n* ). Theorems 2 and 3 imply that every n*-trajectory
converges on the minmax set, so the model generalizes immediately this
extent.

A somewhat different issue concerns the myopia of our model. In
each period the "out' party is assumed to maximize its prospects in the
coming election, without regard to the possible consequences in subsequent
periods. While this is clearly a strong asgumption, we do not think it is
an unrealistic one, in an electoral context. Many observers have noted the

relativelyshorthorizonsofelectedofficials,andthefhctthattheirpreoccupa-

tions rarely extend beyond the next election (in this respect they differ
from private firms and non-elected officials). Indeed, this short-
sightedness 1s often cited as a major shortcoming of the decision-making
process in a democracy. We think it interesting, in this regard, that
our completely myopic democratic process nevertheless does succeed, over
time, in attaining what is in many respects an eminently reasonable
soclal optimum, the minmax set,

The myopia assumption could be relaxed in various ways. One might
be to suppose that parties are interested in maximizing their votes in
the current election, and also in guarding themselves against unnecessary
losses in the following election. It would then adopt a policy x 't
which is vote-maximizing-loss-minimizing against the incumbent's policy

xi s l.e. such that



31

and

v(x ) = min viy) .
(y n(xf,y) =vxh)}

The sequence of policies enacted would then constitute a maxmin trajectory
(xi) » l.e. a trajectory satisfying the above relation for all 1 >0 .
If the parties were willing to sacrifice some current votes to ensure
against next-period losses, a larger class of trajectories would be gen-
erated; one such class is the set of n*-gigrtrajectories, in which xt+1
minimizes v(x)ii"1 subjeét to fie éonstr&iﬁgaof winning n*- or more votes
against xi . Since the maxmin and n*-min trajectories are subsets of

the vote-maximizing and n*-trajectories, respectively, Theorems 1 through

3 imply immediately that such trajectories converge on the minmax set.

In a fully general treatment we might model the competition as a dynamic
game in which each party strives to maximize a discounted stream of future
election returns. While we do not think the gain in descriptive realism
in such a treatment is necessarily great, it is nevertheless an interest-
ing, and open, question as to whether the minmax set would still emerge

ag an equilibrium in this more general framework.

Though our primary concern in this paper has been to characterize
the equilibrium behavior of a two-party competitive political system this
equilibrium can also be characterized in a more abstract voting theory
framework, In particular, for any A ¢ (0,1) , we can define the special
mgiority preference relation 1% in the obvious fashion: for any
X,V ¢ ei), xPKy 1ff n(x,y) > An . Typically the simple majority re-
lation Py/2 is intransitive, and indeed cyclic, because of the 'voters'®

paradox" phenomenon. The unanimity or Pareto ordering
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(given by A=l - % ) 1in contrast, does not cycle, and the set of maxi-
mal elements of P)\.u is the Pareto Optimal set fD(N) , which is always
non-empty, though typically large. A natural question is to ask whether
there are intermediate values of A for which PA ig also acyclic, and
to chatracterize the smallest such value. The following result answers

to these questions.

Theorem 4. A necessary and sufficient condition for P, to be acyclic

A
is that A >n*/n .
Proof. Necessity: For any X ¢ JD ;s clearly
{z ¢ J): zPKx} = U (" {z eti): z > x1) 1is open, since it

{cjgn:lcj1>m} {1ecj} i

it is composed of finite unions and intersections of open sets. é) is

compact, so if P, 1is acyclic, there exists a maximal element in GC)(BrOWn

A
(1973), Theorem 7, p. 8), i.e. an element x* ¢ 45 such that for no

y ed) is yPx . This implies v(x*) < An, which by definition of
the minmax number is pogsible only if An Z n* .

Sufficiency: If P, were not acyclic there would exist r > 2 points

A
xl, xz, eney x e 4) such that x1+1P7\x1 , all 1 =1,2, ..., r-1,
and moreover lehxr . Since X\ 2 n*/n » Theorem 1 implies that
d(x1+1, M(n*)) < d(xi, M(n*)) , all i=1, 2, ..., r=1 , and hence

lPxxr , Theorem 1 would

also imply d(xl, M(n*)) < d(xr, M(n*)) . This is a contradiction, which

that d(x, M(a*)) < d(x}, M(n*)) . But if x

shows that Ph must be acyclic. Q.E.D.

The relation Ph* given by A* = n*/n has some attractive features

as a social preference relation. The family of Ph relations is clearly
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monotonic, in the sense that if A' > A", then P,, &P (where

K. xtl

P, C "8)(8), and hence 77&,,2 Do s where77?7\={x eaO: for
no y € éD is yka} is the set of maximal or undominated elements of

the Ph relation. Theorem 4 shows that A\* 1is the smallest A for

which Pk is acyclic, so P

acyelic Ph relations, and yields the smallest or most sharply charac-

2k is the largest or most decisive of the

terized (non-empty) set of social 0ptima.*
In an axiomatic social choice framework (Arrow (1963)),

the Pk* ordering satisfies the Pareto axiom (since P u EEPA? Y and

)8
is clearly Non-Dictatorial (and indeed satisfies the much stromger Anonymity

axiom, since the PK' relations do not depend on the labelling of voters).

It also satisfies natural weakenings of the Domain axiom (to the class of
Type I societies) and Arrow's Rationality condition (acyclicity). The

controversial Independence of Irrelevant Alternatives axiom is not satis-

*

fied, since P is defined in terms of the global parameter n™ , which

;\*

depends on alternatives which may be "irrelevant" to a particular choice.

The social ordering can be constructed in a fairly decentralized fashiom,

*Craven (1971) and Ferejohn and Grether (1974) have explored the struc-

ture of the PK relations over finite sets of discrete alternatives,

and have shown (essentially) that if r 1s the number alternatives, a
necesgary and sufficient condition for Ph to be acyclic for all socie-
ties is that A > E%l . This 1s a conservative bound, since in many so-
cieties lower values will still yleld acyclic Ph , and in any event

it does not apply to multidimensional cholce spaces in which the feasible
set 1s infinite. However we believe the topological structure of the
nultidimensional case can be exploited to obtain a comparable bound, and
in particular conjecture that such a bound will be given by k/(k+l) ,
where k is the dimensionality of the space.
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however, without requiring complete knowledge of all voter's preferences
for all alternatives, and to that extent fulfills the basic idea behind
the Independence axiom, of informational decentralization (Arrow (1963),
pp. 110 ff.), and it should not be difficult to reformulate the axiom
into a more flexible form which still captures this idea, It follows
from the definitions that the 77Zh% set is precisely the wminmax set
M(n*) , so Theorems 2 and 3 in effect show that the "hidden hand" of
party competition results in optimization of the essentially Arrowian
social preference relation PA? .

All of the results proven here (except Lemma 2) make essential
use of the assumption that all voters have Type 1 preferences. Most
previous work in this area has been based on this or essentially equi-
valent assumptions. The Type I societies are an important class, within
which all of the intrinsic difficulties of voting intransitivities emerge.
Nevertheless the Type 1 assumption is a restrictive one, and the extent
to which it can be relaxed is clearly an important issue. Some obvious
immediate generalizations can be obtained by replacing the Euclidean metric
by other metrics. Clearly the minmax and M(m) sets exist and are char-
acterized by Lemma 2 under much weaker assumptions on preferences. On
the basis of an extensive and unsuccessful search for counter examples,
we conjecture that the essential qualitative properties expressed in
Theorems 1 through 4, concerning the acyclicity of the PK relations
and the convergence of the vote-maximizing trajectories on the minmax
set, also hold under much weaker assumptions, such as, for example, the
assumption that voter preferences are representable by smooth and strictly

quasi-concave utility functions.
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