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A DUALITY THEORY FOR CONVEX *-HORIZON PROGRAMMING*

by
Joop J. M. Evers

Tilburg School of Economics, Netherlands

The programming model is based on a sequence of closed convex sets
in R2m+1 » each representing triples of inputs, outputs and utility
which are feasible in the corresponding period. The usual balance of
goods and the usual objective function comsisting of the ®-horizon sum
of discounted utilities, complete the model., Under free disposal and
a rather weak assumption concerning the existence of particular primal
and dual feasible solutions, the following results are derived: the pri-
mal and dual problems both possess an optimal solution, the well-knowm
sufficient conditions for optimality appear to be necessary as well,
Finally, some approximation methods are presented, which are based on

finite horizon programs. The treatment emphasizes symmetry between the

primal and dual problems.

1. The Primal Problem**

The programming model is based on a sequence of sets

{Et]:‘: r: ; each of them satisfies the following assumptions:

1

. c m m -
Al: E_CR xR xR , t=1(1)

*The research described in this paper was undertaken at Cowles Foundation
by a fellowship of the Netherlands Organization for the Advancement of
Pure Research (Z.W.0.).

**A 11ist of symbols is added at the end.



A2: (mx,y) €E =>Vigu, X2x, ¥el0yl : GX ¢k
A3: each Et is convex

A%: each Et 18 closed,

Economic interpretation: Each triple (pt, X, s yt) e Et may be under-
stood as follows: (1) x, are inputs at the beginning of a period t .
(2) y, are ocutputs produced by the system during the period t , and
which are available at the end of period t . (3) by is a feastible
profit, given inputs/outpute for that period; i.e.: with given inputs/
outputs xt/yt s there is at least one activity which produces a profit
equal or larger than B o In this context A2 may be taken as a free

disposal assumption.

Starting from a given amount of initial outputs Yo ¢ R: y & se-
quence of triples {(ut, Xes yt)}:ﬁi R1+2m is called a feasible path

if (u.t, X yt) [ Et s t=1(1), x, < Yeul ? t =1(1) . The inequa-
lities X, < Yea1 ? t = 1(1) simply represent the balance of goods.
The objective function associated with such feasible paths consists of

the discounted sum <ﬂtut>;:==f” ntut , where the discount factor

t=1
7 ¢ 10,1[ . The formal structure of the programming problem is given

by the following definitions.

Definitions (1-Dl to &):

Dl: (sub~bar convention): every sequence [at]: of finite dimensional
vectors shall be denoted by a . Note: the initial index of a se-
quence denoted by b 1is always 1 . 1In case of a sequence [bt]é R

b stands for the subsequence {bt}: .

p2: E := {(wxy ¢ thx ’tml(p't’ Xeo yt) ¢E. , t= 1(H} .



D3: The set of feasible paths (or solutions) with a given inftial vec-

tor Yo ¢
PF(vg) := {(WxYD) ¢Elx Sy %, Sy, t = LY.

D4: The programming problem:

(1.1) sup <1'rtu >h w.r.t. (WX,y) € PF(y,) ,
t71 0
s
where optimality concept is defined as follows (viz. Halkin {6]):
(§,%,9) e PF(y,) is called an optimal solution if there is no

(x,y) ¢ PF(yO) such that, for some ¢ > QO and some period r :

(1.2) <ntut>‘1‘ > ¢+ <ntat>*1‘ , h=r() .
In other words, if a triple (p,x,y) ¢ PF(yO) exist satisfying (1.2)
for some ¢ > 0 and some period r , we say that (§,%£,§) 1s dom-

inated by (u,x,y) . Note: 1if, for all (u,x,y) cPF(yO) , the

series {<ﬂtut>¥}:_l converges then thig concept of optimality coin-

cides with the usual notion of optimality.

2. The Dual Problem

Definition (2-D1): To each Et s Wwe associate a "dual" set:

D, := {(v,u,v) ¢ Rlx R®x R:IV(u,x,y) ¢E : p-u'x+mw'y < vl .

Proposition (2-Pl to 4): The assumptions 1-Al and 2 concerning the seta

Et imply, for each corresponding Dt :



1 2m
. c
Pl: Dt R xR+ .

~ ~ ™ v
P2: (v,u,v) e D, =>V¥V2Vv, uzu, Ve [0,v] : (wu,v) ¢ D_ .

P3: Dt is convex.

P4 Dt is closged.

Note: comparing (1-Al to 4) with (1-Pl to 4), is is seen that the sets

Et and Dt possess a similar structure.

Proof:

Pl: Since, by 1-A2 every x in (u,x,¥) ¢ E, may be chosen arbitrarily

large, (v,u,v) e D, implies u 20 .

P2: Since, by l-Al: Et = Rl}:RfP s this property immediately follows

from the definition 2-Dl.
P3: Let (:LG;;), (Qﬂﬁ;?b € Dt » and let <« ¢ [0,1] . Then 2-Dl implies:
V(mX,y) €E b - (au+ (1-0)T) 'x + ™aw - (1-)P) 'y < ov + (1-0)F .

Thus, the convex combination is a triple of Dt .

i

Ph: Let {(vi, u’, vi)};‘: D, be a sequence which converges to (vo, uo, vo) .

0, vo) { Dt . Then a triple {u,x,y) ¢ Et exists

1 1 ] 1
such that y - u0 x + ﬂvo y > vo PR ui x + nvi y < vi y 1 =1(01) .

Suppose (vp, u

However, this contradicts the convergence.

Proposition (2-P5): If ({,%,¥) e E 5,4,%) ¢ D, satisfy:

f-~0'%+mW'$=3, then ({,%,¥) is optimal for:
(2.1) sup{p - G'x + W'y) , w.r.t. (W,x,y) ¢ E, ,
and (9,8,%) 1s optimal for:

(2.2) inf(v + u'x -~ w'y) , w.r.t. (vyu,v) ¢D



Proof: The definition of D_ (2-D1) implies: V(uw,x,y) ¢E,,

(vu,v) eD, :p-u'c+mw' <v. Clearly, (3, %,9) ¢ E, , (95,0,79) ¢ D,

implies: supremum in (2.1) is not larger than 9, and the infimum in

(2.2) 18 not smaller than {§ . Hence, {i - &'KX + n¥'¥ = § 1implies op-

timality.

Economic interpretation: Each triple (vt, U vt) ¢ Dt may be under-
stood as follows: (1) u input prices acting at the beginning of period

t . (2) v, output prices at the end of period t . (3) v_ an upper

t t

bound for the discounted feasible profits (i - uéx + ﬂvéx) ; gilven the
intput/output prices. In that context, problem (2.1) may be considered
as profit maximization, with given input/output prices. The meaning of
min. problem (2.2), to be elaborated later, can be deduced from proposi-
tion 2-P5, which presents a sufficient condition for optimality with res-
pect to (2.1). In the following definitions, the dual programming prob-
lem is constructed in such a way that a sequence of feasible triples

(vt, u,, vt) ¢ Dt s t =1(1) with respect to the separate periods,

are connected by the additional requirement u, <v + In connection

t-l
with property 2-p2, these inequalities may be replaced by equalities ex-
pressing the reasonable condition that input and output prices acting

at the same moment have to be equal.

Definition (2-D2 to 4):

1 .
D2: D := {v,u,v) e £ x!.mxﬁml(vt, u, vt) ¢«D. , t=1(1)) .
D3: The set of dual feasible solutions, with a given initial vector
Vo ¢ R+ :

DF(v,) := {(w,u,¥) eDfu; < v, Yyl SV, t=1)}.



D4: The dual problem with a given initial vector Vo ¢ R$ :

t h
inf <My > weret. (BWY) e DF(vo) s

where, changing the sign, the similar optimality concept is used

as in 1-D4. Problem 1-D4 and 2-D4 shall be treated as two aspects

of one single programming problem. In that context 1-D4 is called

the primal problem, and, feasible/optimal solutions of 1-D4 are called
primal feasible/optimal (briefly P~feasible/optimal solutions). Con-
sequently, 2-D4 gives the dual problem. Its feasible/optimal solu-
tions are called dual (or briefly D-) feasible/optimal solutioms.

Note that, with respect to 1-A1,2,3,4 and 2-P1,2,3;4, both problems
possess a similar structure. Thus symmetry implies that both possess
the same properties. In what follows, we assume that both problems

possess a feasible soluticn,

3. Sufficient Conditions for Optimality
Proposition (3-P1 to 3): V(wmX,Y) €PF(Yy) , (%LWY) ¢ DP(v,) :

Pl: <11rt|.1.t>-h < mw)

L S ™oYe t+ <ntvt>q - <nF(v - uéxt)>§ . rp*lvﬁyh , h=1Q) .

1 ]
t-1¥¢-1

P2: v;_lyt_l - u::xt >0, t=1Q1).
. t b ' t . h -
P3: <n WD S WY +<T V>, h=1().

Proof: 2-Dl, 1-D3, and 2-D3 imply: V(u,X,3) s« PF(y,), (B w,¥) ¢ DF(vy) :

<n"p,t>‘1’ < <ntvt>*1‘ - <rf(mly, - ux)>, h=1(1) . shifting the terms

t -
VY, yields 3-Pl.
3-P2 i{s the consequence of the conditions: Xy Yes Uy Yy 20, X, < Yeo1 ?

u <V t =1(1) .

t t-1"’



3-pP3 immediately follows from 3-P1,2 and Yhe Yy >0, he=1(1) .

Propogition (3-P4): (sufficient condition for optimality) If

N A N ~N & A . t -~ - h - []
(LD ePF(vy) , (BL,D e DF(VO) satisfy: <m (fi_ Gt)>1 ™Yo
for h - o, then (Eg,f) and (Eg,yn:) are both optimal.

Proof: Suppose there is a (~ X, E € PF(y.) for which a number ¢ >0
Proof X 0

and a period r exists such that <1'rtp.t>}i > e+<ﬂtﬁt>t{ s h=1(1) (i.e.:

A A A ~ t,a h
(3,%,7) 1s dominated by (p,%,y) ). Then, <n (B, - \’at)>1 - m6y0 for
h -, implies the existence of a period & >r such that:

>‘n b ;c + <'rr o >I; ; h=238() . This contradicts 3-P3, implying

that there is no dominant solution with respect to (§,%,§) . The dual

part of the proposition may be proved in a similar way.

Proposition (3-P5): (L&D ¢PF(yy)) , B9 e DF(v)) satisfy:

<11t(ﬁ. - \‘5t)>l]'.l - m&yo for h=wo, if, and only if simultaneously:
A| o= 1 . A = l\'o\ = . -~ - A|A [] =
bR =voyg s SRy =P, £ =205 B - BF + 00T ét ’
ta a

vtyt-O for t = >,

t = 1(1) ;

Proof: Let (LX) ¢PF(,) , (50,9 ¢ DF(vy) , and let (3, §,):= (v, Vo) -

Then:
(3.1) 8 := Gt +dlx, - iy, - ﬁt 20, t=1(1) (by 2-Di)
o= 1 ~ - AL~ - -
(3.2) 7, Gt_lyt_l af 20, t=1() (by 3-P2)
t+1h N ~
(3.3) P ¢ V20, h=1(1) (by Vs ¥, 20).

and, finally by straightforward calculation:

- t h t h
(3.4) <Tl‘t(u.t" Ot)>*1‘ = nv('}yo - <n 6t>1 - < 7t>1 “f h=1(1) .



The relations (3.1) to (3.4) imply equivalence between the two premises.

Propogition (3-P6): (sufficient condition for optimality) If

G5 ePF(y,) , (B89 e DF(v,) satisfy: ﬁ'i vy, 3
~q A = AL = . - LYY ‘l“ = - .
Glafe =%, , t=1) 5 B -GF + W 8., t=1() ;

ﬂtﬁéft =0 for t = e ; then they are both optimal. (Corollary of

3-P4 and 3-P5.)

Definition (3-D1 and 2): (dual free starting point problem). The con-

dition ﬁ{fl = v6y0 in 3-P6 shows that, in any case, very special com-
binations of initial vectors Yo » Vg 8re required tc met the guffi-
cient condition. For that reason we put one of the initial vectoras as
an optimization variable. Since we started from the primal problem with
a given initial state Yo 2 it 18 natural to consider a free starting
point version of the dual problem defined as follows:

Dl: The set of feasible dual free starting point solutions, briefly DO-

feasible soluticns:
O " }
DF = {(vy,»,u,¥)|v, ¢ R, (Wu,¥) € DF(v,)

D2: The dual free starting point problem:

inf {nyo o <t vt>1} » Waret. (vo,vu,¥) ¢ pr° .

hy—e
The aim of this study is to prove the existence of P-and Do-optimal solu-
tions, under general conditions concerning the existence of P-and DD-
feasible solutions, and to show that the sufficient conditions for op-

timality are necessary, as well.



Economic interpretation: Suppose (i, X,§) e PF(y,) » (\?o,g,g_,ﬁ) ¢ DF°
satisfy the sufficient condition of 3-pP6, which includes the equalities:
ﬁt - Géxt + nGéﬁt - Gt s t=1(1) . Then, by virtue of 2-p5, it appears

that each (Gt, it, ft) is an optimal solution of the corresponding problem:

(3.5) sup(p-ﬁéx + nﬁéy) s Werste (W,%,¥) ¢E .

Thug, in case the optimal sclutions of these separate profit maximization
problems are unique, one can say that such a dual optimal solution gen~
erates a price system that allows a decomposition (or decentralization)
of the infinite horizon program in a sequence of separate programs for
each period. Further the sufficient condition includes: ﬁ;it = Gé-lyé-l s
t = 1(1) , with the interpretation that, at each moment of period chang-

ing, the value of the inputs is equal to the value of the outputs.

4. Necessary Conditions for Optimality

The necessary conditions, to be deduced in this paragraph, are based
on a system which, for every feasible solution, constructs a sequence of
substitute feasible solutions. 1In a next phase, the values of the objec-
tive function of the substitute solutions are compared with that of the
original feasible solution, resulting in a necessary condition for opti-
mality. This procedure is based on an assumption concerning the existence

of particular feasible solutions, expressed in the definitioms 4-Dl1 and 2.

Definition (4-D1 to 4):

Dl: P-regular solutions, defined by the set:
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Ee.ﬂl,g,xezi;351>0:

PR(yy) = ((X,¥) ¢E

D2: D-regular solutions, defined by the sget:

Vel ve s, >0
DR(VO) = ((MWyy) e D

U v bze; U SV - 62e, t=1(1)

In the next paragraph, the existence of optimal solutions will be proved
with the help of pertubations imposed on the primal problem. Under per«
tubations expressed by vectors 2z e .ﬁfﬁ the sets of P-feasible solutions
are defined by:

D3: PF(yy;z) = {(u,x,%) ¢ E,le S Vgt Eys Xy SV 2, t=1D])
The corresponding primal problems are formulated:

D& ; sup<‘rrtut>l£ s Webet. (WX,¥) cPF(yo;_z_) .

e

Consequently, we have to deduce necessary conditions for optimality which

can be applied for all 2z e E: . We start with the construction of sub-

gstitute feasible solutions.

Proposition (4~Pl): Suppose @',E,B ¢E, «e¢]0,1[ satisfy ;t+1 < a'y"t ’

t = 1(1) . Then, associating to every (z,lx%x,y) , Z ¢ ,zf: PF(y,32) ¥ 8 ,

(wXx,¥) ¢ PF(y,;2) a sequence of triples (_gh, l_t_h, xh) ¢ Lx Px ’

h = 1(1) by:
h h h het ,~ ~ ~ =t
(l-l't; Xy Yt) =G (ﬂtJ Xer Yt) + (1"0'11 )(L\t: Xes Yt) » £ = 1(L)h
(4.1)
Wy x, ¥) = (B, X, 5), t=hl),
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the assumption concerning (W,X,¥) , O, and z imply:

{(4.2) (y_.h, xh

1) err@ T -y, nel .

Prooft (5,X,3) ¢E, o el0,1{, (wXxy) €PF(yy;z) CE and the con-
vexity of each E_  (viz. 1-A3) imply:

P s For F) + 1=, % v €, h=1(), €= 1(Dh .

t, yt t 2
h _h _h
Together with the definition (4.1) of (u, X, ¥ ) , this implies:
h h _h ~ ~
(b, x,Y) ¢eE, h=1(1) . Further, Xepq SH, » X Syt-l-z

t+l t+l

Fad

Xo» Ypr Xps Ypr 2, 20, t =1(1) implies:

[P+ a-dP Ty <R s -y, e

1 1

=t~ -t
xt+1§ yt+ (1-0}‘l )yt-i-z t=1(1)h~1

t t+1’

ﬁ Pty ot (-t

~

~ Xe+1

= h(l)

nA

v, + t
Te T Feq1 0

Thus, it appears that (Eh, g_c_h, zh) € PF(ah_I'i'l + (l-ah’l)yo; z) , h =1(1) .

Proposition (4-P2 and 3): (preparation to 4-P4): Suppose (EE,?_') ¢eD,

;0
Then, for every (z,u,x,y) such that: z e !;: , PF(2) ¢80, (wx,y) ¢PF(2) :

eR, , ael0,l[, and &3>0 satisfy: W gV -t, t=1(1).

p2: <(wotp>] < <(wa'SY - Kvaytely, ST +

try h r~y - hﬂ, -
+ <(n/c) uiz > + ™oy, m(n/c) VeI h=1() .
t 8 L 8 _ £ 8 try 8 Trey - -
P3: <n B> S <V >l &ne Ye-1r T <rwez >+ NV Yoy, 8 1(1), r=1(1)s

o~

Proof: (V,u,v) €D implies, for all (w,x,y) ¢E :

B " i‘féxt + n'G';_yt < '{St , t=1(1), and next with « ¢ )0,1[ :
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t L, ~ ~ g
<(T/Q) ut>: + (/A (AVY iy, - Ulx >0 <

tt''r
(4.3)
8-
<<(n/c¢) v> + nvr 1Vpe1 ~ n(n/o) v;ys , 8=1(1) , r=1(l)s .
The assumption G’t < a';t-l - be , X, SY. + z, , t=1(1) , implies:

(4.4) <o) (O, ;9,1 -k 2 (v tely P - <(WoyElz>l .

Putting r := 1, 8 := h, and combining (4.3) and (4.4), 4-P2 follows.
Putting o := 1 , combining (4.3), (4.4), and removing the term

n(/o)*Fy, 20 in (4.3), 4-P3 follows.

Proposition (4-P4): (preparation to 4-P5): Suppose (Egb ¢E,

€ R$ « e ]0,1[ , and & >0 satisfy:

Ay, 1 » Y < t-1 " ¢ , t=1(1) . Then, for every (z,u,x,y)
L2 PF(yg32) # ¥, (Wx,Y) e PF(y,iz) , and every cor-
responding sequence (_u,_h, :_:_h, 1h) , h=1(1) defined by (4.1), the fol-

lowing inequalities hold:

(4.5) <t (p,t - p,t)> < mzhvoyo 6:3}'<(1-r/0.')':e'yt_l.?}l1 +

h
+ o}1<(ﬂ/cx) utzt>1 + < u h+1

+c}'<('n/a) \a> +<11v>;1-

C}l<(1'l:/Ol) B> 1 - < ""t h+1 , h=1(1) , a=htl(l) .
h _h _h .
Proof: The definition of each (4, x, y) (viz. 4.1) implies:

t h,. 8 t h t .8
(4.6) <n (p.t “B)>y = ah<('n/a) WS>yt <TBS -

- ()5 - <R, hel(1) , eshel(1)
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combining (4.6) with 4-P2 and 4-P3, one can find (4.5).

Theorem (4-P5) (necessary condition for optimality): Suppose the primal

and the dual free starting point problem both possess a regular solution
(viz. 4-D1 and 2). Then numbers o e Im1[ , Bl, [32 > 0 exist such that,

for every z s ﬂ;;n/w s the inequalities:

h
(4.7) ”{(Ut: xt’ Yt))1||1m/a 5 ﬂ]_ + 62”5”1;11/04 y h=1(1),

are necessary conditions for optimality with respect to the corresponding
perturbed primal problem defined by 4~D4. Moreover, for every feasible
solution not satisfying (4.7), there exists a dominating feasible solution

which satisfies (4.7).

Proof: Let (B%Y) ¢ PR(yy) (viz. 4-D1) , and let (R,4,¥) ¢ DRE,)
(viz. 4-D2). Then numbers o e Jm,1[ (close enough to 1) and & >0

(close enough to 0) exist such that ;1 < ayo H ;t-i-l < cx';t , t=1(1) ;

~ Fard

u SV, .y - ¢ , t=1(1) . By virtue of 4-Pl, thig implies: for every
z e I y (XY ePF(yo;g) , the triples (p_.h, 5!1, 1h) h=1(1) de~

fined by (4.1) are feasible solutions of (4-D4); L.e.: (a5 x'» ¥') € PF(y4;2)

h=1(1) .

With respect to the values of the objective function: by virtue
of the assumptions concerning regular solutions (viz. 4-D1,2) and the
assumption 2z ¢ ‘GT;n/os-l- , the inequalities (4.5) of proposition 4-P4,

may be reduced to:

N.

(4.8) <1Tt(p.t - u*t‘)>‘1' < mpvoyo - 5c1h<(11/a)te'yt_1>111 + of‘|[§||_||£]ll;ﬂa_+

+ RIS ye * PNy B2 5 8=hQ)
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So, a necessary condition for (u,x,y) e PF(yo;g) not to be dominated
by one of the substituting solutions (HP, 5?, z?) is that the right
hand side of (4.8) is non-negative. Clearly, since § 1is supposed to

be positive, this condition can be reduced to:
4.9 1eca il e S 7+ 7allel e s B=100

7L 73 being non-negative numbers. Further, since 0 < X, < Yeal +
t = 1(1) , the necessary condition (4.9) also implies the existence of

numbers Yy Y, such that:
h

is a necessary condition for optimality. In order to deduce a necessary

condition for  , we start from the inequalities:
= | ~y - -
(4.11) b S P |vt +ulx vtyt| , t=1(1),

implied by the definition of the sets D_ ., Since by definition

t
{(vt, U, vt)]: ¢ ££+2m , the necessary conditions (4.9), (4.10) imply

the existence of numbers Y5, Y such that:
(4.12) 1o Bl a7+ 7llzlly e e B=1Q)

is a necessary condition for optimality. A lower bound for the series

(<(mo)ty >1}h , can be constructed as follows: A necessary for (u,x,¥)

not to be dominated by one of the substituting solutions is (viz. 4.6):

(4.13) P/t p.t> + <1Ttu.t el 2 Py 3 ut>1 + < "'t h+1 ,

t L



15

and with by < P » t=1(1) (viz. 4.11):

t h t~ _h -h__t~ 8
(4.14) <(n/ct) We> 2 <{n/a) B> + O <m Ve Pha1

h

- t 8
a < pt>h+1 ’

h=1¢1) , s=h+l(1l) .,

From (4.14), (4.12), E [ Li , and O ¢ ]ml{ , one may conclude that

mumbers Y70 g exist such that:
(4.15) <(Wo)tu >t > -y - v |zl h=1(1)
' Me?1 = 777 T TeiElly a0 ’

1s a necessary condition for optimality. Combining (4.11), (4.12), and

(4.15), one may conclude there exist numbers Y9 5 710 such that:

h
(4.16) el e S 79 + 710ll2l ye» B=1D) .

Finally, combining (4.9), (4.10), and (4.16) it appears that

h
417y ke = Nl e S 01473479 + Oty + 7l g s

h=1(1),
18 a necessary condition for (y,x,y) not to be dominated by one of the

substituting feasible solutions (gh, %!

’ xh) « Putting

¥ [ ~ -~ ~ }Gl
By = 47+ 79) Gy % YO Yl e 0 By = (Ut +7yy)
the latter, together with the definition of (gh, xh, 1h) proves the

proposition.

Definition (4-D5 and 6): Similar results can be derived with respect

to the dual free starting point problem. Denoting the perturbations im-
posed on that problem by vectors w ¢ ' ;s the corresponding sets of

feasible solutions are defined by:
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0 m
DS: DF (!) - {(vo,!!-tb!) L R+x2 ‘t S vt-l + zt, t=1(1)] 2
and the corresponding dual problems by:

t. .h ' 0
D6 : inf[ﬂvayo +<mv >}, wrt. (vq,v,u,v) ¢ DF (W) .

=0

Apart from the difference with respect to the initial vector, problem
(4-Db) possesses a similar structure as problem (4-D4). Including some
modifications concerning the initial vector, that means, all previous
regults may be shown to hold for the dual free starting point problem.
Therefore the dual version of theorem (4-P5), shall be presented without

proof:

Theorem (4-P6) (dual necessary condition for optimality)}: Suppose the
primal and the dual free starting point problem both possess a regular
golution (yiz. 4-D1 and 2). Then numbers O ¢ Im1[ , 7;, 7, >0 exist

such that, for every w ¢ ﬁ? the inequalities:

sion
h
(4.20) ”"’0” 1 + ” {(\’t; ues vt)]llll;ﬂ/as 71 + 72““”1;7!/& » h=1(1) ,

are necessary conditions for optimality with respect to the correaponding
perturbed dual free starting point problem (4.19), Moreover, for every
feagible solution not satisfying (4.20), there exists a dominating fea-

sible solution which satisfies (4.20).
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5. QOptimality
Definition (5-D1): The consequence of necessary condition for optimality
4-pP5 18 that, in case P-and Do-regular solutions exist, we may restrict

ourselves to triples (w,x,y) of:

qm
(5.1) ;E_ =EN I’l;n/cx x "'1;11/06 X LT;ﬂ/a s

€ ]m1{ being the number appearing in 4-P5. Since, for such feasible
solutions the series [<ﬂtut>11l};:=l coaverges, the perturbed primal prob-

lem (4-D4) with 2z ¢ .Gm can be written:

1;n/a
t [}
(5.2) sup<mp >, wer.t. (wxy e flx gy, + 2z, t=1Q1) .

Putting 2z := 0, (5.2) contains all optimal solutions of the original

problem. With the help of the '"perturbation" set:
1 ~ t
(5.3) T := {(p,2) eR"x f{’;ﬂ/alﬂ (bx,y) eE: oS<mu >, x =y _ +x. 1,

the original primal problem (i.e.: 5.2 with 2z := 0 ) can be replaced by:

(5.4) $:=8up v, s.t. (90) eI .

Proposition (5-Pl to 5):

Pl: T 1s convex. (By convexity of E .)
P2: (g2) eT =>Vo<o, 2>z : ($2) el (by 1-a2) .
P3: The supremum in (5.4) is equal to the supremum in (5.2), with z:>=0,
P4: Problem (5.4) possesses an optimal solution if, and only if,
rn (Rlx {01 is non-empty and closed and if, in addition, the

supremum in (5.4) is bounded.
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P5: Problem (5.2) with 2z := 0 possesses an optimal solution if, and

only if, (5.4) possesses an optimal solution.

Definition (5-D2) (the dual problem): The dual space of ltln_ﬂ/a (i.e.:
-]

the normed space of bounded linear functionals on LT ./ ) 1is:

={x e Em|sup(0/ﬂ)t||xt”°< o} |

zl:;a/‘n :

¢

N

Thus implies that, every halfspace in Rlx "T"rr/a can be expressed by:

(5.5) H %D = (@ eR'x 4, 0% - wiz] < 4],
where (w,¥,T) e E‘:,a/ﬁx rRlxr! . Clearly, in that respect:
(5.6) G = {(g,t,'ﬂ) € lt:;a/ﬂx Rlxkllv(cp,g) el: m-w;zt;l.s ¥,

may be interpreted as the set of triples (w,¥,T) which generate half-

spaces that contain I . Consequently, the programming probiem

(5.7) §:=inf ¥, wort. WH,M eGN=0,

may be congidered as the problem of seeking a hyperplane such that: (1) the
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corresponding halfspace (5.5) containg ', (2) the hyperplane gives a
lower upper bound for points ¢ satisfying (9,0) ¢ . Before elabor-
ating this interpretation, the relations between (5.7) and the dual free

starting point problem (3-D2) will be stated.

Proposition (5-P6): (w,¥) ¢ l':_a/"x Rl is a feasible solution of (5.7)

if, and only if, the dual free starting point problem (3-D2) possesses a

Lo

m_ Ll
feasible solution (vo,g,g,'l) eR x4'x !:;a;: a

=t
Ve, =T ow , t=1(1)

(5.8)
t h
< \:t__>1 + 1w

E)yO é * 3 hﬂl(l) .

Proof: The following statements are equivalent:

(a) (w,V¥) 1is a feasible solution of (5.7)

®) V@D eT o<Wz SV (by 5.6)
o t ad [

© Vwxny eF: <ru>l - wiae ey > SV by 5.3)

@ Vipry ¢k :

E % vty ool = t
(5.9) <m u.t>1 <wtxt wt+1yt>1 + wi¥ <V,

(e) There exists a sequence {7t }; € .61 such that simultaneously:

h
DR +wiy0 <%, h=1(),

(5.10)
Vwsy e "t“t'"';:xt"'w::-i-lyt S 1D

The equivalence of (d) and (e) can be proven by putting:

7, = Sup{u-w":x-fw::_'_ly} ; Wer.t. (mx,y) ¢E .
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Clearly, (5.9) impiies the boundedness of all of these suprema. Now,

-t -t
putting v, = T 7t’ u = LA Veop f

takes the form (5.8)., Finally, since each x

-t
=M W

e » E=1(1) , (5.10)

¢ in (5.10) may be chosen
arbitrarily large (viz. 1-A2), the vectors v, must be positive. Thus,
it appears that (vo,y_,g,y) is a feasible solution of the dual problem
(3-Dp2).

The relations between problem (5.4) and (5.7) shall be pointed
out in the following propositions, resulting in the main theorem concern-

ing the existence of P~ and D-feasible solutions and the statement that

the sufficient conditions of 3-P6 are necessary, as well.

Proposition (5-P7 and 8): If TN (Rlx {01) # 9, and if the supremum

$ 1in (5.4) is bounded, then closedness of I"+ =T N (Rlx .0:) implies:

P7: ¥e>0 : ($te) ¢ cl(D) .

P8: Problem (5.4) possesses an optimal solution,

Proof: The conditions concerning T and sup. & imply:
[-=&]x [0} = c1(T, N ®'x {o}y) = el(el(T) N ®'x (0})) = el(T.) N ®lx o] .
Proposition 5-P2 implies: cl(I'N (Rlx L"_')) C [-o 3] x f_’ , and so:
c1rn @'x M) n ®x{oh e1(T,( N ®R'x {0}, as well. Combining
the latter with [-#,8]x {0} = e1(T,) N (R'x {0}) , we may conclude
[-=,3] = c1(T) N (R'x {0)) , which implies 5-P7.
Since by assumption I"+ = cl(I"+) » 5-P8 can be proved by:
rn @'xfoh =T, N0 @=xfoh =c1(r)n ®xlo) = ar, n ®'x o)),
which implies T N (Rlx foh = c1(I'nN (Rlx fo})) . since by assumption
rn (Rlx foh) #d and § is bounded, closedness of TN (Rlx {01) implies

(viz. 5<P4) the existence of an optimal solution of (5.4).
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Propogition (5-P9 and 10): If TN (Rlx {oh # 8 and if the supremum
$ in (5.4) is bounded, then closedness of l"+ =T 0N (Rlx LT_) implies:

P9: Infimum problem (5.7) possesses a feasible solution,

P10: The infimum § in (5.7) is equal to the supremum & in (5.4).

Proof: By virtue of 5-P7, the suppositions concerning T and the supremum
$ in (5.4) imply: Ve >0 : (§re,0) 4T . 8o, by convexity of T (viz.
5-P1) we may conclude: for every ¢ >0 a closed halfspace T" exists
guch that ¢1(T) C’i"'e s ($te) ‘T's (viz. Luenberger (8], page 134).

Further, each of these halfspaces can be expressed by:

et .=

(5.11) 'fe = {(p,2) e R x ff;“/al 19 - v, z.> S 1,

where (gs, #‘, 1% ¢ ¢ (viz. def. 5.6 in 5-D2), to be apecified as follows:

(@ M°>0 (for (®0) ¢T and 7150 imply Ve 0 : (pre,0) e T,
which is excluded by assumption (§+¢,0) ¢ 'i"‘ )

®) T%:=1 (this is allowed by M® >0 and by linearity of
N - <wfx>T < ¢ 1 1, wt, +°)

() w20 (bys5-P3and TcT ).

- L} ' 1 -
This leads to the conclusion: Ve > 0 3 (Yy,w) eR' x .Gi;a/m_ :

. |
? - <wf zt>;' < &, for all (g,2) ¢ cl(D)
(5.12)

$< v S Bte
where the first inequality is obtaimed by cl() C F‘ s and the second
by (#+e,0) éT, and (§,0) T, .

Clearly, the first inequality implies the existence of a feasible
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solution of (5.7); the two inequalities together imply the infimum §

in (5.7) is equal to the supremum & in (5.4).

Proposition (5-P11): Let [ be defined by (5.3). Suppose T N (Rlx foh ko,

and suppose numbers ‘I'\l, T\z 2 0 exist such that, for every (¢,z) ¢ I'+
there is a triple (u,x,y) ¢ E satisfying: X SY.qt Z,, t= 1(1)
{ Yo being the given initial vector), @< <11tu.t>; s

| {Cses *, yt)];lll;ﬂ/a s+ 112||g||1;"/a . Then the set T, 1s closed.

Proof: Let {(CPi, Ei) };C'- T, be a sequence which converges to a point
(qpo, 3_0) ; the existence of the sequence is ensured by assumption
rn (Rlx {0}) # 8 . The other assumptions imply the existence of a se-

quence [(9_1, _:51, xi)}CE such that

i t i » _
(5.13) 9 S<mu>n, 1=1(1),
i i
3 g yo + z1
(5.14) i=1Q1) ,
i 1, 4 ~
Xepl SVt Zyy 0 £ HD)
i i i,4®
(3.13) ] s x5 yt)}t=l”1;ﬂ/a ST+ “2”5-”1;11/a s 1=1Q1) .

Moreover the convergence of [gi}elo and (5.15) iwmply the existence of

a number T|3 > 0 such that:

5:16) N1 {tgs x5 DYool S s =100 .

Since the closed unit sphere in ,61 is weak® compact » and so the closed

unit sphere in zm‘“

1:m/a 28 well, there exists (by 5.16) a subsequence
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(g}(k), EF(R), z}(k)) which converges weak™, with respect to the (l;w/a)-

norm, to a point (HP, EP, x?) satisfying (5.16). We denote this by:

*
(5.17) @, gl 10y v o (00 3%, for k~w.

Since « ¢ Im,1{ , the expression <ﬂtut>; defines a linear functional

on mi_ﬂ,a which is weak® continues. That means, (5.17) implies:
{<ntui(k)>:;l}:;1 ‘converges to <ﬂtu$>:;1 + Thus we may conclude (by

5.13, 5.14):

(5.18) P S<mu> o,
0 0
x1 § yo + zl
(5.19)
0 0, 0
Xyl S Vet Ze 0 t=1()

In order to prove (EP’ EP, xp) e £, we observe that (H}, 5}, x}) ¢ E
1=1(1) implies:

GO, 39,510 s, e, ke

Weak® convergence (5.17) implies that each {(u:(k), x:(k), y:(k))}:;l

converges to (ug, xg, yg) . Consequently, closedness of each Et implies:

(b0, %0y ¥) ¢E, , t=1(1) . Thus, we find:

(5.20) W, % 0 E.

Finally, the relations (5.18), (5.19), (5.20) and the definition of T

0 0
(viz. 5.3) imply (¢, z') ¢, and, by closedness of ‘T;n/o& ’

(qp, g?) ¢ t+ as well. Thus, it appears that {(q}, E})]r 3 F+ s
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((pi, g’i) - (q;o, g_o) for { =+ =, implies (cpo,_._".) e I"+ .

Definition (5-D3): 1In order to formulate a dual version of some of these

results, we start from theorem 4-P6 which implies that only triples
(Myu,v) of the set:

1 m n
(5.21) b:=pn YHomo® M na® Y wa ?

have to be considered, « ¢ ]Jm1[ being the number appearing in 4-P6,
Taking into account the initial vector Yo of the dual free starting

point problem (3-D2), the dual version of [ (viz. 5.3) takes the form:

Jpwey) eRixD :
(5.22) T, = ((hw eR'x 8. sl ™evo +<toT S ¢ ,

+w, , t=1(1)

LFANE

u <V
E ]

t t-1

and, instead of the original dual free starting point problem (3-D2), the

following min. problem will be considered;

(5.23) ¥:=inf ¢, s.t. (4,0) ¢ T, -

Proposition (5-P12 to 14):

P12: Problem (5.23) possesses & feasible/optimal solution if, and only
if, problem (3-D2) possesses a feasible/optimal solution.

P13: Problem (5.23) possesses an optimal solution if, and only if:
ryn (Rlx {01) 1s non-empty and closed, and if, in addition, the

infimum in (5.23) is bounded.

Further, we observe that the propositions 5-P7,8, and 11 are valid with

respect to l“d ; a8 well. (Note: all other properties might be formu-
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lated in a dual version, but we don't need them.)

Theorem (5-P14 to 16): If the primal problem (1<D4) and the correspond~

ing dual free starting point problem (3-D2) both possess a regular golu~

tion (viz. 4~-Dl and 2), then:

Pl4: The supremum in (1-D4) is equal to the infimum in (3-D2).
P15: Both problems possess an optimal solution.

P16: P- and D°-feasible solutions G159 , (¥g 55,8 both are opti-

L
.

. - § -y A p £ = 3!
mal if, and only if, simultaneously: Gx; = Fovy 5 8% vtﬁt s
a t

ﬂt - ﬁéit + rﬁéﬁt =9, t=1(1); m 9éyt -0 for t™m,

Proof: By virtue of 3-P3, 4-P5, 5-P11, and the definition of T (viz.
5.3), the assumptions concerning the existence of regular solutiomns imply:
(1) TN @®'%x{0}) #8, (2) the supremum in (5.4) is bounded, (3) the
set t+ = T 1 (Rlx ﬂ:) is closed. These properties have the following
implications:
(a) The primal problem possesses an optimal solution (by 5-P8).
(b) The supremum in (1-D4) is equal to the infimum in (5.7) (by 5-P10).
By virtue of 3-P3, 4~P6, 5-Pll-dual version, and the definition
of Td (viz. 5.22), the existence of regular solutions also imply:
(1) T,N ®'x{0}) #8, (2) the infimum in (5.23) is bounded, (3) the
set Fd+ 1 Fh n (Rlx @:) is closed, which implies (by 5-P8-dual-version,
and 5-P12):
(c) Dual problem (3-D2) possesses an optimal solution.
Since (by implication of 5-P6) the infimum fn (3-D2) < the infimum
in (5.7), and since (by 3-P3) the supremum in (1-D4) < infimum in (3-D2),
(b) implies:
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(d) The supremum in (1-D4) = infimum in (3-D2),which proves Pl4.
From 3-P3, 4-P5, 4-P6, and 5-Pl4, one may conclude that P- and

p?-feasible solutions B39 , (¥5, 38,9 both are optimal if, and

only if: < (ﬁ.t - \'.'vt)>§_l - Tﬂ?&yo for h = ® ; which is (by 3-P5) equi-

valent with the conditions mentioned in 5-P16.

6. Approximations by Finite Horizom Programs

The results of Section 4 also Indicate a simple way to construct
approximation methods based on finite horizon programs. Let us start
from an infinite horizon problem with P-and Do-regular solutions (L,X,Y) ,
(30,:\3_,_@@ » and define, for every "horizon" h=2(l) , the following

programming problems:

< Yoy Yo DX,
h h|*1 = Yor Yn @ *pe1?

Xn < Yo t= 1(1)h-1

~ h h
D2: P(h) := gup<nt|,|.t>1 , W.r.t, {(u.t, X, yt)]1 eAP(YO;h)}

<v
h h|*1 = Yo
D3: BR(y,sh) := ({(w,x, vyl € )

X . < Yes t=1(1)h-1

D4: F(h) := ﬂup<'rrtu,:>}1l + Wlﬁ‘ﬁﬂyt s werate {(u, %, Y,:)fll € BP(y,;h)

The dual problem with respect to D-4, can be formulated:

-~

LAY

“a

Uy

+17

0 h m -
D5: BD (h) := ((v,, {(v.,u,v )} eR,x (D}
0’ e el 1 + t-’l Ve t=1(1)h

1A

t .h . yh 0
D6: inf wiy, + <u V> s Werit. (v, {(vt, U, vt)]l) ¢ BD" (h)
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The basis of approximations is constituted by the following properties.

Theorem (6-P1 to 6): Let (B,X,¥) , (;O,E';_,E) be a P-and a Do-regular

solution. Let & be the supremum of the primal e<horizon problem. Then
the finite horizon programs, defined by 6-D1 to 6, possess the following

properties:

~ = = .h
PL: If {(Ww, X, ¥))}] € AP(yysh) with h >2, then (4, x*, ¥
defined by: (W, X, ¥§) = (B> Xy ¥) , t=1(Dh,

(u.t, X yt) (= (u.t, X, yt) » t=h+l1(l) , satisfies:

((ugy g YD) )] € AP(iT) , r=h(1) , and: (255" ¢ PF(y,)

P2: If (Zr'o, {(Gt, Et, v )]*1‘) ¢ 50°(h) with h >2, then (v*,u*v*)
defined by: (¥, u¥, v}) := (v, u, v,) , t=1(Lh,

o~

(v:, u"’:", v’:) = (vt, u, vt) , t=h+tl(l) , safisties:

(g L0 u%, vOI) e80°(r) , r=h(1) , and: (Tp,0*,u*0%) e DE° .

P3: @(h-1) + <mu> So®) +<mp> ., <$H, h=3Q1)

tre ~ o0
P4: & <T(h)+<nv h+1<7(h 1) + <V,

s h=3(1)

~ tre ® ~
P5: (o(h) + <mn u't>h+1) “®, for h=w

P6: (T(h)+<rrv h-i-l) , for h=o

Proof: Pl and P2 immediately follow from the definitions 6-Dl aand 6-D5.

P3 is implied by Pl and 6-~D2, P4 is implied by P2 and 6-D6.

o P

Proof of P5: Starting from the regular solutions (1h,%,¥) , (vo, Y, U, V)

and putting « ¢ ]Jm1[ close enough to 1 such that the conditions of
4-Pl and 4-P4 are satisfied, we associate to a primal optimal solution
A A A d‘ Ah Ah

(4 X,¥) a sequence (3, x, ¥), h=1(l) defined by (4.1). This

definition and 6-DI implies [(f, &0, T ¢ AP(7pik) , h=2(1) ,
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and therefore ?6(11) 2 <u.t ? s h=2(1) , as well, Since
t.h & t, »
$ - (ph) + <t ”‘t h+1) <@ -<nm he>y = <11 b, - |1n)>1 , Wwe may conclude

by 4<P4 (with z =0 and s = @)

& - By + < For ) s WGy + oSN +

t~ h
+ <nt "t>h+1 o}‘<(nfot) >y =

t
-<mp>r. s h=2(1) .

Using the fact that by assumption 'i', e .f,i y @ elml] , these inequa~

lities may be reduced to:

§ - @ + <o) Py + B Lo+ IS, h=2(1)

sfoy !

Clearly, 6-P3, o ¢ Im1l{ and the latter implies 6-PS.
Using similar arguments with respect to the dual problems defined

by 6-D5 and 6-D6, and using 5-Pl4, property 6-P6 may be deduced.

Corollary: In case P-and De-regular solutions exist, a procedure to find
eoptimal soiutions (i.e. P-and Do-feasible solutions (g*, 5*, ) ,
(vo,y_*, u*, v*) such that some integer r : <ﬂtu:>: >cetp, s=r(l)
and wg'yo + <11tv:>?_ < $re, s=r(l) , & being the supremum of the
infinite horizon problem), can be constructed by the finite horizon prob-

lems 6-D1 to 6. Since by theorem 6-P5 and 6, for every ¢ > 0 an horizon

hc exists such that

(6.1) W(h)+<nvh+1 q)(h)-<ﬂu.th+1 ¢,

P-and Do-c-optimal solution can be found by solving (6-D2) and (6-D4),

and shifting the horizon.
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Approximations for invariant problems

In case the sets Et: are constant ever since some period ¢ ,
approximations can also be obtained by the following sequences of finite

horizon programs:

D7: cp(h) - sup{(ﬂ B> }11 1. -]-_-T{—IT-T } s Wer,t,:

(u-t, X.» yt) ¢E , t=1(1)h , s.t.:

X)S$Y 2 Xeq SYp s telb-l, xSy -

D8: ?(h) 1= sup{<ﬂ u.t 1 “h} W.T.t.!

1

™
X) SY9r Xy SV 0 t=1(BR-2, 7o T-7 Yh S Yh-1 ?

and the dual programs of D8 (to be deduced by the method described in

5-D2):

.3 .= 1 t ._
D9: (h) : {N0y0+<ﬂv>l + vk} w.r.t.:

m
Vg €R_, (vt, U, vt) th , t=1(1)h, s.t.:

u SV, t=l(Lh, uw SV .

Clearly, these definitions imply similar relations as given in 6-Pl to 4.
More precisely: If {(;t, ;t’ ;t)}l; is a feasible golution of 6-D7

with h > ¢, then (*,x*,y*) defined by:

(U':J x:, Y:) = (-'It’ ;t’ ;t) s t=1(1)h, (l-l:.v x:: Y:) - (E.l.! ;h’ ;h) ’

t=h+1(1) , has the nice properties that: each {(u:, x’:, y:) ] with
8 >h 1is a feasible solution of the corresponding problem (6-D7), and

that (2*,::*,1*) is a feasible solution of the primal e-horizon problem.
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Since similar relations hold with respect to the dual programs 6-D9, we

may conclude by 3-P3:
(6.2) o) < phtl) < ¥(htl) € ¥(h) , h=c(l) .
Moreover, in case P-and Do-regular solutions exist, it can be shown that:

Ph) =%, for h—=w
(6.3) )
¥h) - @, for h-w

$ being the supremum in the primal *-horizon program. The proof is based
on the fact that it is possible to conmstruct P-and Do-regular solutions
%Y ; {70,_3_,5_,3_'_') which are invariant after some period, say s .
Using such regular solutions in the definition of the finite horizon pro-
grams 6-D1 to 6, it should be clear that H(h) < ®(h) < ¥(h) < F(h) ,
h=8(l) , which implies, by 6-P5 and 6-P6: eCh) =~ &, ¥(h) =& for

h =« , Thus, it appears that the programs 6-D7 and 6-D8 are suitable

for approximation purposes too.
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LIST OF SYMBOLS

Index notations:

{ = r(l)s, wmneans: for each i =71, r+l, ..., 8

i=1r(l), means: for each 1 = r, r+l, ...

{xt}; » & sequence of finité dimensional vector, the 1th componsnt

of a vector X, is denoted xi,t

Vectors and vectorspaces:

R" , n-dimensional vectorspace

R: = {x ¢ Rﬂ|x:l >0, 1 = 1(1)n}

e , finite dimensional vector with all component equal to 1

0 , the zero vector

x'y , the immer product of two finite dimensional vectors

[x,¥] ; closed interval in a finite dimenasional vectorspace

I1x,y} = [x,51/{x}, [xy[ := [x,y)/{y}, Jxy( := Ixy] N [x,y]

£ = [[xt};]xt ¢eR™, t =1(1)}, set of sequences of n-dimensional vectors

4= {{x, )%, ¢ R, t = 1)}

Normed vectorspaces:

“xlll . |x1|4-|x2|+-...+-|xn| : the £1~norm for finite dimensional vectors
x|l o = max{|x1|, |x2|, ceny |xn|} : the f_-norm for finite dim. vectors
8
e Yol = fx g+ eee + M=l
| {x 3l g = max{llx [l «oes lixgll L}

||[xt}:||1 := 1im |][xt}:||1 (possible infinite)
g~

I{x, 1oH o ¢= Lim || {x, )|l (Possible infinite)
g =t

cl(x) 1is the cloasure of a set x .



"t; i [{xt]; € znlll [xt‘!;lll < “} P) 1’;:. = "'T n E:

o = () ¢ £ xlla<=, 4 =608

Particular normed vectorspaces: For every p >0 :
8 t_ 18
16 120 o= 1 G5 B2

t 8
Hx Bl o= 1G5 000
t_ sh
”{xt}rlll;p = l%“_:l.::;”{n x. },ll; (possible infinite)

t_ ,h
I [xtT;HQ; 0 i t11-i: | {2, }; ||, (possible infinite)

9, = {3 e L=, < )

for o = (3T € LTI, < =)

Note: for every ¢ >0, the !a?.p-space is congruent to

]

z::; p-space is congruent to £: .

Summation

For every sequence of numbers Ay Qos eee

8
<> = T a
t tar t

g =

<o > i= lim <cxt>’
t g r

g
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