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GLOBAL ANALYSIS AND ECONOMICS VI
GEOMETRIC ANALYSIS OF PARETO OPTIMA

AND PRICE EQUILIBRIA UNDER CLASSICAL HYPOTHESES

by

Steve Smale

The main goal 1is to understand the structure, especially local, of
the set of Pareto Optima and price equilibria of classical economic systems
in a differentiable setting, We use very little of previous papers in this
series, but do use calculus of several variables in a systematic way.

One result obtained is the structure of a submanifold on the set
@ of Pareto Optima. The same result is founa for the set of price equi-
libria A .  Then the Fundamental Theorem of Welfare Economics is given in

a strong form.

Theorem, The map - ¢ from A — & which assigns to a price equilibrium,
the corresponding allocation defines a diffeomorphism from the set of all

price equilibria to the set of all Optimal Allocations,

A diffeomorphism is a differentiable function between manifolds with

a differentiable inverse., 1In particular « 1s one-to-one and onto; thus
for example an optimal allocation has a unique supporting price system, and
this assoclation is smooth over éll optimal allocations.

A local analysis of © and A 1is made, which is used in work in
progress on dynamic processes in economics.r

The above results are obtained in models with production, but we have



stopped short of analysis on the boundaries of the consumption sets. The
analysis is an "interior analysis," as far as consumption sets go and we
stay away from singularities of the production submanifolds.

In Section 2 our attention is devoted to the Walrasian price equi-
libria (emphasis on an initial endowment). A little study is made of con-
ditions for such an equilibrium to be catastropic in the sense it is dis-
continuous Iin the parameters of the economy. Under these conditions the
parameters of the economy are taken to be the endowment allocations.

Some of the results here were proved under different conditions in
{9] and [10]. 1In this paper, however, we don't make any genericity hypo-
theses or use transversality theory, at least in any explicit way. Con-
vexity conditions are used instead. On the other hand the kind of arguments
used would seem to make the convexity conditions more a matter of a convenience
than a matter of principle.

Conversations with Gerard Debreu and David Fried have been very help-

ful in working these ideas out.

Section 1
We review our setting of a pure exchange economy. Preferences of the
1th consumer are supposed to be represented by a C2 utility function

g f P -+ R where commodity space P is taken as

u
P = [(xl, cesy xz) € RL|xi >0 each 1},

2
Let § = {y eR”|z(yi) =1} and 5, =SNP. Define g, : P =5 by

grad ui(x)
830 = Tarad u GOl




so that gi(x) i{s the unit normal to the indifference surface of the pre-

ference relation at x . Then we suppose throughout that
(1) gi(x) € S+ » all x ¢P (differentiable monotonicity).

If v, = fv e RL|v.gi(x) = 0}, then the derivative, Dgi(x) : RL -V,

restricts to Vx to map vx - Vx as a linear map, 7i(x) . It is easily

seen that 7 (x) 1is a symmetric linear map. We further suppose
i symmetric

(2) 7i(x) has only negative eigenvalues (differentiable convexity).

Here (2) is the same as the condition [9] that Dzui(x) on Ker Dui(x)

is negative definite. It is also equivalent to convexity together with

Debreu's hypothesis of positive Gaussian Curvature [5). 1In particular (2)

implies that uil(c,w) is a strictly convex set for every real number c¢ .
The space of states of this pure exchange economy with m agents is

then
W= {x ¢ (P)mlx = (xl, veey xm), X, ¢ P, gxi = g}

where s ¢ P 1s the fixed vector of total resources. Then x e W 1is Pareto
optimal (or simply optimal) if there is no y e W with ui(yi) > ui(xi)

all 1, strict inequality one { . Also x 1is called a strict Pareto

optimum if ui(yi) > ui(xi) all 1 i{mplies that y =x .
As in [9] we let € be the set of states x = (xl, crey xm) eV
which satisfy the first order condition: & = {x ¢ wlgi(xi) doesn't depend on 1} .

For completeness we give a proof of the following well-known fact:

Proposition 1. The set of Pareto optimal points coincides with 8 . Also

so does the gset of strict Pareto optimal points.



Proof. Strict Pareto optimal implies Pareto optimal and Parete optimal implies
the first order condition. See for example [10]. Now suppose

X = (xl, veey xm) ¢ W satisfies the first order condition, with say

gi(xi) =p e S+ . Congider a state y = (yl, cosy ym) e W with ui(yi)gzui(xi)
all i . Now let [l be the orthogonal projection of RL onto the oriented
line through p . By the differentiable convexity hypothesis it follows

that H(yi) > ﬁ(xi) each 1 with strict inequality in case Yy # Xy o

But both x, vy e W so ¥ X, = z Yy and thus T ﬂ(xi) =% ﬁ(yi) . There-

fore x =y and we have that x is strictly Pareto optimal. This proves

Proposition 1.

Remark. Of course the above proof works with milder convexity hypotheses

on the ui R

m —
Corollary. The map u : W ~R defined by u(x)]i == ui(xi) restricted to

8 1is one-to-one.
The following was stated in [10], but no proof was‘given.

Theorem. The set of Pareto optimal points © 1is an (m-1)-dimensional sub-

manifold in W .

Our proof relates to the set A ofprice equilibria and the "Fundamental

Theorem of Welfare Economics." Towards this end define a space of states

d - )" x s, and
A.’ {(x,p) ¢ yglgi(xi) =p, Tx, = s} .

Proposition 2, A 1s a submanifold of ;J/ of dimension m-1 .




The proof of Proposition 2 contains the major part of the argument
of this section and proceeds as follows. The following Lemmas 1 and 2 are

easy consequences of the calculus, and the implicit function theorem.

Lemma 1., A, = f(x,p) ¢ g&|2 x; = 8} 1s a submanifold of ib of codimension
(i.e. dim yiw dim AO ) L with tangent space at (x,p) e AO given by

n

T, () = (55 & @Y xpdnE, - 0]

where pl= {v e Rzlv-p =0t .,

Lemma 2, For each { =1, ..., m, Ay = {(x,p) ¢ xilgi(xi) =pl 1is a sub-

manifold of yXf of codimension £-1 and at (x,p) e Ai its tangent space is

m
Tx’p(»’\i) = {(x,p) ¢ (R"’) x p"']Dgi(xi)(xi) =pl.

/

Recall in Lemma 2, that Dgi(xi) D p-L is the derivative (as a

linear transformation) of gy ¢ P~ S+ at Xy

Note that A 1is the intersection A = r§=0A1 + Thus for the proof

= ol
and Tp(s+) P .

of Proposition 2 it 1s sufficient to show that the Ai have normal inter-

gection at a given (x,p) ¢ A . This means that the linear subspaces

T. (A

) 1intersect normally or that
x,p 1

Hn = -
dimension i=0Tx,p(Ai) m-1 .,

: =
For the moment let T 1=0Tx,p(hi) + Then

m
T={@p ¢ ®Y x iy =0, DgxF, = BY .



Further define
A={B er"B= (Bys ++es B)), T8, =0}

and © : T -+ 4 by w(;5 = (p';i, veay p-;;) . Note that since
T p-:?i =p.L ;1 =0, o is well-defined.
From what we have said, Proposition 2 is a consequence of the follow-

ing lemma.
Lemma 3. The map ¢ : T —= A 1s a linear Isomorphism.

Proof. Let B e¢ A . We will show that there is a unique x ¢ T such that

B . For each 1 , ;;
| T ! = el
X, =X + x', with »p X4 0 and Xy € Ker Dgi(xi)

gi(xi) =p, and b§ our differentiable convexity hypothesis on the pre-

[}

w(;) can be written uniquely in the form

{remember that

ferences, Dgi(xi) restricted to p'L is an isomorphism; thus Ker Dgi(xi)

and pl provide a direct sum decomposition of RL ).

Towards solving m(;} =B for x , let E? satiéfy p-;y = Bi .

—

Then p-%T x£ =0, so that Efxg € pl .
Since 7y = Dgi(xi) restricted to pL is symmetric with negative
eigenvalues for each { , 8o is 7;1 and T 7;1 as well., Thus there exists

a unique p e pl satisfying T 7;15 + I ;y =0 . Let x' = y;IF . Then

i
Z:;i =0, Dgi(xi);; = F s x ¢T and Q(;) = B . Thig finishes the proof

of Lemma 3, and Proposition 2.

We now write T = Tx p(A) as the tangent space of the manifold A
>

at x .

Proposition 3. {(Fundamental Theorem of Welfare Economics) The set 0 {is




a submanifold of W, and the map of A into W which sends (x,p) 1into

x 1is diffeomorphism al of A onto 9.

One form of the Fundamental Theorem of Welfare Economics, e.g. [1],
[{3], [8] asserts under more general conditions that the map O& : A-8
above is onto. In other words every optimal allocation is supported by a
price system., Of course Propogition 3 implies Theorem 2, See also Section
3 for the case with production.

The proof of Proposition 3 uses Proposition 2 and the "first order
theory." More precisely, define @ :W=x §_-=W by alx,p) = x . If

(x,p) e AC WX S+C ;A/, ai{x,p) e ® . Let «a, : A=~ 8 be the restriction

1
of @ . Define B :W-Wx§_ by Bkx)=(x, 31("1)) ; so PB(x) eA if

x ¢8 . Let Bl : 8= A be the restrictionof f . Thenon A, Bl‘Doi

is the identity. Aléo B is an imbedding (see below). Therefore one can
conclude that on A, a4 is an imbedding. The rest follows.

For x ¢ W define Kx to be the kernel of the derivative

Du(x) : Tx(w) - g ; of ui:wWw- R" . Thus Kk is a linear subspace of

T. (W) = {x (R‘)u!]z:T =0, %, ¢ rN
X € i L :

Proposition 4. K* is a transversal to 8 or Kx n Tx(ﬁ) =0 in Tx(w) .

This proposition implies that TX(W) has as a direct sum decomposi-

tion K ® Tx(e) . For the proof note that if x e K_ then x; € Ker Dui(xi) ;

or x,°g,(x,}) =0 . Thus in the proof Lemwma 3, x" =0 , all i . Then
1781y i

=0, ;; =0, and x = 0 . Proposition &4 is proved.

*
An imbedding of a manifold is a Cl map which is one-to-one, and

the derivative is one-to-one at each point,



corollary. The map u : W = R" restricted to 8 i an imbedding.

The corollary, besides Proposition 4 uses the corollary to Proposition

Define a submanifold E; (an affine one) of W by considering K%
to be contained in W with its origin at x . In the Edgeworth Box (Figure 1),
E; ig the tangent line to the indifference curves at x ¢ 9 , lying naturally
in the box. Formally E; ={yeWly=x+x, x ¢ Kx} .

U2 = constant

=|constant

FIGURE 1

Then from Proposition 4, E; and © intersect transversally in

W at the point x .

Proposition 5. For each x in 6, E% N ©®=x . Also there is a neigh-
borhood N(B) of 8 1in W with the property that if r ¢ N(8) , there

is a unique x ¢ 8 such that r e E; .

Proof. Let y ¢ Kx Ne., Since y ¢ L (yi - xi)-gi(xi) =0, and

ui(yi) < ui(xi) ’ “using our convexity hypothesis. Therefore y £ 6 .



The second part follows from a simple version of the tubular neigh-

borhood theorem of differential topology. See [6].

Corollary. For each endowment allocation r in N(8) there exists a unique

Walras price equilibrium.

The proof follows from Proposition 5 and the observation that for
xeB, p= gi(xl) s (x,p) 1is a Walras price equilibrium for the endow-
ment allocation r if and only if r e E; .

Compare Balasko [2].

Remark. Suppose that each ug o P =+ R satisfies the boundary condition
uil(c,ﬂ) is cloged in RL each ¢ . Then it follows from the existence

theory (see Debreu [4]) that U’ix =W,
xef

Remark. Cne can say some things about u : W = " from the point of view
of singulafities of maps (see [6])., If x in W is not in © , then the
derivative Du(x) of u at x 1is non-singular (i.e. opto) or x is #
regular point of u . This is a consequence, for example, of the rank pro-
position in {10]. Furthermore at each x ¢ 6, u 1is a fold, the simplest
kind of singularity., Thig follows from the fact that the second intrinsic
derivative I KiDzui(xi) is a non-degenerate form on the kernel of Du(x)

(see [10] and [6]).

Section 2

We begin by defining a space of Walras equilibria with fixed total
resources, 8 ¢ P . Keeping the situation of the previous section as to
conditions on the preference relations and notations, let

Q = {r e ®"|z r, = s, gLB =Wx S, . l‘&b constitutes a space of
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states of the pure exchange economy; QB will be the space of parameters

of the economy. An element of Qs is an endowment allocation (or "endowment
reallocation") keeping the total resources always the same. The methods

used in the sequel permit one to make other choices for the parameter space.

Define

T={(,xp) eQ x A lpx, =pery, g, (x) =p, £ =1, ..., m} .

Then (r,x,p) € T means exactly that (x,p) 1is a Walrasian price equilibrium

relative to the endowments given by r = (rl, ceny rm) .

Proposition 1. T 1is a submanifold of Qs X ;J; with dim T = dim Qs and

the tangent space Tr x p(S) of T at (r,x,p) 1is given as the set of
m P it 4

R 1 - -
x (R') x p~ which satisfy Tr, =0, Tx, =0

(;:;J;) L (RL) i i

Priry; %) +p(r, ~x)=0, 1=1, ..., m
(the mth equation here is redundant)

Dgi(xi)(;i) = ; » 1 = 1, seay m

Proof. Let o, :Q x Jé ~R be defined by ®,(r,%,p) = prx, - pT, -
Then it is easily checked that oy is regular (has no critical points) and
80 @il(O) is a submanifeld. Similar reasoning with the other equations
reduces the proof to checking that all the submanifolds defined by each of
the equations have transversal intersection (compare to the proof of Pro-
position 2 of Section 1). Thus the proof is reduced to showing that the

m

m
following system of linear equations in (r,x,p) ¢ (Rz} X (Ri) x p'L has

at most an (m-1){ dimensjional space of solutions for given (r,x,p) ¢ Qs X

4,
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Prlx; =t )+pefx, ~1,) =0
Dg, (x, )X, =P
To prove this define a linear map

m m m
o.: &Y x @Y xpt-rtxrt+ @)™ x b

by sending (1—',;,1-;) into

- - - - - m-1 - _m
(B, Txg, prixy ~r)+pe(x, - )l , Dgy(x)(xy) = pl ).
i=l i=1
If ¢ can be shown to be surjective (onto), a simple counting of dimen-

sions gives us what we need. Thus let Otl € Rz B C12 € Rl' 3 Bi e R,
i=1, +4s, m-1 , and 61 € p-L, i=1, ..., m be given. Solving the

following system of equations in (;,;,;) will finish the proof.

(1) Tr, =

[T
-
-
~~
—t
-
™~
"
[N
it

enay m"l

(2) P_' (xi = ri) + P'(;i = ;i) -

!
™
[u N
-
e
]
—
-

(3) Dg(x)(x)-p=28 , 1

1, "o ey m .

Towards finding the scolution, write Q, = az' + a‘z' , with az'.p =0,

2
" ¢ Ker Dg,(x,) As in Section 1, let 1y, = Lapl
%2 1$%07 - ’ 1 .

b
=
a9
’J.
o~~~
b
[
N
2
—
L3
~
-
o

1 - -1

Choosge ; so that (T 7;1)5+ T 7; 61 = Crz' and xj" = 71 (;+ 61) + Then

z;i“’i' Let ;'1'”’5" ;1=§'+;" X, =x' for £>1 . Then

| ]
1 1’ i i
(1') and (3) are satisfied. '

Now one can easily choose LP i=1, ..., m-1 go that (2) is
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gatisfied and finally ;; satisfying (1). The proof of Proposition 1 is

finished.
In a similar fashion one can define

T = {(r,x,p) e Q x ;&IZ X; = T T,y PrXy = Py, gi(xi) =p}.

The following is proved in the same way as Proposition 1.

Proposition 2. ¥ 1is a submanifold of Q x JL with dim ¥ = dim Q , and
the tangent space Tr < P(E?") of ¥ at (r,x,p) is given as the set of
Iy

(;;;;E) € (RL) X (RL)m X pi' which satisfy:

(the mth equation here is redundant)
Dgi(xi)(;i) =p, i=1, vsym.

Corpollary. (Debreu [4]) Except for a set of initial endowments of Q of
measure 0 , the number of price equilibria is discrete. Furthermore with
Debreu's boundary condition (see Remark at the end of Section 1), one has

the exceptional set closed and finite replaces discrete.

For the proof of the Corollary, one simply apﬁlies Sard's theorem
to the projection Q x x& - Q restricted to £ as in [9].
Returning to the situation of Proposition 1 one way think of the

following figure,
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FIGURE 2

Let QQ :qQ, x xds ~Q, Dbe the projectionand 1 : E~Q , Iits
s

restriction to ¥ . We consider the question: for what (r,x,p) ¢ T is
1 catastrophic? In_other words, find a condition on (r,x,p) such that
the linear map DIl(r,x,p) be singular as a map from one linear space to
another of the same dimension. For non-catastrophic (or regular) (r,x,p) ¢ T
one knows by the implicit function theorem that the price equilibrium (x,p)
varies continuously with the parameters of the economy r . On the other
hand if (r,x,p) 1is catastrophic then a small change in the parameter «r
of the economy could produce a large jump in prices. In Figure 2 the big
dot on I 1is an example of a catastrophic point.

The following gives an analytic criterion for (r,x,p) ¢ ¥ to be
catastrophic. Remember (r,x,p) e £ if and only if. {(x,p) 1s a price

equilibrium for the endowments given by r .

Proposition 3. The point (r,x,p) ¢ £ 1is catastrophic if and only if the

: Tx(e) -~ A 1is an isomorphism where h = h* + o

linear map h
near map I, T,X,P TyX,p X

XP
with
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h:,x,p(;) = (Dgy(x;) (X)) (x; = T})5 eou, Dg_(x_)(x_MHx_ = r))

and
('Dx(x) = (p'xl, sy p'xm) .
The map ®, Wwas studied in Lemma 3 in Section 1.

Proof of Proposition 3. First we examine analytically what it means for

a point (r,x,p) in T to be catastrophic. Fixing (r,x,p) in T, we
have in Proposition 1 equations on (;;§;5) , describing Tr " p(Z) « Then
P b

from the definitions, (v,X,p) is non-catastrophic if and only if given
any rwith Tr, =0 ;, there exist (;:-,1-)-) with (;,;,;) eT (<) .

i ¥, %P
In other words, can the equations of Proposition 1 always be solved for
(;;;) ? Referring to Propoéition 3 now, if X € Tx(B) , themn T ;i =0
and Dgi(xi);; is independent of 1 , and say is 5'.

Thus the condition for (r,x,p) to be non-catastrophic amounts .to

solving for ;', the equations,

;.(xi = ri) + p.;i = p';i ) i = 1, "oy m

and I po;; =0 .
The equivalence with the condition of Proposition 3 can now be seen.

Proposition 3 is proved.

The following gives an affirmative answer to a conjecture Debreu
made to me in connection with his recent work on the rate of convergence

of the core.
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Corollary. If the endowment allocation r 1s a regular economy then the
map ¥ : 6 = A defined by x = (gl(xl)-(x1 - rl), teny gm(xm)-(xm - rm))
is a diffeomorphism for x 1in a neighborhood of a Walrasian price equili-

brium (relative to r ).

The proof of the corollary is obtained by simply differentiating the

map ¥, applying Proposition 3 and then the implicit function theorem.

Remark. Proposition 3 yields some perspective on what can cause catastrophic
jumps in prices in the framework of general equilibrium theory. By Lemma 3

of Section 1, Py ig always an isomorphism; thus it 1is the effect of h:

»X,p 7
which causes jumps. If Hh: < p|[ is small then there are no catastrophes.
Fr
*
This term h can get big for two reasons. One is that x, - r, becomes
L,%,p i i

large or that r gets far from 6 (compare Propositiom 5 of Section 1}.
The other is that the curvature of the indifference surfaces becomes large
from the expression Dgi(xi) . One should keep in mind that all of this
is an interior analysis. Every consumer owns at least a little of each

commodity.

Section 3

Our model of an economy with production goes as follows. To each of
£

m consumers is associated a consumption set xi , an open set in R ,

i=1, «v., m . We suppose m>1. On each Xi is supposed a preference

relation which is represented by a C2 utility function ug Xi - R .
Define g, : X; =5, by gi(x)l= [grad ui(x)]/[”grad ui(x)||] for each

x in X, . We suppose throughout that 8y satisfles the differentiable

i

monotonicity and convexity hypotheses of Section 1.

It is alsorsupposed that there are n producers, and to each is
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asgoclated a technology which is repregented by a closed submanifold Ya
in Rz s @=1, «..sy, n . Note that we are not making the very restrictive
hypothesis that Ya be a hypersurface,

For our economy with production, but no prices explicitly yet, define

the space T of attainable states by

T = {(x,y) ¢ X x YIE X, = z Yo + s} .

Here X and Y are Cartesian products X = nixi » Y=TxX,, X, € X
Yy € Ya and s ¢ R£ denotes the endowed resources of the economy. The
defining condition of T of course just relates the total consumption to

the total production.

Proposition 1. T 1is a submanifold of X x Y .

m
Proof. One needs to check that in X x (Rz) , the submanifolds defined by

the Y, and the condition Z X; = py Yo + 8 all intersect in general position.
Thus fix x = (xl, veoy xm) and y = (yl, “ery yn) s %X e Xy
=1z Yot 8 - Then it is to be shown that the set of (x,y) with

and . Yo & Yy

with T Xy

) - - o=
Xg €ER, Y, € TyaCYa) and Elxi =z Yo has dimension equal to

Zm + T dim Y, - 4 . For this, let Yo € Tya(Ya) , a@=1, ..., n be given.

Then the ;; satisfy the single vector equation I ;;

fn-4 degrees of freedom. This very easy proposition is proved.

=z ;& with exactly

Define functions ug 2T R, 1i=1, .., m by ui(x,y) = ui(xi) ,
where ui(xi} is the value of the individual utility at Xg There should
be no serious confusion using the uy for two slightly different meanings.

One may now define the notion of admissable curve and infirnitesimal Pareto

set B8 in T as in [10)}. That is (x,y) € T belongs to © if and only



17

if there is no curve ¢ : (-1,1)} = T with o(0) = (x,y) and é%{uiw(t)) >0

all 1, t.

Proposition 2. (First order) A point (x,y) of T 1is infinftesimal Pareto

(i.e. (x,y) ¢ 8 ) if and only if
{(a) gi(xi) is some constant vector say p in S+ s, and

(b p ¢ Nya(Ya) (i.e, this vector is normal to Ya at Yo ).

The proof uses the first order condition, e.g. [10]. Thus (x,y) ¢ ©
if and only if there exist hi >0, i=1, sy, m, mnot all zerc such
that T hiDui(x,y)(;;§) =0 all (E;;) ] Tx,y(T) . Supposing (x,y) ¢ 9,

in this equation, one can take ;'= 0 , so that Tx, =0 . Then as in

i
{101, hi grad ui(xi) is independent of i , and one has (a). For (b)
fix i and @ and take ;; = ;& with all the other components of x and ;

zerc. This leads to gi(xi)-ya =0 or PYy = 0 for all Yo © Tya(YG) .
The converse is similar,

Before proceeding any further we introduce a convexity type of hypo-

thesis on the technology submanifolds Ya .

Hypothesis on Ya . For each p ¢ S+ the real valued map fp : Ya - R

which sends y in Ya to p+y has exactly one critical point and that

critical point is a non-degenerate maximum.

We assume this in all that follows.
Suppose that for p e S+ R y* is the maximum given in the hypothesis,
Then Dfp(y*) =0 and szp(y*) is a negative definite symmetric bilinear

form on the tangent space Ty*(Ya) of Ya at y* .

One can write szp(y*) = peHy* where Hy* is the second fundamental
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form of the submanifold Y, at v .

Let us look at this geometric invariant of the technology a bit.
One hasg defined for any y ¢ Y, s the second fundamental form Hy as for
exgmple in [7). This form Hy is a symmetric bilinear form defined on the
tangent space Ty(Ya) with value in the normal space Ny(Ya) of all vectors
orthogonal to Ty(Ya) « One can think of Hy as simply the second deriva-
tive of the inclusion Ya - R£ with values projected into Ty(Ya) . For
p € Ny(Ya) s We write p-Hy as this real valued form on Ty(Ya) .

Our hypothesis above has the following consequence. For y ¢ Ya )
let ﬂy : RL ~ Ty(Ya) be the orthogonal projection and if p e S+ n Ny(Ya)
define Qy : p-L - pl- by Qy(v)-w = p-Hy(va, w) . Then Qy is symmetric,

and from the hypothesis on Ya s Qy will have non-positive eigenvalues.

Proposition 3. The Pareto optimal points in the space of attainable states

T of our economy with production coincide with the points of 6, and in
fact the points in @ are strict Pareto Optimal points, The map u : T — R"

whose coordinates are us restricted to 6 1is one-to-one.

Proof. Let (x¥, y¥) €8 and (x,y) e T, with u (x,y) > u ¥, y5)

all i . We wish to show that (x,y) = (x*, v*) . Let p

n

g;(x]) (keeping
in mind Proposition 2) and let T be the projection of RL onto the oriented
line through p .

Since ui(xi) > ui(xi) , it follows from our convexity condition
on the ug and Proposition 2 that I ﬁxi > H(xi) and strict inequality
if x #x* . From T X, = z Yot s, I x? =T yé + s it follows that
z ﬂya >z ﬂyé . But by Proposition 2 and the hypothesis on Ya s this is

impossible unless y, = yz , each @, The rest follows.
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Proposition 4. (Fundamental Theorem of Welfare Economics, simple form)

Given (x*, y¥) ¢ 8 < 7, - there is some P* ¢ 3+ (which is unique) with

the properties

(a) x7 maximizes utility u

on the budget set {xi € Xilp %, <P -x*}

e 3

i
% ; *
and (b) Yo maximizes profit p ‘Yo OB Ya

Conversely let (x*, y*, p*) in Tx S+ satisfy (a) and (b). Then

(x*, v*) ¢ 8 and is therefore Pareto optimal.

Remarks. One could equivalently say that x* ¢ X is an optimal allocation
(for this economy) provided there is some y* ¢ Y with (x*, y*) ¢ T and
morevoer (x*, y*) ¢ 6 , and restate Proposition 4 in terms of optimal allo-

caticns in X .

Proof of Proposition 4. Let (x*, y*) ¢ 6 . Then choose p* = gl(xl) .
Then (a) is satisfied (Proposition 2 and properties of uy ). Also (b) is

satigsfied (Proposition 2 and hypothesis on Ya ).

The converse follows easily from Propositions 2 and 3.

Now we extend the preceeding framework a bit to consider all states
of the above economy together with prices. Thus let xl =XxY¥x S+ and
define

A= {ooyp) ¢ e ) =y p e N (X, Tx = Ty, +s).
CZ

It follows from Proposition 4, that elements of A can be thought of as
price equilibria (or equilibria relative to a price system in the terminology
of Debreu [3]). Note that an element of A does not depend on some endow-

ment.
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Proposition 5. The set A is a submanifold of A& of dimension w-1 .

Furthermore the tangent space Tx y p(A) is the set of (;;;;;3 in
27

x’y,p(d) which satisfy

Lemma 1. A, = {(x,y,p) e X x Y x S+|p € Nya(Ya)l . Then Aa {8 a submani-

fold of cedimension 4£-1 with tangent space

T, 5,0 = {x,y,plqya@ =y} -

Proof. The condition that p ¢ N_ (Y.) can be replaced by p-Dy (v.) =0
== Vo O (vatde’

4
where ¢ : Ya - R” 1s the inclusion and p-qu(ya) is the map Ty (Ya) - R

(0}
a .

defined by Yo p-;& .

The rest of the proof of Lemma 1l proceeds by calculus.

The proof of Proposition 5 is now reduced (by arguments in Proposi-

tion 2 of Section 1) to showing that the following map is an isomorphism:
: Ay = A
' X:Y:P( )
(x,y,p) =~ (p-xl, aeey p-xm) .
Here Tx ; p(A) is defined as in Propesition 5 even though A has not yet
72 .

been shown to be a manifold.

The proof of this is similar to the proof of Lemma 3 of Section 1

and we omit it.
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Theorem. (Strong form of the Fundamental Theorem of Welfare Economics)

The set of Pareto Optima @ 1s a submanifold of A/ (9ct1C )A/) of di-

mention m-1 , so is the set of price equilibria A , and the map

© : A= 8, induced by (x,y,p) = (x,¥) 18 well-defined and a diffeomorphism.
The proof follows from Proposition 5 in the same way as Proposition

3 of Section 1 was proved,
Again one may define Kx,y as the kernel of the map

Du(x,y) : Tx,y(f) ~R" and one can prove as in Section 1 that for (x,y) ¢ 8,

the intersection of K with T _(8) 1is zero.
X XY

2
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