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FIAT MONEY IN AN ECONOMY WITH ONE NONDURABLE GOOD AND NO CREDIT*

(A Noncooperative Sequential Game)

by
Martin Shubik and Ward Whitt

1. Introduction

Our purpose is to provide satigfactory connections between current
theories in macroeconomics and microeconomics. This study differs from
the majority of past efforts in this direction because in a microeconomic
context it focuses on money, credit, and financial insgtitutions. From
the point of view of monetéry theory, the novelty lies in our efforts to
connect individual economic behavior with the behavior of the economy as
a whole and to apply mathematical models for this purpose. From the point
of view of the more closely related mathematical literature on n-person
games and competitive equilibrium analysis, the novelty lies in our efforts
to explicitly consider-money, credit, and financial institutions. We be-
lieve that an explicit treatment of money, credit, and financial institu-
tions is necegsary for forging links between macroeconomics and micro-

economics.

*The research was supported by the Office of Naval Research. The research
was algso partially supported by a grant from the Ford Foundationm.



The study of money and credit poges many different problems. These
concern information, uncertainty, risk, trust, convenilence of exchange,
and so forth, cf, [12]. Our object is to construct and analyze mathematical
models which will yield adequate theories to cover these different features.
We believe that in appropriate mathematical models the prototypes of in-
gstitutions familiar to modern economics will naturally emerge. Thusg we
claim that although particular institutions such as commercial, central,
and investment banks, insurance companies, loan societies, and stock markets
may reflect particular institutional details pertaining to specific gocieties,
the essential functions that these institutions perform call for the exis-
tence of entities to perform these functionms in any complex economy. This
premige has a significant bearing on our modelling approach. Instead of
incorporating as many as possible financial institutions into our models
at the outget, we want to see how each of these institutions arises out
of necessity. We thus begin with an overly-gimplified model, not only
because it 1s easler to analyze, but because we want to explicitly repre-
sent economic behavior when important features are missing. We want to
establish the fundamental need for the various financial institutions.
Furthermore, we are thus able to evaluate the possible forms these insti-
tutions can take. For example, in [11] the notion of an optimal bankruptcy
law is introduced. (See also [10].)

Having set forth our general objectives, we must say that the results
to be reported here constitute only a first step in the overall program.
We congider a highly-gimplified model which only addregses a few of the

problems poged by money and credit. While it is our intent to extend the



analysis to more sophisticated models in the future, we believe it is impor-
tant tc stress the virtues of simple models. Among these virtues are:

(1) The simplicity enables us to obtain a rather complete mathema-

tical solution.

(ii) The effect of migsing features can be observed in the sclution.,

(iii) By considering only one or two of the features, the effects of
different features are igsolated and, hopefully, better under-
stood,

We now give a brief overview. We begin by regarding our simpiified
economy as 2 deterministic noncooperative gequential game. The modelling
ig discussed in Section 2 go we ghall not dwell on it here. As a conge-
quence of viewing the economy as a noncooperative sequential game, we con-
front a system of interdependent dynamic programs, cf. (2.2)., We first
investigate the case of 2 players and n periods. While we could sgtart
by normalizing our game, that is, we could convert it immediately into
an equivalent static game, it does not appear to be fruitful to do so.

For example, our game 1s never constant-sum, and even if we converted it

to congtant-sum, which is possgible in some cases, the number of strategies
is infinfite. Furthermore, the normalization seems to destroy the nice
properties in the payoff function. Hence, instead of normalizing, we apply
the gtandard backward recursion of dyuamic programming., In this way, we
verify under fairly general conditions the existence of a unique noncooper-
ative equilibrium solution. We also describe this solution in detail.
Thege anewers were discovered by rather painful amalysis of the four=-period

problem, but of course the proofs here are by induction.



We next consider infinite-horizon extensions of our two-player se=
quential game. It is mot difficult to see that with discounting the infinite-
horizon version possesses all the properties of the finite-horizon versions.
In fact, the infinite-horizon solution coincides with the n-period solutionsg
for all n sufficiently large because then the (nt+l)-period and n-period
solutions agree. These answers are obtained by direct argument employing
our finite-horizon solutions. Again, the existing (sequential) game theory
literature does not appear to be very helpful.

We next extend our model by adding more players. Of course, this
is the way in which we intend to relate micro and macro theory. It turns
out that the analysis of even a 2-period game for 3-5 players is quite
complicated, but great simplicity is achieved when many players are present.
If the number of players is sufficiently large with each player sufficiently
swall in relation to the economy as a whole, then we verify the existence
of a unique noncooperative equilibrium solution which has a very simple
form. In this solution each player uses his myopic or one~period optimal
strategy which dictates spending all his available money each period.

It i3 significant that the nonuniqueness possibilities for two players
digappear in the large economies. Furthermore, the complex dynamics in
which players exploit their money advantage over several time periods also
disappears.

- For comparison, we conclude by investigating the set of constrained
competitive equilibria., We show for economies of any size that there is
always .a unique competitive equilibrium solution., This solution alsc in-

volvesg each player spending all his money in each period. Thus, for



sufficiently large economies, the set of noncooperative equilibrium solu-
tions coincides with the set of competitive equilibrium solutioms. This
ig to be distinguished from recent related work by Aumann [2], Brown and
Robinson [3], Hildembrand [ 6], [ 71, and others invblving the core and
the set of competitive equilibria because here "large' means finite instead
of infinite. Our two solution concepts coincide in large finite economies.
Hence, there is no need to introduce infinite spaces of players and there
ie no need to prove a limit theorem (which is not to say that these devices
are not very useful in ;ther contexts).

We now turn to Section 2 for a definitionm of our model. The results

appear in Section 3 and the proofs appear in Sections 4=6,



2, A Simple Money Game
2,1. Goodg, Money, and the Sygtem of Exchange

We ghall study the distribution of real goods and money over time
in a fiat money economy. We assume there is a single nondurable good which
goes on the market in constant quantity each of a finite or denumerably
infinite number of time periods. (In [12] a model was studiéd in which
players could choose to keep goods off the market, thus causing only part
of the real goods to be monetized. This will not be the case here.) Each
player owns a fraction of thigmarket.or, equivalently, each player brings
this fraction of the real good to the market, We keep these fractiong of
ownership fixed over time. Each period all of the commodity on the market
ig digtributed to the players for consumption. By '"mondurable," we mean
that all of the real good available each period is consumed during that
period. Nondurable real goods can not be inventoried.

We alsc agsume the existence of an "institutional stuff" called woney
whose quantity is fixed.: It is neither created nor destroyéd over time.
Furthermore, each period all the money is initfally in the hands of the
players, The important point is that we prohibit barter. All real goods
must be purchagsed at the market with money. This money may be thought
of as having a physical existence such as poker chips or green pieces of
paper; or it may be thought of as a set of accounting numbers whose owner-
ship may be transferred., Its value is establighed by fiat; i.e., by our

assumption here that goods can only be obtained in exchange for money.



We can now describe the exchange over time. Each player begins with
certain fractions of the total money supply and of the total ownership of
the market. Each period each player must make just one decision: how
much money to spend to purchase the real good that périod. We assume that
the real good is distributed to the players in proportion to the money
spent. Furthermore, the money taken in by the market is given back to
the players in proportion to their ownership. A player's money at the
end of the period thus equals the money he had left over after spending
plus his share of the market take. This model has interest because of
each player's conflicting desires: to spend more now to get more real

goods now or to spend less now to get more real goods later.

2.2, Credit

We distinguish sharply between money and credit. In this initial
model no credit is granted. In particular, this means that there is no
market for current money: in exchange for claims on future money or goods.
In an economy which has neither credit nor barter all exchanges are in the
form of a payment of current money for real goods. Obviously, this should
make money play a more prominent role than it otherwise would, and this
is confirmed by our results. First, players starting with a fraction of
money greater than their fraction of ownmership are often able to reap a
gignificant advantage in real goods over time which would not be possible
with credit, Second, the moncooperative equilibrium golution and the pro-
spective competitive equilibrium allocations turn out not to be Pareto

optimal if players have different time discounts. Without credit, the



model has difficulty responding to time preferences for goods. Thus, when
money is introduced without credit, there exist motivations for introducing

credit.

2.3. Individual Preferenceg

We assume that individual 1 has preferences which can be represented
by a utility function of the form

k=n~1 Kk
(2.1) U, (x) = kEB ﬁi¢i(xk) ’

where n (1 <n < ®) is the number of periods, x = (xl, veas xn) is

the vector of real goods to be received (and consumed) in successive periods,
B, 1is the discount factor for individual i, 0<B <1, k in By

is an exponent instead of a superscript, and 9 is the one-period utility |
function. For the most part, we assume the one-period utility function

?; is of the special form ¢i(x) = x , but the principal results for

the case of many players hold for quite general P - The important point
is that money does not appear in (2.1). Money is valued only as a means

to obtain more real goods.

2.4, Sclution Concepts
2.4,1, Noncooperative Game

For the most part, we shall view our market as a noncooperative game.
Therefore, our object is to identify the set of noncooperative equilibrium
state strategy solutions. Such a solution consists of an n-period strategy

for each player with the property that no individual acting alone can improve



his position by altering his strategy. For specified initial conditiong,

an equilibrium point is determined by an appropriate schedule of spending
for all the players. It is important to digtinguish between equilibrium

in thig game theoretic sense and equilibrium as it méy exist in the dynamics
of a particular schedule of spending. For example, within our equilibrium
solution the situation in which each individual's fraction of money equals
his fraction of ownership is a stationary state or an equilibrium point.

In other words, if at any period thig situation prevails, then it will
prevail in every period thereafter if we follow the schedule of spending
asgociated with the noncooperative equilibrium solution.

Since we are viewing the market as an m-person n=-period noncoopera-
tive game in which the utility functions are separable (as indicated in
(2.1)), the object is to identify the noncooperative solutions to a system
of m simultansous n-period dynamic programs. In particular, individual

i has a payoff function which can be defined recursively as

i _ i i - P,
(2.2) U (pgs 74) = max  {g[K(x, woey xI1HB0,(Ry5 7y "1+pi(jflxjﬂ’
Ox <ps+y,
where
" xiG
- ’ xj >0 for some j,
T x '
i 3=1
K (xl, cees xm) = <
0 s x1=o|.=xm=0,
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is 1's fraction of owmership, 0<p, <1,
P + 7y ig i's fraction of money, “Py < 7y <1l = P; >
m 1is the number of players,
n is the number of periods remaining,
x, is the amount of money j spends in the first of n periods,
¢; 1is i's one-period utility function,
G is the total amount of the real good to be distributed,

and Ei ig 1's discount factor, 0 S'Bi <1,

Of course, Ui depends not only on Py and 74 but also on all the other

variables, especially x, for j # i . Note that n indicates the number

j
of periods remaining. The representation in (2.2) is fine as long as
n < ® but would have to be altered with an infinfte horizon. With dis-

counting, we would then naturally count time forwards and obtain instead

of (2.2)
3 o k-1 .4
: {xik,k.zl} k=1
such that

<P

X SPy ¥ V4

Tiger1) T ik T Fae Y Py jfl"jk '

If we restrict attention to gtationary strategies, then we consider the

functional equation in (2.2) where both U: and U:_l
Ui o« Finally, 1if there is no discounting in the infinite horizon, then

are placed with

an entirely different criterion is needed, e.g., average return per period.
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2.4,2, State Strategies

In terms of general game theoretic congiderations, a strategy is a
complete plan of play which might depend in detail upon all aspects of
previoug history. 1In particular, a strategy may depénd delicately upon
information conditiong. In oligopolistic fipancial markets there is ample
evidence that information conditions do play a vital role in determining
strategies. However, in the models explored here a congiderable limita-
tion and simplification of information conditions is assumed. Furthermore,
we limit ourselves to an extremely special set of overall strategies which
can best be described as simple state strategies where an individual's
behavior depends only upon the state and period that he is in and not upon
the history of how he arrived in that state. In thig particular model
the restriction to state strategies does not appear to be particularly
binding, but for us it remains an assumption. We start by assuming that

the dynamic programming recursion is justified.

2,4,3, Competitive Equilibrium

More deeply rooted in economics is the concept of a competitive equi-
librium, A competitive equilibrium is a set of prices (one price per pericd
here) and a set of aliocations (of real goods to each player each period)
such that for all 1 the allocations to individual 1 are optimal for
him alone subject to all budget constraints being met and the outcome being
Pareto optimal. Pareto optimality means the players cannot all gimultaneously

do better by choosing different strategies.
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In the customary definition of the competitive equilibrium, budget
congtraints (i.,e., limits on an individual's purchasing power in terms
of the net worth of an individual's ownership evaluating the goods at the
given market prices) but not cagh flow constraints are active, This is
as though either perfect trust exists for the whole trading period or,
equivalently, credit is freely available. We consider a modified compe-~
titive equilibrium where the individuals have money and its amount is fixed
(there is no credit) and trade is carried out in money. In this model
the cash flow constraints are of importance.

As before, neither the amount of money in the system nor the amount
of real goods put on the market each period changes from period to period,
so the prices must be chosen accordingly. The concept of competitive equi~
librium is primarily intended for perfect competition where the influence
of each individual relative to the market as a whole i{s negligible. In
such a situation it ig reasonable to consider the economic behavior in
terms of many isolated or decentralized maximization problems taking place
simultanecusgly with each individual ignoring his influence on the market.
While the notion of competitive equilibrium is most meaningful when asgsociated
with perfect competition including no credit consgtraints, we can neverthe-
less identify the set of competitive equilibria given cash flow limitatioms.
In the notatioﬁ of (2.2) individual i 1is confronted with the optimization
problem:

n-1

k
(2.4) max I B, (x.,)
[xik] k=0 ik
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P
subject to: xikakSMk ;y 1<k<n,

1 1
Mg =M - % H PGy, lsksal,

i
z =M, 1<k<n,
i=1nk
m
and 181xik =G, 1<k<n,

where Hi ig the money 1 has available in period k ,
a is the price in period k ,

and M 1is the total money in the system.

We shall be interested in comparing the set of (constrained) competitive

equilibria with the set of noncooperative equilibria.

2.4,4, Other Solutions

There are many other solution councepts which we could consider but
which we will not. Among these are the cooperative game theory solution
concepts such as the core, value, nucleolus, and bargaining set. A rather
different approach would be to use a behavioral model in which individuals
are agssumed to uge heurigtics or limited optimizations in order to make
their decisions. For example, the individuals might respond adaptively
over time or gpend a random amount each period. Behavioral models differ
from wore general optimization problems in degree rather in kind, but they

are ugually characterized by having a relatively simple mechanism which
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produces decisions. In terms of the mathematical analysis, the problem

ig not one of complicated optimization to yield decisions, but one of deg-
cribing the evolution of the system when the decision-generation mechanism
is specified. An example of the behavioral approach to an optimization
model is the technique of stationary analysis in inventory theory; cf.
Part IV of [ 1]. Behavioral models have considerable appeal for repre-
senting actual human behavior because of limitations in human information
processing ability. However, it is difficult to avoid ad hoc modelling.

Thug, we will not consider this approach at thig time.
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3. Results

3.1. Noncooperative Game with Two Plavers and Finite Horizon

Congider the system of dynamic programs in (2.2) with the additional
assumptions that m =2 , 1 <n<e®, and miCx) = x s x20, 1=1, 2,
Since the one-period payoff function is now homogenecus of degree zero,
we can let G =1 without loss of generality. For notational gimplicity,
we drop the subsgecripts on Py and 71 and uge l-p and -y for P,
and 7y - Furthermore, we stipulate that ¥ > 0 go that the firgt player
always begins with at least as much money as ownership. It turns out that
the money advantage ¥ rather than the initial money supply p+y deter-
mines the strategic character of a player. We thus refer to the first
player as the strong player or just I and the second player as the weak
player or just II.

To place our game in perspective, first note that it is not constant-
sum, It almogt is when Bl = Bz s but it is not because K(xl, xz) =0
for x, =x, = 0. If we let K(0,0) = 1/2 , then we would have a con-
stant-sum game when Bl = BZ . Even in this special case it does not seem
possible to deduce much directly from the existing game theory literature.

However, we are able to draw some interesting conclugionsg from a straight=-

forward approach.

Theorem 1. There exists a noncooperative equilibrium golution.

Theorem 2. There ig only one golution whenever one of the following con-
ditions holds:
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1) 8, <8 ;

(ii) there are only two periods;

(1+p) @ -p-7)
i) B < EEESS

(iv) szA + Bl(l-p) <1, wvhere

_ln-l
A=n " ¥ (52/51)
j=0

and there are n periods.

Remark. More refined conditions for uniqueness when Bz > Bl are still
needed. It is evident that uniqueness holds when BZ > Bl in many other
situations besides the ones we mentioned. However, it does not always
hold. We give a counterexample involving a three-period game in Case &

of the proof of Theorem 2 in Section 4.

The following tﬁeoréms and corollaries degcribe a (often the) non=-

cooperative equilibrium solution in more detail,

Theorem 3. The gecond plaver alwayg gpends all his money each period.

Remark. Theorem 3 depends critically on the discount factors B; anmd B,
being legs than or equal to one. It ig rather contrary to intuition when
Bz > Bl » Evidently the relatively unfavorable initial money digtributions
still gives II a solution at hig boundary. Note, however, that it ig pre-

dsely when Bz > Bl that uniqueness can fail,
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Theorem 4. If A(n) repregents the first period in which I gspendg all
his money, then

k(k-1
maxfk: 1 <k <n, Bl 2 s cl, By >¢c and n22,
(3.1 A(mn) =
1 » By <e or =1 s
where
I 4:1e 4
(3.2) ¢ 1-p °

Corollary 5.
(a) If Bl =1 and >0, then I never spendg all his money
until the last period.

() If Bl <1, then I gpends all before the last period if
the horizon ig sufficiently lomg.

(c) If ﬁl <e, then~both players spend all their money in the
first period. |
(d) If A(n) =k, then both players spend all their money each

period from k to n .
(e) If A(n) =k <n, then A(mm) =k for sll m>0.

Remark. As a consequence of Corollary 5, we refer to the state in which
vy = 0 or, equivalently, the state in which both players spend all their
money ag the equilibrium or stationary state within the noncooperative

equilibrium solution.
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Theorem 6, If A(n) = k, then

(a) in the firgt period I spends

kel (el
K 2 _
xll c 1 = (lhp-y) H

(b) in period j (2 < j <£k) the total money spent ig

k-j
~ A - k ‘(k"j) .

(c) the discounted value of the real good consumed by I in period

i is
kel kel 1
j- k k .
aivl pit - 5,2 m) K e, 5sk
—]-'——-]GL =
*13 * %2 @{% , k<js<m,

{(d) the discounted value of the real good consumed by II in period

i is
k=24+1 k-1 1
ai-ls le, 2 am *aen®, ssx
—2_"2§
x4 ¥ %y Bg-l(l-p) , k<j<n,

(e) The n-period utilities Ui(p,7) and Uﬁ(l-p, 7) are continuougly
differentiabie strictly increaging functions of 7 , which are convex in
(0, 1-p) and (O0,p) respectively.
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Virtually all aspects of this solution are now easy to describe.

We list a few additional properties.

Corollary 7. If A(n) <n , then the (mtm)-period solution coincides with

the n-geribd gsolution during the first n periods for all m>1 . At
the end of period n, ¥ =0, go that both players gpend all thereafter.

Corollary 8. If A(n) =k, then II's utilities from congumption during

the first Lk geriodgrincreageg or decreageg according to whether Bz > Bl

© or. &2 < ﬁl . If 62 = Bl , then II's utility from congumption in period
j i

kel kel L
26Dz Bt am Faent, 1gigk,
A T2
X3 ¥ %y s{'l (1-p) , kl<j<nm.

Remark. Corollary 8 gives an interesting characterization of the solution.
If I spends all his money for the first time in peried k , then his
spending is such that II's discounted utility from consumption would be

congtant over the first k periods if he used I's discount factor ﬁl .

Corollary 9, If A(n) =k and Bl <1, then both I's actual éonsumg-

tion and his utflities decrease from period to period during the first k
periodg. If BI =1, then A(n) =n and I's gctual congumption as

well ag utility each period is

~ n-1 1
: n-l 1

—H— 1. ap * aen® .
+ x

’?13 2j
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Let Vn represent the excess utility I recelves beyond what he
would receive if he received goods equal to his ownership every period.
In other words, let

-1
1 1 Lot
(3-3) Vn(P:7) = Un(P:')’) - pkEOB]' .

Corollary 10.

(a) If A(n) =k, then Vj = Vk for 3>k and Vj+1 > Vj for

() If By =1, then

1/n

V_(p,7) = a(l-p)(L - '™y,

lim V_(p,7) = -(l-p)log<l - IZ;) ’

n-e

and lim 1lim Vn(p,y) =e ,
7#(1-p) n-e

where ¢ 1is defined in (3.2).

Corollary 11. Player 1I's ambunt of money ig strictly increasing from
l1-p=y until (1-p) 1is reached. If A(n) =k, then II's amount of

money_increases from period to period by a factor of c-llkB'l

1 21 for
3<i<k-l.

Theorem 12, . If B1 = B2 » Ehen every noncooperative equilibrium solu-
tion is Pareto optimal, but if Bl o B, , then none is.
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3.2, Infinite Horizom
We now congider infinite-horizon versions of our two~-person sequen=

tial game. We still agsume that $i(x) =x, x>0,

3.2.1, Bi <1

If the discount factors are both less than one, then we can use the
discounted utility functions in (2,.3). If we restrict attention to sta«
tionary strategies, then we can uge the functionmal equations in (2.2) with

both Ui and Ui-l replaced by Ui , namely,

i i i
(3.4) U(p,7) = sup {R(xp,x)+BUT(py, 7y =%+ (x) +x, )Y
O 2py*7y

We use supremum instead of maximum because the maximum might not be attained.

If Bl = ﬂz , our game is almost, but not quite, strictly competi=-
tive or constant-sum. It i3 not congtant sum because of the one-period
distribution of goods at (0,0) spending. If we redefine the one-period
distributions at (0,0) to be KI(O,O) = K?(0,0) = 1/2 , then our game
would be congtant-gum. The resulting wmodel is then similar to the deter-
ministic version of Shapley's [9] stochastic game. It is not quite the
same, though, because Shapley only considered finite gets of states and
actions. BHowever, it is known that the theory also applies to various
infinite sets under additional assumptions. Imn p#rticular, thig is evident
from the fundamental paper by Denardo {5]. Another treatment in the spirit
of Blackwell [3] has recently been provided by Maitra and Parthagarathy

[8]. Unfortunately, none of these papers appears to be directly applicable
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here, although the flexible framework provided by Denardo [5]) is promising.
In the more general context of nonconstant-sum sequential games, the recent
paper by Sobel [13] is also related but again not directly applicable.
The digcontinmuity of K in (2.2) at (0,0) 1is the principal source of
difficulty.

Although the game theory literature does not appear very helpful,
we can eagsily apply our previous finite-horizon results to this infinite-
horizon model. For this purpose, define A(®) just as in (3.1). Since
Bi <1, A(®) <o, On the basis of Corollary 7, it is obvious that the
infinite-horizon model has the same properties as the n-period problem
for n > A(®) . Let

£ 4 k

Obviously Wi represents the infinite-horizon utility to individual i
when both players follow the n-period solution for the first n periods

and are in the steady-state thereafter.

Corollary 13. If A(®) =k and n >k, then (W, W) defined {n (3.5)

ig a golution to the infinite-horizon functional equations in (3.4). More-
over, the allocations and gpending agree with the n-period solutiom for
the firgt n periodg and are in the steady-state thereafter.

It seemg that the solution to (3.4) above should be the only one
which is bounded below by 0 and above by (1-Bi)-1 « It also seems
that nothing would change if we allowed non-stationary strategies. However,

we do not yet have proofs.
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3.2.2. Bl = 52 =1

When there is no discounting, the criterion 1is usually changed to
average return per period, but we shall not consider this criterion here.
Instead, we shall congider the infinite~horizon funcfional equations re-
lated to the excess utilities Vi in (3.3). Corollary 10(b) suggests
such a system might have a finite solution. In parficular, we shall con-

sider the functional equations

i
(3.6) V(p,7,) = max  (KMGex,) - b ViR, 7 -k HpGxy )
Ok <py+y
=i=1i 1

for i=1, 2 and K' in (2.2).

Theorem 14, The limit in Corollary 10(b) is a solution to (3.6) and the

limit in Theorem 6(a) ig the amount I gpendg initially, i.e.,

1
vip,7) = -Vz(l-p-7) = -(l-p)log(l - ﬁ;)

and

& _ o apg=pRCO-py)

X4 ¢c =K T-p .
Remarks. Since the proof of Theorem 14 is easy, we omit it. It is easy
to see that the same result holds for I 1if BZ <1 . Then 52 must
be included in the €functiomal equation involving V2 . Of course, Il
spends all every period. Again we have not yet resolved the isgue of

uniqueness.
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Corollary 15. The golution above is not realized by I following the

indicated strategy. Consumption each period equalg ownership and I carries
his extra money 7 into the future.

Since the optimal value cannot actually be attained, we look for

strategies which can come arbitrarily close.

Coroliary 16. An e-optimal (statiomary) gtrategy for I can be obtained
by using an appropriate optimal finite-horizon strategy.

3.3. Many Players

We now consider our sequential money game with more than two players,
In the beginning we still assume that wi(x) =x, x>0, but later we
show how this can be generalized.

When there are more than two players, each player can still think
of himgelf being in a two-person game because he can lump all the other
Players together, but as the number of players increases, the number of
cases and the complexity of the analysis increases. Even a two-period
version with ten players would present a formidable task. The m-person
game does reduce to a two-person game in some special cases however. In
particular, thisg occurs if all the players or all but one player would
be at the boundary (spending all their money in the first period) in the
assoclated two-person game in which all other.players are lumped together.
The two-person results in Sections 3.1 and 3.2 thus immediately .imply the

following two corollaries.
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Corollary 17. (No Big Strong Player) If 7y <0 or Bi < (1-pi— 71)/(1..pi)

for each individual {1 , then everyone gpending all their money in every

period yields a noncooperative equilibrium golution.

Corollary 18. (One Big Strong Player) If 7> ¢ and ﬁl >

(1'P1'71)/(l-p1) while either 7:‘.50 or Bis(l-pi-yi)/(l-pi)

for all i >2 , then there exists a noncooperative equilibrium solution

in which individual 1 follows the two-person strategy for player 1 in

Sectiong 3.1 and 3.2 and the others spend all each period.

Remark. We have not yet successfully characterized uniqueness in Corollaries
17 and 18, but it is easy to verify for a finite horizon in special cases

of interest as we illustrate below.

We now apply Corollary 17 to investigate large economiles in a state
approaching perfect competition. We obtain a "law of large numbers" com-
parable to the classical probability theorem with that name. Just as in
the probabilistic setting, we need to require not orly that the number of
individuals be large but also that each one be asymptotically negligible
in relation to the whole. Since P; and pii-yi repregent the fractions
of total ownership and money respectively, it suffices for these to be

small,

b, 7,0, am

Theorem 19. (Berfect Competition) If p, <n
Bi < 1-8 <1 for each individual i , then for sufficiently large =n

there exigts an equilibrium golution in which each individual spends all
his money every period. 1f the horizon is finite, ther this is the only

'solution.
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A similar result corresponding to Corollary 18 algo holds.

Theorem 20. (One Fat Cat) Let P, and 71 > 0 be independent of =n .

If py<n v, 7,<nl, and B <1-8<1 for each individual 132,

then for gufficiently large n there exigts an equilibrium solution in
which each individual i , for i >2, gpendg all his money every period.
If thg horizon is finite, then thig is the only golution.

‘Remark, Theorems 19 and 20 go beyond Corollaries 17 and 18 by providing
uniqueness. Unfortunately, our uniqueness proofs in Section 5 only apply

to arbitrary finite horizons. It seems intuitively obvious that uniqueness
should alsc hold for the model with an unbounded horizom but a proof eludes us.
Since the actual horizon out there in the world appears to be unbounded,

it is natural to question the value of our finite-horizon results. How-

ever, our finite-horizon results do have a natural interpretation in the
infinite horizon. You can think of each player using a rolling strategy;

that is, each éeriod each player looks a specified finite number of periods
into the future and sélects his strategy assuming the world or his interest

in the world terminates at the end of those periods. This process is re-
peated each period so that the players are always making their decisions

based on the pregent plus a specified number of periods of the future.

With the time discounts, each player knows, in our model at least, that

the part of the future he is failing to consider is negligible. It is
significant that in the setting of Theorems 19 and 20 the solution in succeeding
periods after the first is the same (everyone spends all) using a rolling

strategy or the gecond period strategy from a fixed finite-horizon strategy.
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We algo expect the right argument will yield uniqueness in the infinite
horizon, which would imply that the rolling strategy solution coincides

with the infinite-horizon golution.

Remark. The results in this section obviously hold for quite general one-
period utility functions P s cf, (2,2). When ®; is changed, we must specify
the total amount G of the good to be distributed. It is then natural

to let G grow linearly in m as wm , the number of players, increases.
Suppose that @, is twice-differentiable with mi >0 and ¢£ <0 .

Then it is easy to see that Corollary 17 still holds if, for each 1,

. Gx
P (: 1 ; :) B, (1 )
i\x,+1-p, -7 -p
(3.7) i i i i i

9TCClp, + L-p (P + 7, -x)D) = 8- p;-7,)

for 0 s_xi g_pi + 7y o To get (3.7), it suffices to have

6.5 oClegtrl)  Bdop)
TGy = G(l-p 7))

where the right side is lesgs than G-l . The uniquenegs in Theorems 19
and 20 also obviously carries over to more general ¢i ;» but we have no

nice conditions.
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3.4, Congtrained Competitive Equilibria

For comparison, we now investigate the set of competitive equilibria.
In particular, assume each player is confronted with the optimization prob-
lem in (2.4). We look for a set of prices and allocations such that the
allocations are optimal for each individual at thoge prices, the constraints

are met, and the overall solution is Pareto optimal.

Theorem 21. If Bi =B<1 for all i, ¢then there 1s a unique competi-
tive eguilibrium golution., The price ig M/G every period and the players
spend all their money every period. If B, # Bj for gome i and j,
then Pareto optimality is logt.

Corollary 22. Under the conditiong of Theorem 19, the set of noncoopera-
tive equilibrium golutiong coincideg with the get of competitive equili-
brium golutiong for sufficiently large =n .

Remark. . Corollary 22 iq_strictly correct only when Bi =f for all i,
but is true more generally if we relax the requirement of Pareto optimality
in the definition of a competitive equilibrium. As we have noted before,
the current models without credit do not cope with uneven time preferences
for goods. This has been illustrated here with different interest rates.

It can alsc be illustrated by allowing ownership to change over time.
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4, Proofg for the Two~Person Finite-Horizon Games

Proof of Theorem l: Existence

Our proof will be by induction., We will thus want tec combine our
existence proof (Theorem 1) with the description proﬁfs (Theorems 3, 4,
and 6 plus associated corollaries). All the results are trivial for one
period since each player is clearly motivated to spend all his money re-
gardless of what the other does. Hence, we shall verify that the solution
described in Section 3.1 is in fact a solution for ntl periods assuming
that it is for k periods for each k, 1 <k<n. To simplify expres=

sions, we shall let K = (l-p=y) and c¢ = K/(1l-p) .

Case 1: Player I's Optimization when A(nt+l) = k < mtl

We first look at I, assuming that II spends all his money in the
first period as well as every period thereafter. Suppose A(ntl) < ntl ,

where A(n) 1is defined in (3.1). Player 1's optimal value is thus

1 £ 1 |
(4.1 U _,(,7) = 0<xmasxp+7 xl—_';_"ﬁ+ BiU ey (I-p)p+7-%x,))7,
="1

where K = l-p=-y . We will drop the subscript on Bl since the other dig-
count Bz will be of no-concern to I. Using Thecrem 4, Corollary 7, and

the induction hypothesis, we have

(4.2) Ui(p, 1-p)p+7-x)) = Ui_l(p, (1-p)(p+7-x)) + pp™ "

-a(n-1)
if B 2 Svcn ; Where we let c = {1- p-7n)/(1-p) with Y denoting

I's excess money at the beginning of the secondtpériod (with n of ntl



30

periods to go). Here

1-p- (1-p)(p+7-x;)

(4.3) €, = T-o = 1--[::-')f+x1 .
n(n-1)
Hence, for Xy > B 2 - K, we can substitute Ui-l + an-l for U;

ingide (4.1) which means Ur11+1(p’7) = Utll(p,‘)') + Bnp . Then, by Theorem 6(a),

kel (ee1)
" k 2
(4.4) X1, ® ¢ B - K
k{k-1
>8 % -k,
n(n-1)
go that ill >B 2 - K as required. If k =n , then we use the
n(ot+l)
hypothesis that A(n+l) < n+l to get B 2 < ¢, which implies that
n(n-1)
N 2
X1 2P - K. n(n-1
It remains to show that I does not want x; for wvhich B 2 >e
n(n-1) n{n-1)
or, equivalently, for which 3 <p 2 -K. If B 2 > ¢, then

by Theorem 6(c),

4.5) UL(p, 7)) = Un(p, (1-p)(p+7-x,))
n-l n-1 L .
=8 % (p)® (1-p-y )"+ £
j=0

n
-nf (1-p)(1-p-7+x1)n+ vl
3=0
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Next we differentiate (4.1) using (4.5) to get

df (x, ) ot e
(4.6)  £'x) == —L— 8% Az, +R) P
1 (x1 + K) :
and
otl 2n-
(4.7) £(x,) = -2—K3 2 (1-p) (—)(x + K) n s
(xl + K)

where f(x) denotes the expression inside the maximum in (4.1) when (4.5)

is used. If we set f'(xl) = 0, then we get the unique solution

(4.8) X,. =c B S -XK.,

We now must verify that f"(;il) < 0 to show that (4.8) gives a maximum,
This 1s not immediately obvious because (4.7) contains one positive term
ags well ag one negative term. However,

nfl o+l
(4.9) f"(;n) = (;11‘“ )3 -2k + (1-p)B 2 (%) (;11” K",

ol
- GuRlanls 2 ( ) - Gt "

where
n+l

_(otl)  o(mHl) n_n\" o+l
(%)cﬁ 2 »ep? =<c“+16 2) =@+ .




L
[~

ni{n-1 n{n+li
Now note that ;11 in (4.8) exceeds B 2 - X because B 2 <c .,

Hence, the maximum value possible for 3 <p - K occurg at the

boundary, l.e.,

(4.10) X, =B - K,

We now must verify that I prefers (4.4) to (4.10). Applying the induction

hypothesis with (4.4), we have

ael . n-1 n=1 1l

fRy;) 2 T8 - o8 2 (1p) ® (Lep-r)” + pB"
j=
(4.11)

n=1 1
n —— -—

2
= £pl o m? (1-p)e” - 1-p)8”,
j=0
where the inequality is due to our uging the solution generatad by A(n) = n .

If A(n) <n, then (4.11) is a strict inequality. Corresponding to (4.10),

we have
mh a1, Bl ol TSP
fx,,)B——<K, @ Zﬁj-nﬁz(l-p)n<l-p-(l-p)<-ﬁ 2 ))
11 n!g;l! =0 ‘ J
(4.12) B
o _ngn-lz
= B Bj - KB 2 - n(l-p)Bn .

j=0

Comparing (4.11) and (4.12), we see that
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- 3(n-l n-11
A-p) HEE ) - E@ I 3B 2 4t -np? B . R
11 11
1\ L
cn n n-1 cn
= | oL /P -mu n-1 P
2 "2
B g2
(4.13) = (& - B - up” L(amp)
n-1
= (0-B)( T gkl gty
=0
=0,
1_(o-1)
where K = l-p-y and ¢ = K(l-p)-l as before, = an z >B, and
Okﬂn-k-l > Bn . We have thus ghown that if A(nt+l) < ﬁ+1 s then the (ntl)-

period solution for I is the same as the n-period solution except I gets
Bnp more in the (n+1)St period. We have in fact shown a bit more, namely,
that the prospective strategy in (4.10) is dominated by the strategy in (4.4)

with k =n , which in turn is dominated by the optimal strategy.

Case 2: Plavers I's Optimization when A(n+l) = ntl
n(ntl

Now we assume that B 2 >¢ . As in Case 1, I will spend less

than all his money each period until the last period, beginning in the

n(n-1)
second period, 1if Xy <Pp 2 - K . Assuming this to be the case, we

n(nt+l

get the solution generated by ;il in (4.8). However, since B 2 >c
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n(n-1)
now, ;il < B 2 - K, so ;il is the natural candidate for the initial
spending which generates the optimal solution. The return using ;il in
(4.8) is easily calculated:
z - E A\
- 2
f(x,,) = :ﬁ“—+ BU1 p, (1=p)\1 - cn+15
11 +K n
*1
n=1 n=1 1
n-1 —_—= — -
_ K j 2 n n
—1--——-2_-E+BJEB =8 " (I-p) " (l-p-7))
c 1B 2
(4.14) L
. -8B @l mpel a_m\]"
= spdaxe D g2 1p) | 1-p- (bp)G - &lp 2>
i=
n n i
R 2 okl o+l
= LB -~ (ntl)B7(1l-p) “(l=p-7) .
§=0
The second step in (4.14) ig justified because
ﬁgn-ll n n
.15 8 2 5o ansPiTm_ w2
. cy T-p
n{nil
since B 2 > ¢ by assumption.
n(n-1)
It remains to rule out x;, 2B > - K. As in (4.1)-(4.4) of
Case 1, we would obtain Ui+1(p,7) = U;(p,y) + Bnp if 3 ig congtrained
n{n-1)
to be bigger than £ 2 - K . The prospective sclution would then be
~ . nsn-lz

generated by ﬁll in (4.4) for some k <n . If §11 >B 2 . K,
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then ill ig a legitimate candidate. For this case it suffices to show

that f(§i1) > féEll) with f(;ll) in (4.14) and

kel 1

23 2 k :
(4.16) f(xll) = ©p -k ° (l-p)e - (i-p) T Ej ’
3=0 j=k

for any k<n . In fact, it is easier to prove a stronger result. We

shall show that (4.16) is strictly increasing in k . For k<n,
1-p) TLER, )y gy - £y )]
117k+1 11°k

kel 1 K 1
A T NE Y-

k 1 k 1 k-1l
_ (kg2 ). (g2 L g 2 K

K/ 1 k=31 L 1
L k(k+1) (: k(k+1) 2 ket

k-l /L 1 k 1| ksl k
- p 2 \p? . k(D) p 2 (D) _ ktl)

j=0

which is positive because

) L

_ ck(k-l-l) >0
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and
k-j i k
B 2 ck(k+1) _ ck(k+1) S0
since
k{k+l n(otl
B 2 > % sc.
Furthermore, the argument above shows that f(xll)k = f(xll)k-l-l if
k(kt+l)
2
B =¢ .,
There is still one point more to dispose of in this case. It could
' n(n-1)
happen that ﬁll <B 2 - K. Applying (4.7) and (4.9) for k< nu,

we see that :?11 is a maximum and f(xl) decreases as X, moves away

from :?11 . Therefore, the candidate to be congidered is X in (4,10)

11

instead of X, in (4.4). Thus, it remains to show that f(§ll) > f(?c‘n)

for £(x;;) in (4.14) and £(x);) 1im (4.12), but

B 2 -pEG) - £GI

rp

[f=]

L

nt+l

_hn _n{n-1)
=B 2|l e % o+ - (mr1)B%e

N

(4.18)

il It
TN
.mn /;h;
& 2
1\
I T
o,
SO
- N
ﬂ?:u
N
W
s




37

which is positive because

and
1 -nz,n n-i-1 n~i un(n-
cn+1B 2 B2, o+l _ n+1B 2 <1,
since
n(ntl
=] 2 >c .

Thig completes the proof for 1.

Case 3: A Pogsible Advantage for Player II

We now show.that the weak player spends all his money every period.
Continuing the induction proof, we assﬁme II spends all his money every
period in each k-period problem for k < n and we use the strategies just
verified for I.

We begin by assuming Bl < ¢ sgo that I spends all his money in the
first period. Then I loses his money advantage in the gsecond period.

The new advantage to I with n periocds to go becomes

~
I

=7+ px, - (l-p)x1
(4.19)

-p(l-p-7-%,) <0,
where X, is II's initial spending. Hence, II's optimization problem is

2
(4.20) U g (1P, -y) = max  g(x,) ,
05x2£1 -p~7
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where
*2 2
g(x,) = SN + B,U (1-p, +7,(x,))
(4.21)
) 2 |
= ;'2“";;;:7+ B, U (1-p, P(1-P-7-%,)) .

Note that Ui(l-p, +y)} 1in (4.21) corresponds to I's strategy in period

n with p and 1l-p switched, obtained via the induction hypothesis,
because now II has the money advantage. We know the second term in (4.21)
increases as %, decreases and as Bz increases, so let 52 =1, This
will only make §21 , the initial spending for II, smaller. Then

n-1 1

2 2
(4.22) U_(1-p, +7,) =V (1-p, P(1-P-7-X,)) =np T -7 ) =nplp+r+xy)

= N o)

by virtue of (4.14) or Theorem 6(c). Then

pty D
(4.23) g'(xz) = - 5 - —
(x,+p+7) BEL
2 TP r4 m
(32+P+7)
and
(4.24) g"(xz) = =2 (M) 3 + p(n-l) T
(x,+p+7)

n(x2+p+ 7y B

for g in (4.21). Setting g'(xz) =0, we get the unique solution

| o
- )
(4.25) %1 =<3;—'~D- - ()
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which is obviously strictly greater than K = l-p~y for 7 >0 . Also

"y,
g (x21) > 0 because

2(p+7) > p(n-1}
2n=1

— 3
(xy; +P+7) - 5
n{x,, +p+7)

(4.26)

or, equivalently,

L
2o pty o % n _ pty
(4.27) a1 p > (x214-pi-7) it

This means ;él is indeed a2 maximum. Since ;él > lep=y , II's initial
spending should be

‘4.28) Xyy = l-p-7 .

The present case demonstrates that II will not gpend less to capi=-
talize on a money advantage he could obtain over I. We have shown this
for % = Pty ‘but it also applies to all other possible S i.e.,
¢ -K =-P-UT'_P§Z)-5::1 < pty . Note from (4.22) that

2 n-1
4.2 dUn(l'P, 7) D n
L] 9 — - L]
( ) P -

The largest money advantage I1 can obtain at the end of the firat period

occurs when I spends all his meney in the first period. Hence,

duzu-p, 7.) d7
(4.30) — 5 p+7+x “pse.
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On the other hand, the least marginal advantage II can obtain from spending
in the first period occurs at the point where he spends all his money.

This rate is

X

1

1~
>=1- (1-p-7) 2Q-p)* 2,
(x;+1-p-7)

(4,31)

for x = -k s 0<a<1l, which covers all x5 c-K S-xl < pty .
Comparing (4.30) and (4.31), we see that the conclusion in this case applies

to all x, which I might select as optimal following the strategies pre-

1

viougly determined for him.

Cage 4: The Pogsibility of IT Reducing I's Advantage

The critical difference between this case and the one before is
that now II is considering spending less so that I will have a smaller
money advantage in the second period instead of spending less so that II
can achieve an actual money advantage for himself, We shall see that II
still spends all his money.

We have treated A(ntl) = 1 in the last case. Now suppose

A(ntl) = k > 2 with I's advantage

(4.32) ”

Then, instead of (4.21), we have

X
(4.33) 8(xy) = ==1+2x2 + B,U2 (1-p, =7, (x)) .
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1f Xy = (l-p=7)} , then

k=2 ke2 a1,
~_ lap=y 2 kel k-1 i
80x) = gy t PP )T p- )T T /8
% ."7 3 3=0
e Bl
(4.34) =
lt:...z.. .15_..'.%. 1.5:..]; - k-1 k=2
K 2 k-1 k 2 j
= + B,B." (1-p) (l-p)c ~ B L (B,/B)
-1 (k-1 2P1 1 R DA
L =0
c Bl ;

by virtue of the induction hypothesis. 1If Bl = BZ ; then Ui(l-p, -7n(x))
n-l a 1
= 2B -ul(p, 7.(x)), but if B, # B, , then we must include the last
3=0 1 n n 1 2
sum in (4.34).
It is evident that both terms of the derivative in (4.33) are de-

creasing in Xy Hence, it sufficeé to congider the derivative evaluated -

at the largest possible value of X, - In other words,

f
-K
5 - o6, » k=
- Z
(4.35) g'(xy) 28" (1=p=7) =<
k=2 o f{k=2) k=2
z=K k-1

2 =1
== - PByB (k-1) Tz
Z 1=
where

(4.36) z=c¢c B .

If A{n+l) = 2 , then (4.35) reduces to

I 3pf8) k2

3,
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1.1
czﬁlz - K
g'(-p-7) = ———— - P,
cP
1
(4.37) 11
=c 282 - B, (1-p) + pB,]
1 1 P_z
>1=1=0

because Bl >c¢c ., Hence, II will spend all his money every period if
A{otl) = 2,
For A(ntl) =k >3, it suffices to let Bz =1, This can only

make the negative term in (4.35) larger in absolute value. Then

o fk=2)
2
z-K pB1
g' (l1-p=7) 2 2 - —(-2)/ (k1)

_ (k=2) (k=2
_, (1) 1 _(-pe_ o 2
T/(k-1) =~ k/(k-1) = PF1
z z
Cke2) (k=2
> By 2 - qep) - PB, 2

L (e2)
a(l-p)Gl 2 -)20.

Hence, the weaker player always spends all hia money.
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Related Theorems and Corollaries
The proof of Theorem 1 has employed Theorems 3, 4, and 6. Therefore,

to properly complete the proof of Theorem 1, we must verify that ﬁhese
descriptions prevail in the (mt+l)-period problem. The only parts'remaining
are (b)-(e) in Theorem 6. Theorem 6(b) is easy to verifyedirectly for
j =2 and by induction for j > 2 ., Using (b), it is easy to compute the
money each player has in the beginning of peried j . Then the next con-
sumption is easy to determine, from which (c) and (d) follow easily. Part
{e) is evident for a given strategy. The argument in (4.17) shows there
is no difficulty at the transition points,

The remaining corollaries in Section 3.1. follow easily from

Theorems 1, 3, 4, and 6. In Corollary 10(b) the first limit can be obtained

=1 =1
by applying Taylor's Theorem to c° =" 198 ¢

Proof of Theorem 2: Uniquenegs

We now consider whether the solution just obtained is the only solu-

tion. We show that it is if either B2 5.51 or Bl S_cn s Where

Tty l-Peye-pxy+ (-pdxy
P 1-p

c =
a

1-p
1- L]

However, we do not obtain uniquenesgs when Bl > ¢, s that is, when the

strong player is not motivated to spend all his money in the second period,

After proving uniqueness where it holds, we give a counterexample to unique-

ness when 62 > Bl and Bl > I
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Again our proof will be by induction. Just as with the existence,
the uniqueness is obviocus for ome period. Therefore, we shall show it is

true for ntl periods given that is true for k periods for each k <n.

Cage 1: Boundary Values
Let (xl, xz) denote the initial spending by I and II for a pro-

spective second solution with =n+l periods. First, note that 0 < Xy < pty
and 0 < X, < l=-p=y . If %, = l=p=y , then the previocus solution would
be obtained. Furthermore, we have seen in Case 3 of the last proof that
II spends all whenever I does. Hence, 3 < p+y . Finally, zero spending
for either player is obviously mnot an equilibrium point. The other player
is then motivated to select an arbitrarily small positive initial spending
in order to get all the goods in the first period without significantly
jeopardizing his position in the second period. Of course, this does not
yield a well-defined strategy, but even if it did, the player who had
planned to spend nothing would then himself be motivated to gpend a small
positive value. In other words, we can begin by considering solutions

in the interior of the possible spending intervals.

Case 2: Bl > 52

In the interior of the possible spending intervals all possible
solutions are solutions tc the pair of equations obtained by taking deri-
vatives of the return functions. We allow arbitrary spending in the first
period but we use the-preyious solution thereafter. In other words, we

apply the induction hypothesis. If I's money advantage in the second period
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is nonnegative, that is, if

(4.39) Yo = y + pXy - (l-p)x1 >0,

and if Az(n) =k >2, where Az(n) is the number of the period beginning

with the second when I first spends all his money, then the two equations

are:
k=l k=l
x, __Bawa» e’
ey + x)" s
(L-p-7=-pxy+ (1-p)x;)
(4.40)
kol k-l
2
X3 ) PypA(L-p) : By
(xy + )" ol
(1-p-7-px,+ (1-p)x,;)
where
. k-1 5
=0

The equations in (4.40) come from (c) and (d) of Theorem 6 or (4.14) and
(4.34)., As an immediate consequence, we get a relationship between X,
and Xy 5 namely,

szA

(4.42) x, = EI?I:SS.xz .

Substituting (4.42) into (4.39), we get
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B
(4.43) 7, = 7t (-p)x [’B—K - 1] s

so that 7 27 if and only if 32 5_61 . If B, 5.61 s then

k=1
a8, \1 *
B,(1-p)| 1-p-7-px, --51-
*2 7 | k=l k=1
[8,pA + B, (1-p)1 (1-p) ¥ B,
k=1

A emll0 G2

[B,pA + Bl(l-p)] Bl

v

(4.44)
L k-1

(l-p)k(l-p—y) k

- e+l ( =3 k-l)
(Bpa + 8,a-p)1 “By 2 K

1 k=1

k
> (1-p)* (1=p=7).
2 1-p-7 .

Hence, we have a contradiction with our requirement that 0 <x, < l-p-y .
The only solution with Bl Z’Bz ig the one previously determined. In
the second step of (4.44) we have made the right side smaller by replacing

X, with (l=p=7) .
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Case 3: A,(n) =1

Suppose now that Bz > Bl . If

B. < (1+p) (1~p-7)
1= (1-p)

and

B, < PHY

then, for all x,; and Xy PS¢, if 7a 20 and 62 Se if 7,50,

where
p-Cr) pt7,

;= =

n P p ‘

cf. Theorem 2(iii). Note that this is always true for two periods, cf.

Theorem 2(ii). In this case the equations in (4.40) or (4.56) reduce to

'Y
(4045) ——-———2 3 =8 (l-p)
(x, + x,) 1
1 2
x
and —Ll 7 = ByP
(x; + %)

We again get (4.42) but with A =1 ., Substituting (4.42) into (4.45),

we get
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B, (-p)
x=
2 18,01-p) + Byp1
(4.46)
and x; +x, =.[B(1-p) + sz]'l ;

sothat--xl-i-x2 > 1 unless Bl = 62 = 1 . However, if Bl = 52 =1, then
Xy = l-p > 1-p-y . Hence, there is no other solution for k =1 . This

case completes the uniqueness proof for the two-period problem.

Case 4: A Counterexample to Uniqueness if B, > B,

Suppose Bz > Bl s Az(“) >1, and Ta >0 . Then we still have

(4.40) and the first equation in (4.44). 1If

(4.47) ﬁsz + Bl(l-p) <1,

which is not necessarily to be expected now, then

k-1 _ k-1
k 2
Xy 2 ﬁl(l-P)cn Bl

k=1

%
2 (1-p)cn
(4.48)
k=1 1 k-1

> (1-p)e ¥ = (1-p)*(l-p-n) ¥

> l'p-y .

However, without (4.47), uniqueness can be lost. We demonstrate this for

Az(n) = 2 , which corresponds to a three-period game. We then have
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P =

L1
82(1-p)2| 1-p- y+px M
p(1-p SRR

(4.49) xz = 1 9
or

2
(4.50) ax, = bx, = K=0,

where a>1, b>0, and K = l=-p=y . In particular,

(B, + B, (1-p)1"
ar B, (1-p) |

(4.51)

A8, :
and b =pf == - .

It is evident that (4.50) has exactly one pogitive real root, namely,

2 1/2
_b+ (b + 4ak)
(4.52) Xy 7 .

Now we show that it is possible to select a , b, and K appropriately
so that 0 < %) <pty = 1=K and 0 < Xy < l-p=y = K . It turns out that
haphazard selections of p, 7, Bl » and ﬁz will not do. It is impor-
tant to make A and B;l very large. For example, think of B;l as

10100 although this may be a bit bigger than necessary; we shall just let
BII = N with the understanding that N ig big, Let p = l=-p = 1/2 ;

let B, =1 ; and let K =1/2, which means that 7 = 1/4 . We shall

express X, approximately using N and generic consgtants ey i>1.,



We get A = clN ; a-= czN '

50

l/é

2 2 4 5,7
. . c3N + (c3N + 4Kc2N )
2 5
(4.53) 2e,N
_ -5/2
= caN § K .
Moreover,
B,pA
P -1/2
(4.54) Xy = 51(1'P) X, CSN Xy c6N < 1-K
and
71‘1 7 sz B
1
(4.55) =y - pe,N te.N°
° = Pcll_ 07

Case 5. 7n50

We have not discussged

the advantage shifts to II.

the cage in which 7, £ 0, that is, vhen

Ingtead of (4.40), we have

k-l k-1
2
X, ) B (-plp B,
(x; + "2)2 Eil
(p+7+px, - (1-p)x,)
(4.56)
k-1l k=1
k . 2
and *) N BypAp B,
2 k-1 °
(x; + x5)
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Again we obtain (4.42). Substituting it into the first equation of (4.56),

we get

k-1
k
B (1-p)|:p+ y+ (1-p)x (AB )}
¥ =

k-l k-l
(g, (- p)+BAp] p 62

k-1

k
B, (1- p)[p+ 7+ (l-p)(W)<—'- - 1):]
>

k-1 k-l
(B, (1-p) + Byao] % * B

2
(4.57)

=] kel _ (1)
- B R+ © (B (l-p) + Bap] B, K

[ (1-p) + BzAp] » B,

kel _Qerl) (ko) (et2)
2

k i
= Bl(l-p) ( ) [, (1-p) + ByAp] By ;

where the second step involves replacing xy by pty on the right. Since

Bl can be arbitrarily small, (4.57) is rather difficglt to work with directly,.

If we assume (4.47), then we can apply (4.42) plus (4.57) to obtain
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BN =2 1) (k=1) (k]
AN Ne/g 2
x) +x, 2 [B(A-p) + BrArl{ 5 [ﬁlgl-p) + B,Ap] B,
k-1
== _L o (k=1)(ketl)
k

k
(4.58) =<B§Z> [8,(1-p) + Byapl B,  °

>1,

which contradictsg the basic spending constraints: X, < pt+y and Xy < l-p-y .
However, {4.58) is not possible without (4.47). A counterexample for

Az(n) = 2 1is easily constructed here just as in (4.49)-(4.55). This com-
pletes our discussion of uniqueness. In particular, we shall neither attempt
to provide more detailed conditions for unigueness when Bz > Bl nor attempt

to describe the other noncooperative equilibrium solutions at this time.

Proof of Theorem 12: Pareto Optimality

1f Bl = Bz ,: then our game is constant-sum except for the case
in which both players spend nothing. Since such gpending never occurg in
any solution, cf. Ca#e 1 of the Procf of Theorem 2, any solution is Pareto
optimal when Bl = BZ . However, if Bl # E2 , then both players could
simultaneously do better by judiciously (cooperatively) spending less ini-
;ially. Since both players spend strictly positive amounts in any solu-
tion, both players are always free to spend less. Thg returns to I and
II using positive Xy and X, initially and the optimal strategies

thereafter are
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X

1 N 1 1 e
R ,,(7) = ST + B U (P, 7+Px, - (1-p)x,)
(4.59)
and R2 (l-p, =7) = 2 + B Uz(l'P ¥+ Px, - (1=p)x,)
ntl ? xl-l-x2 2°n 4 2 i A

For Bl = 62 , it is easy to see that

2 1 1
A op, 7)) AU (p,0)

dy dy = dy L.

(4.60) "
If Bl > Bz , then it is easy to verify that

2 1
du_(1-p, ~7) dU_(p,7)
<

dy dy

(4.61) -

Hence, Ri+1(p,7) can be kept constant'by decreasing both X, and X,

a swmall amount so that I's first period loss equals his future gain. This
can be done in many ways. Then II's first period gain coincides with I's
first period loss, but II's second period loss is less than I's second
period gain because 62 < Bl . Hence, II is better off while I is in-

different., A parallel argument applies to ﬁl < 52 .
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5. Proofs for Many Players
Proof of Theorem 19: Perfect Competition

The bounds on p i and 7y imply that

1-p, -7
i i n-2
{5.1) s 1 b 2 5 s

so that Bi < 1=-$§ < c; for sufficiently large n . Hence, the condition
of Corollary 17 is satisfied. We now investigate uniqueness beginning
with two periods. Suppose some player, say I, does not spend all his

available money in the first period. This means that I, faced with the

problem
x

(5.2) max + B (p, 7~ x,tp(x;+y))

ocxogp by, | F1TY 11T TITR 1

=111

m
where y = L x, - Xy elects to spend

=17

1/2
A = ____L__ - -1

(5.3) X119 [Bl(l'p)J y<p t7, < 2n © ,

which he obtains by differentiating in (5.2) as in Section 4. It is easy
to see from (5.3) that we must have y < n_l . First, §11 is increasing
in y for 0<y< [43(1-;:)]'1 and decreasing in y for [cufscl-p)]'1

<Sy<l-p; -7+ I y=1-p; -7, then ﬁll >p; + 7, since

ﬁl,s_cl . If y= n-l » then

/2, y-1/2_-1/2 _ -1 /2 1yl

> (n1

(5.4) £, =8, “(t-»)
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Since y < n-1 s one of the remaining players must spend less than [n(n-—l)].'1
m
because y = T x, -x, and m>n . These two arguments can be repeated
=131 -
to show that y < (n-l)"k and ﬁll < (n-l)-(k+l) for all k >1, where
of courge the distinguished player changes each time. This argument, easily
made precise by induction, demonstrates that there is no spending at all in
the first period, which is a contradiction because zero spending is obviously
not an equilibrium gelution., Hence, there is no second solution with some
players spending less than all their money in the first period. This proof
was for two periods. It is extended to any finite number of periods by
induction. For sufficiently large n , the position in the second of several
periods will correspond to the initial position with two periods, which we
have just analyzed in detail. For example, player i's money supply in
the second period can be no greater than 2pi + 7y Hence, s > (n=3)/n
in the second period and the spending is bounded above by 3n-1 » Thus,
by virtue of the induction hypothesis, I is again faced with (5.2) and the

game argument applies.

Proof of Theorem 20: One Fat Cat

The proof above applies to show that none of the small players will

spend less than all their money each period. This guarantees uniquensss.
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6. Constrained Competitive Equilibrium

Proof of Theorem 21

First, comsider the one-period problem. Everyone is clearly motivated

to gpend all available money at any price., Since § x; = G , the price
must be M/G . Next, assume the theorem to be trueigir n periods and
congider the (mtl)-period optimization problem in (2.4). By virtue of the
induction hypothesis, it reduces to the following two period problem for

each individual:

(6.1) max [xl + sz}
X,
i
subject to X a, S(p1 + 71)M

M
26" (p1 + 71)M - X2, + plGa1 .

If M/G < alﬁ s then each player wants X, instead of Xy - This would
lead to zero spending in the first period. If M/G = alﬁ » then each
player is indifferent between Xy and Xy o If <1, then both cases
can be ruled out because the price in the first period must be less than
or equal to M/G since no more than M will be spent for the total gcods
If B=1, then a, = M/G 1is only possible if each player spends all
his money in the first period. If ﬁ/G > aIB ; then each player prefers
X; to x, . Hence, each player will gpend all his available money in
the first period. The asm ciated price is them M/G .

If Bi =§ for all i, then the allocations are constant=-sum and
thus obviocusgly Pareto optimal. If Bi > Bj for some 1, j , then both
players could simultanecusly do better if i pgave i some goods in the

future in exchange for some goods in the present,
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