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SOCIAL CHOICE ON POLLUTION MANAGEMENT: THE GENOSSENSCHAFTEN®

by

Alvin K. Klevorick and Gerald H. Kramer
Cowles Foundation, Yale University

1. Introduction: The Genogsensgchaften

The provision of a public good or a public service raises several
important questions. How much of the good or service should be produced?
Who should bear the costs of its provision? And, more fundamentally, what
mechanisms should be used to decide these issues? These questions become
particularly important and acute when the good or service is used to 're-
pair" a public resource in a situation where both the damage done to the
resource and the benefits reaped from it vary across different segments
of the public.

A specific case of such a service is water quality management and
water pollution control. Comgider, for example; a region composad of firms
and households located om a river. Different firms will discharge varying
amounts of pollutants into the river, and these amounts will, in turn,
differ from the wvarious levels of waste discharge of the households. At

the same time, the cost of bringing the water to z quality standard

*The research described in this paper was gsupported under grants from the
Ford Foundation and from the Natiomal Science Foundation. This is the re-
viged vergion of a paper that was presented at the Conference on Public
Economics held at the University of Essex,August 8-9, 1972 and the European
Meeting of the Econometric Society held in Budapest, September 5-8, 1972.



appropriate for industrial use is far lower than the cost of making it suitable
for domegtic or recreational use by households. Moreover;, the benefits of
pollution control accruing to firms and households located upstream are
significantly smaller than those accruing to their dowvmstream neighbors.

One rather unique arrangement for coping with problems of water re-

source management is the Genogsenschaften of the Ruhr industrial area of

West Germany. Each of these river associations is a bagin-wide agency
responsible for water quality management im its regicn. While the several

enoggengchaften (the Ruhrverband, the Emgcher the Lippeverband,

the Wupperverband, the Niergverband, and the Erftverband) differ from each
other with respect to institutiomal details, they have a common basic decision-
making structure that resembles a hybrid of a cooperative and a corporate
shareholders meeting. Abstracting congiderably from the wealth of detailed
structural features and the multiplicity of functions of the river agsociations,
the "typical” Genogsengchaft has the authority to set water quality standards,
to raise revenue from its members by exacting (with the force of public law)
contributions which resemble effluent charges, and to use the revenue so

raiged for maintaining and improving water quality, primarily via treatment
facilities.

The members of the typical Genogsemschaft are primarily the industrial
enterprises, the coal mines, the cities and communities, and the waterworks
associationg in the river association's area, There is a plenary represen-
tative body--a General Assembly of Membersg--and a day-tc-day decisiommaking
body-~a Board of Directors=-which is elected by the General Assembly and

which, in turn, has a techmnical staff to help it manage the asgociation’s



daily affairs. Ultimate authority within the Genossenschaft thus rests

with the General Assembly composed of representatives of the firms, the

cities and communities, and the waterworks. A member's voting strength

in the Assembly is approximately proportiomal to his financial contribution
to the association, and decigions are reached on the basis of an absolute
majority. The “contribution” required of a member is, in effect; a tax on
waste discharge, and hence depends primarily upon the quantity and the quality
of the member's effluent. Cloging the circle, them, the largest polluters
have the most votes in determining the water quality standard toc be enforced
in the association's river.

The specific criteria for determining who will be compelled to be a
member of the association, and the details of the procedure for allocating
votes in the assembly differ from ome association to another. The precise
relationship between the agsembly and the board of directors-=-gpecifically,
how members of the latter will be elected by the former--also varies across
associations, as does the exact way in which members’ contributions are
computed. Nevertheless, the common characteristics of these agencies cver-
shadow their differemces, and thig core of common features forms the basis

for this degcription of a "typical" Gemoggengchaft and the focus of our paperal

1For a thorough description of the Gemossenschaften and the intricate details

of their politics and daily decisiommaking, the reader is referred to the forthcoming
monograph by William A. Irwin, Charges on Effluents in the United States

and Europe. Mr. Irwin's work wag supported by & grant from the Council on
Law-Related Studies, Cambridge, Massachusetts. A briefer discussion of

the Genossengchaften, with particular emphasis on the different types of

effluent charge systems used by the associations; appears in Allen V.

Kneese and Blair T. Bower, Managing Water Quality: Economicg, Technology,
Ingtitutiong (published for Resources for the Future by} Johng Hopking Press,
Baltimore, 1968, Chapters 12 and 13,




The purpose of the present paper is to investigate the consequences

of the typical Genogsenschaften representation scheme by means of some simple

mathematical voting models. Consider, for a moment, one's intuition about
a system in which the standard established by a law is the result of a vote
in a legislature where members receive ballots in proportion to their vio-
lation of the law. Would an equilibrium exist in such a system? 1If a
standard did exist from which there were no tendency to move, would it be
binding on people's actions? One can imagine a scenario in which, given
an arbitrary standard, the heaviest violators gain control of the legislature
and lower the standard drastically, perhaps even abolish it. But now, with
the new legal standard, their degree of violation is no longer so great
relative to those who were more law abiding under the original, tougher
law, so the latter group now has more power in the assembly and raises the
standard of conduct, and we start through the process once againul The
scenario appears to bode ill for the existence of an equilibrium,
Nevertheless, on the whole, the Genossenschaften seem to have functioned
well, though problems have arisen in passing the budget in the assembly of

one of the Genossenschaften--the Ruhrverband--because of the voting power

of upstream interests in that bodyu2 This paper tries to pregent some in-
sights into the associations® favorable experience by deriving counditions

for the existence of an equilibrium under such a representation scheme.

1Of course, this description imputes a pseudodynamics to the process of
finding an equilibrium, and this is irrelevant to the issuve of existence

of such an equilibrium. But the description does help to focus on problems
one might anticipate in resolving the question of existence.

211“\71‘[{, 92“9—!‘-5-“’ ppu 48”52o



Our results also bear on the problems encountered in the Ruhrverband, as

they help to explain how the representation system generates such difficulties.
The results also help to explain some aspects of the representation-allo-
cation methods adopted by several of the Genoggenschaften~-for example, why
one of the river associations gives downstream interests a bloc of 75 votes
out of a total of 300 votes before distributing the remainder on the basis

of members' contributions,1 and why another limits the mining companies to

a total of 40 percent of all votes in the Asaembly.z But this is getting
ahead of the story.

In Section 2, we present an abstract medel of a Genossenschaft,
ignoring many of the complexities of the real river associstions. The fol-
lowing section presents sufficient conditions for the existence of a global
equilibrium for the model under specific assumptions about the technologies
of firms and pollution control and the job opportunities of households.
Section 4 relaxes these assumptions to allow for other kinds of techmologies
and to take into account some general-equilibrium aspects of the model; and
it provides sufficient conditions for the existence of a local equilibrium.

The implications these theorems have for the organization of the Genosgengchaften

are explored in Section 5. This section also compares the equilibria the
Genogsenschaften representation scheme yields with those produced by alter-
native voting procedures, and it considers the effect of technological charnge

in pollution control on the Genossenschaften equilibria.

1Irwin, op.cit., p. 54,

2Section 10 Paragraph 8 of the Act establishing the Lippeverband, 19 January
1926, as cited in a document provided by W.A. Irwin, which describeg the rep-
resentation system of the Lippeverband.



2, A Stylized Gemoggenschaft

The genogsenschaft, or water board, is responsible for maintaining

the quality of water in a given region or management area. The board has
authority to impose and collect effluent charges on the m firms and n
households located in the region, and to use the revenue so raised to con-
struct and operate pollution treatment facilities. Waste emitted by firms
and householdsg is treated in the facility, but if aggregate waste emissions
exceed the capacity of the facility, the excess is discharged directly into
the water, cauging a reduction in water quality. The board must determine
what quality standard is to prevail in the area;, or equivalently, how large
a treatment facility must be constructed so that untreated "excess® dis-
charges will be reduced to an acceptable level. Effluent charges which will
yield revenue sufficient to construct a facility of the agreed-upon size
are determined and imposed upon households and firms alike. The board ul-
timately responsible for these decisions consigts of representatives of
households==who are interested in water quality for domestic and recreational
uses, but who also must bear a share of the cost of maintaining the quality
standard==and of firms, who are primarily concerned with the cost implications
of water quality decisions. This board operates by weighted majority vote,
in which each member's voting strength is proportional to its financial
contribution.

An important assumption underlying our analysis is that water quality
can be measured and characterized by a single variable. Thus, though the
concentration and physical compogition of different firms® waste emissions

may differ considerably, each firm's discharge can be characterized in terms



of a ''standard pollution units” equivalent, and this equivalent is used to
determine the effluent charges imposed on the firmc.1 The water quality
prevailing in the area can be similarly characterized by a single measure

or standard, and this standard varies monotonically with the total untreated

discharge, measured in standard pollution units per unit of time.,2 The period

1T'he various Genoggengchaften do, in fact, seem to use something approximating
this approach for computing effluent charges, though the standard of meagure-

ment varies from one Genoggenschaft to another, See Kneese and Bower, op.cit.,
Ppa 244“251 L

2Thus, in particular, we ignore varilations in the rate of discharge or in
water flow within the time period, as well as upstream-downstream compli-
cations.

One interpretation of this is that the water resource is a lake (or perhaps a
tidal estuary), with no predominant downstream current, but with sufficient
circulation to ensure relatively even dispersal of pollutants throughout

the lake. Water quality in this case depends on the total stock of pollutants
remairning in the lake, which increases with new discharges and decreases over
time according to the natural recovery capacity of the lake (or flushing rate
of the estuary). If the recovery rate iz p (so that in the absence of new
discharges;, the stock of pollutants decreases during each period to 1=p of
the level at the beginning of the period) then in the steady-state gituaticon
where new emissions are at a congtant rate of § units per period, the

stock approaches 1%2 S as the number of periods becomes large.

Alternatively, we can think of the resource as a river, with the major polluters
located upstream in relation to the places where water is used for domestic

and recreational purposes. In this case, water quality as measured by the
concentration of pollutants in the water used for consumption purposes will
vary directly with the rate of upstream discharge.

More gemerally, when firms and congumption locations are interspersed along
the river, we can think of water quality as the average concentration of
pollutants in the river, averaged over measurements taken at a number of
representative locations along the river. This quality standard need not
vary monotonically with the aggregate volume of untreated discharges ({per
period), since upstream and downstream discharges will affect the averaged
standard differently. MHence, the interpretation in this case is a bit dif-
ferent., At anyeffluent taxrate T the board {or its technical staff) can
determine what use of the revenue produced at that rate will achieve the
highest possible water quality, or lowest possible (average) concentration
of pollutants. We could define S(rt} as this best-achievable standard,
and recagt the analysis that follows in terms of the 8§(7) functions them-
selves, without attempting to interpret these functions in terms of aggregate
discharges, For expositional convenience, however, we shall retainm the
"aggregate discharge” interpretation in the body of the paper.



will be taken as fixed, say at cne year, throughout. The quantity S ig
defined as the total untreated discharge during this period, and for simpli-
city, we shall refer to S as the "quality standard" of the water {though
it is more accurately an inverse standard).

To give more structure to this plcture, we now turn to a more detailed

deseription of the principal agents involved.

Firms
Each firm is assumed to be a price taker in both the input and output
markets., For simplicity, assume the ith firm uses a single factor, labor,

which it hires at a fixed wage w per unit (the existence of other factors
of production is immaterial for our purposes), and it sells its output ay
at a fixed price pi per unit. The prices received by the firms may differ

because different firmg are producing different outputs. In producing its

output, the ith firm faces its cwn generalized production relationship

Fi between its output level 9 > the labor it hires L and the waste

i s
or garbage Gi it emits to the water as a byproduct:1

i i
i i _ 3F i _ OF i _
qi=F (Li, Gi) with Fl—aLi:»o y aGi>0, F (0, Gi)—O
(1) for all &G, .

i

Fi(Li, Gi) gtrictly concave, 1 =1, ,.., m ,

Thus each firm's production process shows decreasing returns to scale. In

addition, as indicated by (1), a ceteris paribus increase in the labor employed

increases output and a positive output requires a positive labor input.

Finally, holding the number of workers fixed, and positive, the firm can pro-

lThe firm's production relationship and all other primary functions introduced
will be agsumed to be twice continuously differentiable, unlegs indicated
otherwisge,



duce more if it pollutes more (that isg, increases Gi ) or conversely its
output fallg if it is obliged to emit less waste. Ome interpretation of

this is that the firm hires labor to produce its product, with waste materials
being gemerated as a byproduct. The firm can either emit this garbage into
thewater or it can pretreat its effluent. But pretreatment requireg labor

input. Hence, a reduction in G holding Li fixed, meang that gome

i
workers previocusly employed to produce the firm’s commodity must be allo-
cated to clean-up operations instead. As a result, 9 must fall.

Each firm is assumed to be a profit-maximizer. Hence, if the effluent
charge set by the gemoggengchaft ig T per unit of waste discharged into
h

firmm's problem is to choogse L, and G. to

t
the water;, the i 1 i

(2) Maximize

= p,F (L, 6,) - vl - TG, .
L., G
i’ 71

i i i

More specific assumptions about the firm'"s production relationship will be
introduced when they are needed., For the pregent; two features of the firm's
problem (2) should be emphagized. First, the firm does not care about the
water quality standard as such, The firm's only motivation for reducing its
own waste emigsions is that it is charged a price or tax T for each unit

of waste it releases. The firm iz only concerned with the overall standard
of water quality insofar as the latter influenices the emission tax it must

payal Second, while the exact substitution possibilities between labor and

lThis assumption is not terribly unrealistic. In most cases, the resources
required to bring water up to the quality needed for industrial purposes
are minimal. Kneese and Bower, op.cit., pp. 36=38,
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pollution have not been delineated yet, note that each firm can control

the amount of waste it discharges. It can change Gi directly by altering
its output level 9 while helding its labor input Li fixed or by changing
its labor input with a constant production level or by varying both Li

and 9 -

We shall agsume that at every feagible tax rate T (and the set of
feasible T will be specified presently), each firm has a positive waste
emission. From this and the other assumptions embodied in (1) and (2),
two conclusions can be drawn about firm behavior. First, each firm prefers
lower to higher effluent charges, since under our agsumptions its profit
declines as T increases. Second, each firm's demand function for waste
disposal (supply function of waste discharge) is downward-sloping; that
ig, for all 4

"G

_:;}_<0'

Thus, as the emigsion tax increases, each profit-maximizing firm will pollute

less.

Hougeholdg

Households, in contrast to firms, do care about the water quality
standard itgelf--not just about the cost of the effluent charges they must
pay to maintain the standard. Moreover, also in contrast to firms, they
cannot regulate their waste discharges because households do not have availe
able to them the substitution possgibilities firms command. The utility level

of the jth hougehold, Uj , 1s assumed to be a function of its consumption
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level Cj and a meagsure of the prevailing water quality, § ;, defined ss
the amount of untreated waste discharged during the vear when the treatment
plants are operating. Thus the jth hougehold hag an ordinal utility fumc-

tionn of the form:

j j i an j BUj
UJ=UJ(Cj,S) with U{=¥T>0;U%=«:0;sgogcjgo;
i

(3)

ul quasi-concave, j =1, 2, o0, B

Each household's welfare rises with ceteris paribug increases in its con-

sumption level and with ceteris paribug imcreases In water quality, which

correspond to decreagses in S . The utility function Uj(cj, S) is assumed
to be quasi-concave, which fmplies a diminishing marginal rate of substitu-
tion between congumption and (positively measured) water quality, and thie
iz true for all j .

If members of a particular household § are employed by firms in the
region, the household’s lagbor income, and hence its gross income, will depend
on the production functiomg Fi(o) ; the output prices By oo the wage
rate w , and the effluent charge T {as well ag the priceg of any other
inputs), The production fumctioms are fixed, however, and we alsoc assume
that all input and output prices, including the wage rate, are determined
in a much larger setting than the region and that activity in the region is
too small to have any perceptible effect on them. Hence, the hougehold’s
gross income Yj(T) depends only on the effluent charge T .

The hougehold’s gress income Yj(T) can be allocated to the several

consumption goods available only after the household has paid its effluent
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charge. It is assumed that household j discharges an amcunt of garbage
Fj into the water, and the hougehold cannot alter thig amount. Hence, the

jth household’s consumption level-«its gross income minus the levy for its

waste outflow-=-ig:

(4) cj(T) - Yj('r) - -1-1"j .

Each household would like to reach the highest utility level possible.
The jth hougehold®’s objective iz to maximize (3), subject to the comstraint
(4)., But itg opportunities for doing so are limited in the current framework.
Given the assumptions about how Yj and Fj are determined, the only way
the housgehold can increase its welfare is through whatever influence it has
on T and S ., Thisg brings us to the remaining agent on the scene, the

water board«-the Genossenschaft of the present model,

The Water Board

The effluent charges paid by hougeholds and firms determine the total
amount of pollution comtrsl the bosrd can undertake. The treatment operations
undertaken by the board are funded entirely by the effluent charges described.
Hence, with a tax rate T , the board’s revenue R and thus the maximum

amount that can be spent on treatment is

i3

n
(5) R(M) =7 0G,(r)+1ET, .
g=1 * 51 9

The functional notation Gi{T) ig uged to indicate that the optimazl solution



13

to the ifP

firm's problem in (2) depends on ,1 At the same time; the
total waste discharged into the water when the effluent tax s T ; denoted

J(T) , is

m n
6) J(t) = T Gi(T) + TT, .
. s J
i=1 j=1
The genogsenschaft uses the revenue R(T) to reduce the pollution
level of the water. 1In doing so, the board faces & treatment technology
function @ that relates the amount of waste removed, K s to the amount

of money expended, E :
(7) K=#9@E), 0'(€) >0, $0)=0.

The function in (7) is simply the inverse ¢f a cost function and the assump-
tion about its first derivative means that an extra dollar spent on pollution
control hag a beneficial effect-=it cleans up more garbage. The fact that
#(0) equals zero means there is no clean-up unless positive expenditures

are made. For the time being, no further assumptions are made concerning

the clean~up technology. The theorem in Section 3 will employ a further
assumption about the nature of returms to gcale in thig techmology, but

Section 4 will relax this requirement.

1Since Py and w are assumed to be fixed throughout the paper, we sup-

press the fact that the optimal Gi and L, values for (2) also depend

i
on these parameters. That is, we should properly write Gi(T, Py w) but

with Py and w fixed throughout, Gi(¢) gsuffices.
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The quality standard of the water, 8 , ig defined as the excess
of aggregate waste emigsiong over treatment capacity. S$Since the board must
operate subject to the constraint E <R, that is, it cannot spend more
than the revenue it raises, the best standard (the lowest S )} it can achieve

depends on the effluent tax T . Denoting the best standard achievable

with tax rate T by S(T), we have:

J{ry = BR(T)) = JLT} = B(TI(TY} if J(T) > B(TI(TY) ,
(8) s(r) =

0 otherwise.

The bagic decision variable for the board is the effluent charge

T « By assumption, it is nomnegative and bounded from above., If there is
a rate T at which total clean-up occurg, that ig, PTITY) = I s
the lowest such rate is a suitable bound, since there is no reason for the
board to ever congider higher r@tESal Even if total clean~up is mot achieve-
able;, there is some maximum feasible tax rate, such as the rate at which some
gignificant number of firmsz are driven out of business, or some significant
number of hougeholds are reduced to a below-gubsistence consumption level,
The set of feagible effluent tax rates thus constitutes a closed interval:
[0, Tm] . Clearly not every standard of water quality will be achievable.
A given quality standard S 1ig feasible if there is some feasible effluenmt

tax rate T that will yvield revenue sufficient to cleam up enough of the

1Note that £{f there are constant returns to scale in pollution com:rol 80
that ﬂ"(E) =0, then sucha T existso Specifically, if O@E) = y

then =L, because ¢<-J )) QIR
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waste discharged when T prevails to meet the standard S ; that ig, if
there exists a T ¢ [o, Tﬁ] such that S(;) =85 .

The board is responsible for setting the effluent charge T and
hence the implied quality standard S{T) . It is composed of representatives
of the m £irms and n households in the region. Each unit, whether firm
or household, receives a preoportion of the total vote equal to its share
of all contributions to the association. More precisely, with an effluent

T

tax of T per unit of waste, the jth hougehold receives o
TG (tY+ ST,
=1 1 j=1 1

th e
of the votes, while the i firm receives the fraction

iZIGi(T) + ; Fj
= j=1
of the total number of votes. Note carefully that a change in the effluent
tax T affects a firm's voting strength in two ways. It changes the amount
of waste the particular firm discharges, as showm by the Gi(T) function,

m 1

and £t changes the total waste emitted into the water, b Gi(T) + ¥
i=1 = j=1

Fj ¢
Since each household’s waste emission is fixed;, a change in T affects
a household’s voting strength only via the second route, namely, by altering
the total waste discharged,

The effluent charge T established by the board is determined by
a weighted majority vote in which the number of votes allocated to each
firm and each household ig determined in the manner described above. For

a given distribution of voting strengths, a particular tax rate 7 {and

its imrlied quality standard S(TO) ] is a voting equilibrium if there is
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no other rate 7' which is preferred to T° by a weighted majority (weighted

according to the given distribution of votesg) of representatives. An equi=

librium is thus invulnerable to proposals to change, while conversely, a tax

rate which does not constitute a voting equilibrium is vulnergble, in the

sense that some proposed change from that rate will command weighted majority

support on the board., Which rates are voting equilibria in this sense thusg

depends, in part, upon the current distribution of votes. In particular,

if the current rate is T' , and 1" itself is not an equilibrium with regpect

to the distribution of votes implied by 7' , then the current rate, and

hence the distribution of votes itself, will be unstable. We are interested

in whether there exists some tax rate which is not unstable in this sense.

Such a value will be referred to as a ‘'superequilibrium, " since it is both

a voting equilibrium with regpect to the current distribution of votes,

and the vote digtribution it implies is identical to the current distribution.
The next gection establighes conditions for the existence of such a

superequilibrium and explores some of its properties. Certain conditfions

on which this argument rests, such as the assumption that the technology

of pollution treatment displays non-increasing returns to scale, are somewhat

regtrictive.  When these assumptions are relsxed, the existence of a "super-~

| equilibrium™ is mno longer ensured. Wz shall show in Section 4, however, that

under quite general conditions there still exists a "local” type of super-

equilibrium, that is, a superequilibrium which is stable against proposals

for "small" changes in the current rate. To avoid ambiguity, we shall employ

the following definitions throughout: a tax rate =%

is a global superequilibrium
if there is no other rate +t' preferred to T° by a weighted majority vote

+
when voting strengths are determined by T . In contrast, & tax rate T
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will be said to be a local guperequilibrium if there exists some nondegen-

erate neighborhood (f+ - 8, T+ 8) of +t which containsg no rate T

preferred by a weighted majority vote to * when the distribution of votes

is determined by T+ .

3ﬂ

The production functions of the firms in the region were specified
quite generally in (1): decreasing returns to scale, a pesitive labor re-
quirement, and pogitive marginal products for labor and waste discharges.
From this general specification and the firmg® price-taking behavior, it
follows that each firm's demand function for waste disposal (supply func-

tion of waste discharge) is downward sloping:
(g!) G_;-(T) <0 for each i= 1, asoy M o

One further assumption will be made for the purpose of Section 3. It will
be aggumed that the firm's supply curve of waste discharge is convex as

well ag downward sloping so that for all 1 ,
{(10°) G}j(-r) >0 .

While this goes beyond the restrictions customarily imposed on factor demand

curves, some hint of plausibility (or lack of implausibility) may come from

the fact that if Fi(Li, Gi) tock the modified Cobb-Douglas form G?LE
m n
with a+b<1, Gi(T) would be convex, Since J(T) = T Gi(f) + ¥ Tj
i=1 j=1

and Fj ig fixed for all j , (9') and (10") imply {9) and (10), respectively:
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(9) JN(T) <0
(10) 3T 20 .

For the purposes of this section, we make a rather gtrong assumption
about the anti=-pollution technology. Namely, the functiom @(E) is assumed

to have either constant or decreasing returns to scale:
(11) H{ED <0,

Though this assumption ig restrictive, two points should be made about it.
First, the public-good nature of pollution control is logically separable

from the increasing-returng-to=-scale aspect of the problem, and in the presgent
gection we wish to focug on the former. Second;, while impresgsive economies
of scale are sometimes achievable, this is not always the case.” Hence,

in at least some instances, the monincreaging-returnz-to-scale assumption

may be appropriate.

Finally, we assume that the households' gross incomes are fixed, and
are large enough so that every household has pogitive consumption at every
feagible tax rate, No matter how the firms respond to changes in the effluent
tax, the gross income of the jth household is assumed to be congtant at
?5 > Tij . FPor example, if an increase im T leads firms to lay-off or
fire workers in the region, these workers can find jobs elsewhere so that
each household has the ssme gross income as befors the increase in 7T .

With this assumption, the jth hougehold's congumption is:

4" c, =Y, - T,
" i i j

1See, for example, Irwin, op.cit., p. 46.
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Taking all our assumptions together, it follows that over the relevant
range S(T) 1is a nonmnegative strictliy decreasing, strictly convex function,

That is, for all 1 ¢ [0, Tﬁ] s
(12) S(ry >0, 8'(1)<0, s¥r)>0,

The first statement, S(t) >0, follows from the definition in (8). Note
next that S(7) >0 is equivalent to J(T) 2 G{TI{T)) . But nonincreasing
returns to scale in pollutiom comtrol, ®%(E) < 0 , implies #A(R) > RE'(R)
for all R >0, or @(tJ{r)) > TI(7)B"{tI(T)) . Combining these two in-

equalities yields J(T) > T3(T)8'{TI(T)} or’

1The inequality in (13) shows that unless the social anti-pollution technology
is marked by constant returns tc scale, the Genossenschaften method is a
gocially inefficient approach te pollution comtrol. The difficulty essentially
rests with the fact that the CGenosgenschaften use an average-cost pricing
mechanism to allocate the cost of waste removal. The firms carry their own

i
treatment activities to the point where = = Py %§==9 taking T as the
i

private cost of treatment. The gocial cost of clean-up activities is, how-

ever, ET?;%z;;; . The statement in (13) shows that if decreasing returns
. 1

to scale characterize the trsatment technology, then A IC)) > T 350

that the social cost of pollution control exceeds the private cost of treat-
ment and inefficiency results. Similerly, if the social pollution treatment
technology is marked by increasing returns to scale, the direction of the
inequality is reversed: the social cost of poliution contrel is less than
the private cost of such activity and inefficiency results again, Only

if there are constant returns to gcale im social pellution control will

the private cost equal the gocial cogt: T = ETE;%?;35 .
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(13) L2 {tI{r)) .

Differentiating S(r) , we have

+) (=) +) &)
(14) 8"t} = J°(7) = BT CHI{(T) + 7v3°(1)] = (1 = 1B (-)1I° (1) = B'(-)I(T) ,

where () = {1J{7))} . But then, using (7), (9), and (13), we have S"'(r) <0
as asgerted in the second part of (12). It follows that S{r) does not

have an interior relative minimum for T 2> 0 . The best achievable water
quality simply increases, that is, S$(T) decreases, with every increase

in T . Differentiating §'{v) im (14); one obtains

{+) {+) +y (=) (=} &)
(15) s¥(T) = [1 = 70" (-)13"(7) = 28" (-} (1) = B"(-H[I(T) + (i’ .

Using (7Y, (9), (10}, (11), and (13), it follows that S (7) >0 and S(r)
iz a strictly convex function as stated in the last part of (12),

The strict monotomicity and strict convexity of the S{r) function
have strong implications for the voting preferences and behavior of each of

the n hougeholds. Congider the jth household. From the assumption in

t =
(4') that Cj(T) Yj 3

it follows that there is a one-to-ome relatiomship between (S, Cj) pairs

- 7T, with ?j and T, fixed, and S°(1) < O,

and T values. The strict convexity of S(T) and the linear relationship
between cj and T given by (4'} also imply that the set of (S, Cj)

pairs available to the jth consumer iz strictly convex. This opportunity
set, denoted Aj , 1is defined as AJ., = {(s, Cj)|3're {O,Tm] for which §>5(r)

» < = F o
and CJ < Yj T j}
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[

To see that Aj is strictly convex, supposge {Sl, C.) e Aj and

and congider (hsl + (1m%)$2, kﬂﬁ + {1=2)C

[\

j) for 0 <AL,

there exists a T, e [OQTm] guch that S1 2 S(Tl)

2 2
S C. A
(’j)ej’
1 1
Since (87, Cj) 3 Aj 5
and C; < Cj(Tl) , and similarliy for (Szy C?) e Aj ; there exists a

2 2
Ty € [O,Tm] such that § 2> S(TZ) and Cj

T(A) = th + (1=h)72 . Clearly, T{A} ¢ EOETm] . Since S(T) isstrictly convex,
1

< Cj(Tz) . Let

S(T(N) < AS(ry) + (1-MS(T,) S AT + (1-1)s” . In addition, from the linearity

1 2
£ c.(r C.{T(A)} = AC. {7 ) + (1-K)C (T,) 2> AL, + (l-A >
o J( ) J( (A3} 3 bt =k it 2?2 REJ { )Cj Taking these

two statements together with (4'), we have

2

(16) ast + (1-A)8% > S(T(R)) and xc§ + (1=A)C]

<Y, - TOOT, .
£y - T

Hence; (ksl + (1=h)32, KCl + (l=k)6§} ¢ A, so that Aj is convex. More-

3 h)
over;, from the strict inequality in the first part of (16}, it follows that

if (Sl, C;) and (Sz, C?) are on the boundary of Aj ; the point

1
3

ig a strictly convex set.

(hSl + (lwh)sz, AC, + (1mk)C§) is in the interior of Aj » Thug, A

j

The set Aj is derived in the first quadrant of Figure 1 for the
cage where there exigts a tax rate at which total clean-up occurs, that is,
S(Tm) =0, In the second quadrant of the figure, the household's consumption
level Cj is graphed on the vertical axis as a function of the effluent tax
v plotted on the horizontal axis. The fourth quadrant displays the rela-
tionship between the standard S on the horizontal axis and the tax 7
on the vertical axis. The third quadrant simply contains a 45° line that

is used to help derive the boundary of the opportunity set Aj s which is

the shaded region displayed inm the first quadrant.
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459

4

FIGURE 1

The Optimization Decision of Household j
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While the jth hougehold's § , Cj opportunity set is given by
Aj , the household's preferences for consumption and water quality are
represented by the quasi-concave utility function in (3). Several of the
indifference curves of this function are showvm in Figure 1 as I? 3 I; R
Iy . If the household could choose its § , Cj position individualisg-
tically, it would go to its utility-maximizing point B , with standard
SB and congumption C? ; which is on the highest indifference curve the

hougehold can attain given the opportunity set A In terms of the decision

j e
variable T , household j's most-preferred tax rate T? is simply the

one corresponding to the pair SB 3 C? .

effluent tax rates by locating, for each tax rate, the corresponding point

The household can rank all possible

on the boundary of the opportunity set Aj , and agsociating with the given
tax rate the level of the congumption-water quality indifference curve passing
through that point. Since § and Gj vary monotonically with the tax rate,

it follows that as the tax rate mcves away, in either direction, from the
jth household's optimum T? , the household's ordinal utility level de-
creases.

Hence,each household's preferences with respect to T can be repre-
sented by an ordinal utility index Uj(cj(f), S{t)) = uj(w) which has a
single maximum or peak at T = T? s Lis strictly increasing for 1< T? 3
and strictly decreasing for = >—T? . 'This is illustrated in Figure 2a.

(The specific assumptions made in this section, namely, (4'), (10'),
and (11) were used to ensure this last conclusion about households' rankings.,
Any other set of assumptions that yielded this result would serve equally

well in providing sufficient conditions for a global superequilibrium. The

ones presented here are, however, the most transparent ones to use.)
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Firms' rankings are even easier to describe., Under the assumptions
introduced in the last sectiom; each firm's profit is strictly decreasing
with respect to T . The tax rate ~ =0 ig highest in each firm's pra-
ference ordering on alternative social states, and higher rates are less
preferred. This is illustrated in Figure 2Zb,

From the results on the firms’ and househelde’® preferences over social
states, it follows that each voter's preference ranking with respect to
effluent tax rates has a single peak. 1In short, for any given tax rate
;‘j the “single-peakedness"” condition introduced by Duncan Black is met.

Hence, from Black's results on voting with single~peaked preferences,
we can conclude that for apv digtribution of votes on the board there exists
a voting egquilibrium, and moreover that this squilibrium tax rate is a median

with respect to the weighted distribution of most-prefarred tax ratesel

lnuncan Black, The Theory of Committees and Elections, Cambridge University
Press, Cambridge, U.K., 1958, Chapters 2-4, Alzo gee Kemmeth J. Arrow,
Social Choice and Tndividual Vslues, Second Editicn, Yale University Press,
1963, pp. 75-80. Our voting problem differs in minor respects from the type
congidered by Black. Our genosgenschaft operateg by weighted vote whereas
Black's committee used a one-mat--one-vote rule, This distinetion is, how-
ever, clearly inesgential. For example, a representative with v votes
can be regarded, for cur purpczes, as v repregentativas with the same
preferances and one vote each. Black’z definition of majority rule is

algo slightly different from ~urs, In Black's sense, an alternative 7'
defeats another, 1" ;, by majoricy vote if and onily if the number of voters
who prefer 7' to T" is gtrictly grsafer than the number who prefer

" to T' . In contrast, im our sense T defeats T7 4if and only if

the number who prefer 7' to 7" is gtrictly greater than half the total
number of voterg, {Tha two definitions are eguivalent when mo voter is
indifferent between T and " .} A voting equilibrium--that iz, an
alternative which is not defeated by any other alternstive~--under Black's
definition is clearly alsc an equilibrium under our definition; moreover

it is easily shown that when all voters have single~peaked prefereances

(but not in general) the converge is also true.

Rather than appeal to Black's results, we could instead employ Theorem 2

of Gerald H, Kramer and Alvin K. Klevorick, "Existence of a 'local' Coopera-
tive Equilibrium in a Class of Voting Games,” Cowles Foundstiocun Discussion
Paper No. 343, August 1972, to estsblish the exigtence of a voting equi-
librium., It is straightforward to verify directly the propesition in (17)
below.
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(7))

Ranking

A

2a, Household Rankings

2b. Firm Rankings

FIGURE 2

The Rankings of Alternative Motions by Households and Firms
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To be more precise, we shall say a tax rate t 1is a global majority equi-

librium (g.m.e.) with respect to a given distribution v(T) of votes if
and only if there exists no other feasible tax rate T' such that the set
of voters (whether firms or households) who prefer T' to t commands

an absolute majority of the votes on the board. Under the assumptions

of this section there is at leasgt one g.m.e. for any distribution of voting
strengths on the board. Moreover, every such equilibrium will satisfy

the following necessary and sufficient condition:

(‘
t 1is a global majority equilibrium with respect to T if and only if

(a) and () Town(Mz.s,

T wv(t)>.5
LS fi 3t

(7 ¢

where vk(T) equals the fraction of the total number of votesg that

the kP member of the board (household or firm) has when the tax

rate is T, and Tz is the tax rate most preferred by the kth
member of the board,

.

Consider now what happens as T changes; for concreteness, suppose
T increases from T to T First, the tax-rate preferences of each member
of the board remain unchanged. The households' and firms' rankings of al-
ternative effluent tax rates do not depend on the prevailing rate. As a
result, the gingle-peakedness condition is maintained. Hence, there also
exlsts a global majority equilibrium for the vote digtribution implied by
the new higher tax rate.

What does happen as the tax rate increagses 1s that the relative voting

strength of the households increases and, correspondingly, the relative
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voting strength of the firms decreases. To see thig, denote by V(1) the

fraction of votes all the households together have when the tax rate is T .

n n
T Fj =J'¢(T) ¥ Fj

Then, V(1) = i=1_ and V'(1) = —_—d=l . But, from (9), J'(T) <0,
7™ (3 (m?

and thus V'(T) >0 . Indeed, each hougehold's relative voting strength rises
in the same proportion as the aggregate household relative voting strength.

Specifically, since vj(T) is the relative voting strength of household j

v}(y) AN G0 R AL ()
vi(m V() J(ry °

at tax rate T, What happens to a particular

firm's relative voting strength depends on how the tax-rate change affects
its waste discharges vis-3-vis the effect the change has on total waste
digcharges into the water. Since each firm's most-preferred tax rate is

T=0, while the most-preferred tax rate of at least some {in the most

il

probable case, of all) hougseholds is positive, the increase from T to
shifts voting strength from those unitg preferring lower tax rates to thosge
units preferring higher tax rates. Intuitively, the net result of the tax-
rate increase from ¥ to T is to increase the weighted median most-pre=

ferred tax rate(s) and hence to lead to a higher g.m.e. tax rate.

1

64 (™ th J(T)eE(T) « JTIG, (T)
vi(T) = J for the 1 firm, and vi(T) = = 5 L .
[3(t)]
Since Gi(T) and J'(r) are both negative, whether E%e) ith firm's rela-
G (T
i

tive voting sﬁfength rigses or fallg depends on how Er??3= compares with
i

J' (1)
J(t) °
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The heuristic argument can be illustrated using Figure 3 where a
genoggengchaft consisting of four firmsg and five households is pictured.

Assume that each of the five households discharges the same amount of waste,

',=T for j=1, ..., 5, and hag the same income, ?5 =Y for

3
j=1, ..y, 5, but that the tastes of the hougeholds differ. Hence, each

hougehold receives exactly 1/5 of the voting strength of the households, that

F

is, for each j , but each has a different mogt-preferred tax

rate, as indicated in the figure. Furthermore, in this example, each Tg
is agsumed to be strictly posgitive.
Suppose that T is sufficiently low so that the firms have 60% of
the votes when T =T , that is V(?) = ,40 , Then it follows from condition
(17) that the only g.m.e. is t = 0 . That is, with an effluent charge
of T , the resulting waste discharges of T for each hougehold and Gi(?)

for the ith

firm lead to a vote distribution that produces zerc as the
weighted majority voting equilibrium tax rate. As T ig increased, V{T)
increases, and suppose that for T = T 3 V(?) = .60 . Now each household
has 12 percent of the total vote, while the firms in the aggregate have 40
percent of the votes. As can be easily verified, the new g.m.e. is TT .
Finally, if we consider an even higher tax rate, V(7T) rises again so that,
for example, with % , one findsg v(‘% = .80 . Each household now has 16
percent of the votes, while the firms share 20 percent of the votes. The
new g.m.e. is T; ., It should also be noted that while zero is the lowest
possible global majority equilibrium, the highest possible g.m.e. is T? ,

the tax rate that would result from a weighted majority vote among the house-

holds alone.
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A Genossenschaft with Four Firms and Five Households
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The manner in which the g.m.e. varieg with respect to r 1is actually
a bit more complicated than this discusgsion indicates. For example, there
may be more than one g.m.e. for a particular value of T . I1f, for instance,

V(r') = 625 , then 'Y > .5 and b

v, (T (t') > .5 for
(k| hge) ¥ ekt 0=

Yk
all t in the closed interval [77, T;] . Hence, all t in this interval
satisfy condition (17) and there is an iInfinity of global majority equi-
libria for T = t' . 1In the presence of thig nonuniqueness, how can we
discuss "monotonicity" of the g.m.e. with respect to T ? Furthermore,
the heuristic discugsion of the example provides no information about whether
the changes in the set of global majority equilibria occur "smoothly" as
T varies. In particular, denoting the set of g.m.e. at T by (1),
is the correspondence +#(T) upper semicontinuous? The following two re-
sultg are addressed to these questions.,

The domain of the mapping #(v) is clearly the set of feasible tax

rates. That is, the domain of +¢(T) is the set T defined as
(18) T = [0, Tﬁ] .

Assuming that only feasible tax rates will be brought before the board for
consideration, the range of %(T) is some subset of T . Consider first
whether the image of T under the mapping ¢ : T = T changes smoothly as

T changes. Lemma 1 answers this question in the affirmative.

Le 1. The corregspondence & : T - T 1is upper semicontinuous on T .

e e————
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Proof. Suppose (T“) is a sequence of tax rates in T guch that (Tv) - «° s
and suppose £V is a g.m.e, with respect to ™ for each v and (tv) -t2,
The mapping % : T # T is upper semicontinuous on T if and only if ¢
is a global majority equilibrium with respect to ° ; that is, 1if and

only 1f t° e *(To) . Form the following three subsequences of (tv) :

V) = {(V)tY = )
(t\)") - {(t\))’t\) < t°1
(t“m) = (") [tY > .

o
Since (t”) =t » at least one of these three subsequences must be an

[}
infinite sequence converging to t% . If (tv ) 1is an infinite sequence

with t° as a limit, then it is trivial that ® v, (™) >.5 and
(k|r¥ceor 0 ° F
k=
{ | § 1vk(To) 2 +3 so that t° is a g.m.e. with respect to © .
k|7 >t
k=
]

]
Suppose (tv ) 1s an infinite sequence that converges to t° . since

111 1]
each t¥ g a g.m.e. for the corregponding v » 1t follows from {17)

" 11
that (@) T v (10 ) >.5 and (B) T av, (V) > .5 . (For
(k| rrce¥ 1 & fk|epe¥r B F
k= k=
notational gimplicity, let us temporarily omit the double primes on v .)

From (&) and the fact that £ > ¢V s we have T v (Tv) > .5 for
oy k =
(k| 'rigt }

all v . Taking limits and recalling that the vk(T) functions are con-

tinuous (indeed, continuously differentiable), we have

.5 < lim by v, (T”) = T v, (To) « Hence, condition (a) in (17)
" e (] e fi| rhee®t ® .
obtains for t° when t=1°.
Now let TF be the largest T < t® . Since there is a finite number

U k
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of voters (m firms and n hougeholdsg), such a T; must exigt. But gince

¥ 1t

1
(t“ ) 1is an infinite sequence converging to t° with tv < £° for all
1] "

113
tY e (tv ) , there mugt exigt a subsequence (tﬂ) of (tVY ) such that

TE < tn < t° for all t'ﬂ € (tn) , (tn) - t° and (Tn) - 1° ., From

(B) and the construction of the 1 subsequence, for each n,

S5 < vk(fn) =

= (k| olvk(Tn)' But, then, taking limits and using
T -

)

o, M
K&t 1
the continuity of the vk(T) functions, it follows that

x
(k| mi>e

4 o
+3 £ lim = v, (1) = X v, (T ) « Thus, condition () in (17)
The (k| % ¥ (k|0 K T

obtains for t° when 1t = T
¥
Hence, we have ghown that if (t“ ) 1is an infinite sequence converging

to t° , it follows that conditions (a) and (b) in (17) obtain for t°

when T =1". The tax rate t° is then a global majority equilibrium
with respect to ° . The remaining possibility ig that (th') is the
only convergent subsequence of (t”) . This case is argued in a manner
analogous to that used for the case where (t““) is a convergent subsequence
of (V) .
vﬂ \JM vm

Since at least one of the three subsequences (t ), (" ), (t° )
must be an infinite sequence converging to t° , it follows that (") = 1° s
t¥ e $(Tv) for each T’ , and (tv) - t° imply t° € ¢(T°) . The proof

is complete. Q.E.D,

The next result makes precise the sensge in which the correspondence
¥ : T+ T 1ig monotonic. Two new definitions will be helpful in stating
the result. Denote by tL(T) the minimum value of t ¢ ¢(T) and by

tU(T) the maximum value of t ¢ ¥(v) . Since the mapping ¢ : T = T
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is upper semicontinuous and T 1is bounded by 0 and To the set of global
majority equilibria with respect to any given tax rate T, ¥(v)S T,

is a closed, bounded nonempty set, and hence contains minimum and maximum
members, The following lemma implies that tL(T) and tU(T) are both

nondecreasing functions of T .,

U L
lLemma 2. 1If T < Tz , then t (Tl) <t (TZ) .

Proof, Suppose the contrary, namely, that T < Tz but tU(Tl) > tL(TZ) .
Denote by A the index gset A = {kITi > tU(Tl)1 . Since tU(Tl) > tL(T2) >0,

every member k of A has a strictly positive most-preferred tax rate

T; . Given our assumptions on firmg' and households' preferences, this

implies A consists only of households. For any household j , however,

T -T
v,(1) = “—j—', and vi(r) = ““-J—-ﬁJ“(T) , which from (9) is strictly
h| J(r) i [J(T)]z

positive. Hence every household's vote share vj(f) is strictly increasing

in = go Tv(t,)> Tv,(t).
? keA k*'2 KeA k*'1

Since tU(Tl) is a global majority equilibrium with respect to

v, it must satisfy (17b) for that is, by vk(Tl) > .5, whence

1 KkeA

1

T v, (r,) >.5. This implieg, however, that £ v (1,) < .5 where
k*'2 ~ k2
keA kel

A= {k|tF< eVt )} (since v, (T) + Tv, (1) =1 for all T ). Moreover,
k 1 A k % k

since t (1) > tI‘('rz) by hypothesis, it must be true that

b v, (T,) < p vi.(T) = T v (1,).
k27 & k*'2 ~ k2
{k]fzgtL(fz)} {k|7§<tu(71)1 keh
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This fact together with the previous inequality impliesg that

b vk(tz) < .5, and hence that tL(Tz) does not satisfy (17a)

for T = Ty o Since tL(TZ) ig a g.m.e. with regpect to Tz s however,
(17a) must hold. This is a contradiction. Hence, tU(Tl) < tL(TZ) .

Q.E.D.

Lemma 2 and the continuity of the vk(f) functions can be usged to
show that the mapping ¥ : T+ T 1ig a specific type of upper semicontinuous
correspondence. We omit the proof, but it can be shown that for only a
finite number of tax rates T does the image set #%(T) contain more than
one element. Hence, Figure 4a or 4b could be a graph of the #(T) wmapping,
but Figure 5 could not.

Making use of Lemmas 1 and 2, we can now answer the questions about
the existence and nature of global superequilibria in the Genogsenschaften

model. The principal results are summarized in Theorem 1.

Theorem 1.
(i) Under the agsumptions of Section 2 and the further agsumptions of
(4'), (10'), and (11) in Section 3, there exists a global super-
equilibrim [G.S.], **.

(1i) A necessary condition for there to exist a positive global superequi-
librium,that is, one with ™ >0 s Ls that there exist some positive
rate T' > 0 which is preferred to the zero rate T =0 by a weighted
majority of households with the weight of the jth household being

n

r./erT, .
Jj=1j
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FIGURE 5

A Graph of an Upper Semicontinuous Correspondence Other Than (1)
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(iv)

Proof.

(1)

(ii)
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A sufficient condition for all global superequilibria to be positive
is that each hougehold's most-preferred tax rate be positive and

that the hougeholds collectively control the board at T =0, that

o n m
is, £T,> £6,(0) .
j=1 1=1

A gufficient condition for there to exigt a positive global super-
equilibrium T > 0 1g that there exist some T >0 sguch that
with votes distributed according to the waste discharges emitted

-~ -~ -~
when T = v, there exists some t ¢ ¥(T) such that ¢t 2.

The assumptions of Section 2 together with (4'), (10'), and (11)
engure that for any T ¢ T there exists a nonempty set of global
majority equilibria given by the correspondence ¢(T) . ILemma 1
established that ¢ 1is an upper semicontinuous correspondence mapping
T dnto T, and from (18) T is clearly a nonempty, compact convex
subget of the real line. Finally, it is clear from the conditions
in (17) that %(7) is convex for all T e¢ T . Hence,all the con-
ditions of the Kakutani fixed-point theorem are met, and it follows
that there exists a fixed point, that is, a T* such that ** ¢ $(7¥) .
The tax rate T* 1is a global majority equilibrium when voting strengths
are determined by T , and thus it is a global superequilibrium.
Suppose there were no posgitive tax rate preferred to the zero rate

th

by a weighted majority of the households alone, with the } housge-

r
hold's weight equal to -;ri—- . Denote by 3HL the set of households,

T
s=11
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Then T =0 would be a g.m.e. with respect to the above vote dis-

T

tribution, and since vk(‘r) = 3-(% for each k e , it follows
from (17) that for every 7, -‘-%(ﬂ— = k('\') > .5 and
TT {ke\"‘H *<01
j=1
%;Ql- b vk('r) 2 «5 . The first of these inequalities implies
fke'W|1¥>01
T k=
j=1 >
b 1"j
that k( )< .5 jj:fl'r_)- . But denoting the set of firms
[kc“H—[ >01

by 3? » we know that 'r:: =0 for all k eéﬁ , and hence

_}vk(T) = for all T, Then for any v and any t >0,
n

»T

T vk('r) < .5 i=1 _ < .5 . Hence, from (17b) no positive tax
fi| e} & 7 :

¥
(ke |70

rate can be a g.m.e. for any T . The set #(7) = {0} for all
T eT, and the only global superequilibrium ig T* =0 .

If each hougehold's most-preferred tax rate is positive, then for

™ Gi(‘r)

any T T v, (t) = % . Under the aasmnption that

" {k|rhco} ¥ =1 70T

2 G )
e g=1
b Fj > E G (0) , it follows that = k(0) —3?63_- < .5 .
j=1 :I.ﬂl o {kl‘r <0
TG ('r)

Moreover, since 1'-7(-;3—- 1g-a strictly decreasing function of T,

this implies b vk(‘r) <.5 forall T>0. Hence, t =0
{k|1'§§01

does not satisfy condition (17a) for a g.m.e. with respect to any
T, and thug it camnot be a global superequilibxium, It follows

that every global superequilibrium tax rate is positive.
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(iv) If ® ¢ ¢(#), then # 1is a G.S. and since T > 0 by assumption,
there exists a positive global superequilibrium. Suppose that
? 4 () but that £t >#® for some t ¢ $($) . Then consider the
nonempty, compact, convex set T = [7, Tm] . The agsumptions in
(1) imply that for any T ¢ T there exists a nonempty set of global
majority equilibria given by the correspondence % and #(T) is
convex for all Te T . In addition, Lemma 1 shows the correspondence
+ is upper semicontinuous on TeT ., Furthermore, from Lemma 2,

tL(Tz) 2 tU('rl) for T, > T so that t 2 el >t for all

2 1’
t e LL{#(T)? . Thus, ¥ maps T into T . All the conditions
T€T

of the Kakutani fixed-point theorem are wmet, and hence there exists
a ™e¢ T guch that 7% ¢ #(t™) . That is, there exists a global
guperequilibrium tax rate “* eT . Since all T ¢ T are positive,

the proof is complete. Q.E.D.

Several alternative possibilities for global superequilibria are
illustrated in Figure 6. Assume for convenience that, in fact, S(Tm) = 0
in each case., Filgure 6a represents a case in which the only G.S. tax rate
is T =0 . In Figures 6b and 6c, T =0 1is still a G.S. tax rate, but
there are also positive global superequilibrium tax rates. In 6b, there
are two other global superequilibrium charges Tol and Th2 2 while in
the case of 6¢c, there is only one positive G.5. tax rate: T » Figures
6b and 6¢ illustrate that condition (iii) in Theorem 1 is sufficient but
not necessary for the existence of a positive % . eaven if the decision

units desiring the lowest pogsible rate, T = 0, control the board at low

tax rates, a positive global superequilibrium may gtill exist. The remaining
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Alternative Global Superequilibrium Situations
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three diagrams, 6d-6f, depict cases in which the households with positive
tax preferences control the board when t = 0 . In each of these cases,
there is no T ¢ T for which zero is a global majority equilibrium, and
hence zero is mot a G.S. tax rate., Figure 6d represents a case in which

there is a unique pogitive global superequilibrium tax rate T while

dl ’
6e and 6f are instances of multiple positive global superequilibria. In
particular, in the case depicted in Figure 6f, the maximum clean-up tax

rate L is a G.S. tax rate and S* = 0 or total clean-up of all waste

is the resulting standard.

4. The Existence of Equilibrium under More Genmeral Conditiong
The resgults obtained in Section 3 were based on the assumption of

non-increasing returns to scale in the technology of pollution treatment and
other somewhat restrictive premises. It was assumed that the effluent charges
imposed on the firms, which are the principal employers in the region, have

no effect on the hougeholds' incomes; and that each firm's sgtrictly positive
waste emission decreases at a3 decreasing rate as the effluent charge increases.
In this section we shall relax these assumptions--specifically, (4"), (10%),

and (ll)--and investigate the equilibrium properties of the Gemossenschaften

voting system under the more general assumptions presented in Section 2.
Specifically, the curve describing a firm's supply of waste discharge as
a function of the tax rate is unrestricted except that it must be downward
sloping and posgitive for all feasible ~ (which ig implied by the assump-
tions of Section 2). The only restrictions on the water board’s treatment

technology are those given in (7): positive marginal productivity of an
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extra dollar and zero clean-up for zero expenditure, The treatment tech-
nology may, for example, have ranges of increasing returns to scale. Finally,
the gross income of each household now may depend on the firms' hiring de-
cigions, which in turn depend on the effluent charge T . ({Household income
Yj(T) is assumed to be a twice continuougly differentiable function of T,
for all j .) This introduces some general-equilibrium aspects into the model,
In deciding on its tax-rate preferences; each household must not only take
account of how the tax rate affects water quality and the household's net
income via the effluent charge it must pay but also how the tax rate affects
the household’s gross income since any tax-rate change may now alter the

labor income of the household.

Relaxing the Section 3 assumptions in this way has several implications
for the earlier analysis. The S(T) function defined in (8) need no longer
be convex or even strictly decreasing. Becauge of this, and the dependence
of households' gross incomes on T , the households' opportunity gsets,

Aj for j=1, ..., n, are not in general (strictly) convex., This, in
turn, implies that each hougehold's preferences over tax rates are mot
necessarily single-peaked. Figure 7 illustrates the. jth household’s
situation for the relatively simple case in which S§{t) 1is still a strictly
decreasing function, S(Tm) = 0, &nd household incomes are still fixed,

but S{T) 1is no longer a convex function. Allowing S{T) to be nonmonotonic
and the jth hougehold's gross income to vary with T would complicate
matters even further, It is clear from Figure 7 that the nonconvex §(rT)
function generates an opportunity set Aj for household j {the striped

area in the figure) which is nonconvex, and hence the household's tax-rate
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preferences need no longer be single-peaked. For the particular set of in-
difference curves shown in Figure 7, the tax-rate preferences of household
j are clearly not single-peaked. Instead, fhey take the form shown in

o

Figure 8, where 3 is the tax rate corresponding to the household's most-

preferred feasible point (SB, C?) in Figure 7. The tax rate T, in Figure

oy

8 corregponds to the standard SP in Figure 7, and similarly, T,

! in Figure

8 corresgponds te standard ST in Figure 7.

Ranking
u, (1)

JA

i
=

s P

FIGURE 8

Tax-Rate Preferences of Household j of Figure 7

While the tax-rate preferences of the firms remain exactly as shown
in Figure 2b, and hence single-beaked, the fact that the households' pre-

ferences need no longer have that property means that we can no longer appeal
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to the Black single-peakedness result to establigh the existence of a voting
equilibrium. Indeed, it is easily shown by example that a global majority
equilibrium need no longer exist with non-gingle-peaked preferences: ¢ (T)
may be empty for some (perhaps, for all) T . Hence, the approach of Sec~
tion 3 cannot be used to demonstrate the existence of a global superequilibrium.
With one additional, rather weak assumption, however, we can demonstrate the
existence of a local superequilibrium.

A local equilibrium; it will be recalled from Section 2, is an effluent
tax rate T° for which there exists no “nearby' rate 1T' preferred by a
weighted majority to T . More precisely, a feasible rate 7° ig a local
majority equilibrium (l.m.e.) with respect to the vote distribution v(T)
if and only if there exists a neighborhood (1°-8, T°+8) of 1° with
§ > 0 which contains no feasible rate T' preferred by a weighted majority,
weights being given by the distribution v(T) , to . Let us denote by
E(r) the set of local majority equilibria with respect to the vote distri-
bution v(rt) . Evidently 2 is & correspondence from the set of feasible
rates T inte T .

Under one additional agsumption, a local majority equilibrium exists
with respect to any feasible vote distribution; that is, the set E(T)
is nonempty for all T ¢ T . The additional assumption required for this

result is a rather weak restriction om voter preferences with respect to

alternative effluent tax rates.

Under the assumptions of Section 2, each profit-maximizing firm will

prefer a lower tax rate to a higher one, and every firm prefers T =0 to

any higher rate. The situation for households is more complex. The jth
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household's preferences over alternative tax rates are represented by

u (1) = uj<cj<-r), S(1)) = ujwj (1) = 1T, S(T)) .

i

Since the functions Uj(u) s Yj(T) » and S(T) are each continuous (twice
continuousgly differentiable, in fact), uj(T) is continuoug., But without
further agsumptions we can conclude nothing about the shape of uj(T) s

and, in particular, nothing about the number of 'peaks" it has on the set T .

Our additional premise is, essentially, that each u_ {T) has only

3
finitely wany “peaks” on T , a matural extension of the “single-peskedness"
condition invoked in the previous section. To formulate this premise more
precigely, we must first define a '"peak." A continuous function defined
on an interval will be said to have a proper relative maximum at a point
x in the interval if and only if it has a relative maximum at x and does
not have a relative minimum at x . Our ”finite-pegkedness" assumption is
then:
For all households j = 1, 2, ..., n , the utility function
@2 uj(T) has only a finite number of proper relative maxima on T .
Since each firm's tax-rate preferences are single-peaked, each firm's
utility function ui(T) also satisfies this finite-peakedness condition.

Results we have proven elsewherel can now be directly applied to the current

voting problem. The following theorem applies:

1G.H. Kramer and A.K. Klevorick, op.cit. In that paper, the domain of defini-
tion of the utility functions is the cloged interval {0,1} . The results
clearly apply for any homeomorph of [0,1] , and, in particular, for any
other closed interval like T .
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Theorem 2. If the utility function uk(T) of each decigiommaker is con-
tinuous on T and has only a finite number of proper relative maxima on
T, then for all Tt e T,
(i) there exists a local majority equilibrium with respect to =T ;
(i1) the tax rate x (7) = sup{x ¢ €(r)1 is itself a local majority
equilibrium with respect to T ; that is, xu(T) e (1) ;
(iii) if xu(T) < T ? it is a proper relative maximum of the utility
function uk('r) for some k e:‘j' U#;
(iv) 1if z eT and 2z > xu(w) » then when voting strengths are de-
termined by T, 2z will be defeated by tax rates slightly

smaller than =z ; that ig, for some § >0, Vk(T)

b
{k]u, (z")>u, (2))

w

> .5 for all =z' ¢ (z-8, z) .

Theorem 2 establishes, inter alia, that for every T ¢ T , there
exists a local majority equilibrium: E(T) is not empty. It remains to be
shown that there exists a local superequilibrium ‘r+ € g(’r+) ; that is,

a tax rate f+ which 1g a local majority equilibrium with respect to the
vote distribution V(T+) . Although such a rate f+ is clearly a fixed
point of the correspondence g, we cannot follow the last section's
approach and uge the Kakutani fixed-point theorem to establish the existence
of such a point because the set E£(T) is not convex for all T e T and
indeed the correspondence “ :7 T isnot ingeneral upper semicontinuous,

To prove the existence of a local superequilibrium we will need two
preliminary results analogues of lemmas 1 and 2 of Section 3, and they, in
turn, require some further definitions. Let the preference ordering over

tax rates of the k® decisionmaking unit (whether f£irm or household) be
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represented by the utility function uk(T) + Then, for any T e T, define

two sets of decigiommaking units, the increase group I(T) , and the decrease

group D(Tt) , as follows:

-
(a) k ¢ I(T) 1if and only if there exists some § > 0 such

that uk(T') > uk(T) for all feagible +' in the interval

{(r, T™8) .
20) ¢
(b) k e D(T) if and only if there exists some &' > 0 such
that uk(f“) > uk(T) for all feasible 7' in the
interval (7-8', T) .
.

Thug I(T) consists of those voters who "prefer small increases™
from -t , that is, voters for whom T 1is inferior to any slightly larger
value T' . The set D(T) can be interpreted analogously. For certain
values of T , some households may belong to both of the sets I(T),

D(T) and some households may belong to neither. Since firms always prefer

lower to higher tax rates, however, it followg that

2'% € D{t) for all T ¢ [O,Tm] and
(21)

&rﬁ 1{(t) for any T ¢ [O,Tm) .

A local majority equilibrium cgn be readily defined in terms of the
I(t) and D(T) sets. Specifically, a feasible effluent tax rate T 1ig

a l.m.e. with regpect to the digtribution of votes w(T') if and only if
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(a) T v

k(T') <.5 if 7>0
keD(T)

(22)
and (b) T vk(T') <.5 if v<7r .
kel(T) N "

We shall now use these definitiong and facts to establish the following

two lemmas.

Lemma 3. Let (Tv) be a sequence of feasible tax rates such that (7v) - 1° 5
and va) the sequence defined by x¥ = xu(Tv) for all v . Then if
(xV) = £ s the limiting point r° is a local majority equilibrium with

respect to the vote distribution V(To) ; that is, r° ¢ g1y .

Proof. From result (iii) of Theorem 2, for any T, xu(T) must be a proper
relative maximum of uk(T) for some k efle*+ or xu(T) =T . But from
assumption (19) and the sgingle peakedness of the uk(T) functions for

k e Ei s it follows that the number of proper relative maxima for all

uk(T) for all k ef§lJ$+ ig finite. Hence, va) must contain a sub-
sequence (xn) all of whose terms are equal to some common value, and this
value must be ., In addition, it follows from result (ii) of Theorem 2

that xn =r® 1ig a local majority equilibrium with respect to Tn . Thus,

the definition in (22) implies that .5 2> T vk(Tn) = T vk(Tn) and
D(x D(r®)
52 I vk(wn) = ¥ vk(Tn) mugt hold for all T . Since the vk(T)
Iix) 1¢:°)

functions are continuous in T , taking limits we have:

5>1lim T vk(-r“) = % v (") and Splim T vk('rn) = T v ).
) o o 7 Mo o 0
D(r ) D(r ) I(r) I(x )
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Hence, conditions (a) and (b) in (22) are met by r® when T = 1° , and

r° is a local majority equilibrium with respect to To . Q.E.D.

Thus, although the correspondence g is net in general upper

semicontinuous, it nevertheless does have a certain continuity property as
expressed in the above lemma. Lemma 4 establishes a monotonicity property

of the mapping % .

Lemma 4. The supremum local majority equilibrium tax rate xu(T) is mono-

tonically increasing in = .

Proof. Let T' > T and for notational simplicity denote xu(T) by r .
If r =0 then clearly xu(T') 2 r . Suppose, then, that r > 0 . Denoting

£ by T for any set B and recalling that the set of firms is denoted
keB B

by E§ and the set of households by "M ; we have

Tv({(t=_,% v+ T v (7)
D(r) k Jnp(r) k RND(r) k

=% vk(*) + T wAT), using (21).
3 WND{(r)

But the jth hougehold’s share of the total voting gtrength of all house-

T,
holds is fixed at _HJ_— > independent of the tax rate determining each
=T
=1

unit's voting gtrength in the whole body, and this is true for all § ¢ N .

1t follows that for any group of firms and households Bc Ju H
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b vk(T)

Bgﬁ; o y(B) for all T ¢ T, with the fraction 7 depending only on
k

the set B . Thus, Tv™)=Sv(M)+ 7. Sv. (r) with ¥. = r(D(r)) .
D(r) ¥ gk 0 'k 0

= ¥+ (1=7,)T v, (T) since T v. (T)+T v (T)=1.
0 0 SL k E; k 0y k

> %0 + (1= 70)§ vk('r’) because, as noted
earlier, 15 vk(f) increases and T Vk(T) decreages as * increases. But

%o + (1= 70)5 vk('r') = gvk('r’) + 70%—\11((7“) = D(S';.)vk('r") from (21),

M

E%vk(T) +?E_vk(7) 1 , and the fact that 70 = ¥(D(r}) depends only on

D(r) and not on T . Therefore, b2 vk(7)2> T vk(T') .
D(r) D(r)
Suppose 1 > xu(T“) . Then result (iv) of Theorem 2 implies

7 vk(T') > .5, and hence T vk(f) > T
D(r) keD{r) keD(r)

vk('r“) > .5 ., In thig

cagse r fails to meet condition (a) of (22), and is mot a local majority
equilibrium with respect to T . But this contradicts result (ii) of Theorem

2. Hence we must have xu(T‘) 2r, and thug ' > v implies

xu('r') 2 xu(‘r) : xu(‘r) is monotonically increasing in T . Q.E.D.

With these definitions and preliminary results in hand; we can now
turn to the question of the existence and nature of local superequilibria
in the Genogsenschaften model, The results to be establighed comprise the

following theorem:
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Theorem 3.
(i) Under the assumptions of Section 2 and the further assumption

(19), there exists a local superequilibrium, 'r+ .

{(i1) A sufficient condition for the existence of a positive local
superequilibrium T+ >0 1isg that xu(T) > T for some feasible
TeT.

(iii) A sufficient condition for the existence of a positive local
superequilibrium is that for each household j ¢ H  there be
a & >0 such that any 7' in the interval (O, bj) is

h|
strictly preferred to T =0 by household j and the house-

n m
holds control the board at T =0, that is T Fj > ¥ Gi(O) ;

j=1 i=1

Proof. It will be convenient to prove (ii) first,

(ii) We must show that if xu(f) >t for some T eT , there exists
a strictly positive local superequilibrium. Let - sup{T ¢ T|x" (1) > 7} .
Clearly, there exists a monotonically increasing sequence (Tv) such that
(Tv) -+ f+ and xu(Tv) > for all v . Once again, denote xu(T“) by

x° . From Lemma 4, xu(T) is monotonically increasing im T so that

(xv) is a bounded monotonic sequence. Hence, it converges to some limit

i+ , and from Lemma 3, k+ is a local majority equilibrium with respect

to 7o x+ 3 g(f*) . Moreover x° > T for all v in the sequence implies

+ .
that x 27T .

In fact, i+ = f+ . Suppose the contrary, namely, i+ > f+ . Define
o =% - >0 and let F=1 + %,_ With ¥ > 1 , Lemma 4 implies
+
xu(;) 2 xu(f+) .+ Since k+ e §(++) implies xu(++) 2x , we have
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x"(T) 2 x| . Therefore, x® -F> % - F=xt -+ g) = g >0 .

Then we have T > f+ and xu(*) >7F ;» contradicting the definition of f+ .
Hence, x+ = f+ » and we have established the existence of a positive tax
rate, namely T+ » such that Tt iz a local majority equilibrium when voting
strengths are determined by T+ « Thusg, t is a positive local superequi-
librium,

(1) A local superequilibrium (not necessarily positive) must always
exist. Given the above proof of (ii), the only case remaining has x (T) <
for all T eT . But since 0 e T , thig means xu(O) =0 and 0 \{ig
then a local superequilibrium tax rate,

(iii) From (20) and the hypothesis of (iii), it is clear that

n
b Fj
I1(0) =&++. Thusg, T v, (D) = ii;——=> «3 because of the assumption that
1(0) k J{0) .
n m
b Pj > Gi(O) + Hence, T =0 does not satisfy condition (b) of (22)
j=1 i=1

for the distribution of votes vk(O) « Since it follows from Theorem 2

that there exists a local majority equilibrium for any 7 ¢ T , x“(O) >0,

and the condition of (ii) of Theorem 3 is satisfied for T =0 . Q.E.D.1

lIt might be noted that while Theorem 1 for the existence of a global super-
equilibrium wag provéd by meansg of a familiar result, the Kakutani fixed-
point theorem, it could instead have been established using the approach
of Theorem 3.



53

5. Jwmplicationg of the Results

The existence theorems of Sectionsg 3 and 4 ghed light on the operation
of the Genoggengchaften. First, the theorems demonstrate that only very
mild conditiong are needed to ensure the existence of a local superequilibrium,
Of course, to ensure the existence of a global superequilibrium, one needs
further assumptions--ones that ensure single-peakedness of consumer household
and firm preferences over tax rates--and these are more restrictive. The
theorems not only demonstrate the existence of superequilibria, but they
also show how a positive superequilibrium tax rate can arise. Despite the
fact that votes are distributed in proportion to how much each member "breaks
the law"--the biggest polluters receiving the most votes--there exist equi-
librium positions for the system in which an "effective law" exists, that
is, in which the tax rate is positive. Moreover, as Figures 6b and 6¢ illusg-
trate, the characteristics of the firms, the households, and the treatment
technology available to the genoggengchaft can admit a positive tax rate as
a superequilibrium even if a zero tax rate--and hence no waste clean-up--
is also a superequilibrium,

Second, the theorems demonatrate that positive tax rates can
emerge as superequilibria, and provide sufficient conditions for this
type of superequilibrium to exist. Indeed, result (1iil) of Theorem 1 pro-
vides a condition under which gll global superequilibrium tax rates are
positive. And, with a little further work--but no further assumptiong-=-

part (iii) of Theorem 3 could be strengthened to show that under the



54

condition given there; all local superequilibrium tax rates are positivenl

In viewing how successful the Ruhr area Genosgengchaften have been

in providing water suitable for the needs of households as well as mineg

and factories, it is interesting to note how ingtitutional features of several
of the river associations geem aimed at achieving the vote-distribution con~
dition in Theorems 1(iii) and 3(iii). Specifically, these sufficient con-
ditions require that the households contrel the board when votes

are based on the zero-tax effluents (that is, when the firms' power is greatest):

m n
$G(0)< TT, .
=1 1 =11

Compare this with the Lippeverband's requirement that
mining companies must not have more than 40% of all votes in the Genersl
Assembly,2 And; while the model presented here has abstracted from the
question of upstream versus downstream interests, it is reasonable to identify
upstream groups as low-tax preferrers and downstream groups as high-tax
preferrers. Hence, the Niersverband's by-laws giving downstream interests

a bloc of 75 votes before the remaining 225 votes in the association are

distributed according to the size of members' contri‘butions3 alsc resemble

lThe additional work involves proving results analogous to (ii) and {(iv)
of Theorem 2 for xL(T) = inf{x e €{t)} . An argument analogous to that

uged in proving Lemma &4 then shows that xL(T) is monotonically increasing
in T . Since the proof of {iii) of Theorem 3 shows that zero is not a
local majority equilibrium tax rate with respect to T =0, we have

xL(O) >0 and xL(T) >0 forall v e¢T . Hence, all local superequilibria
will have positive tax rates.

2Section 10 Paragraph 8 of the Act egtablishing the Lippeverband, 19 January
1926, as cited in a document provided by W.A. Irwin which describes the rep-
regentation system of the Lippeverband.

3Irwin, op.cit., p. 54.
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an effort to attain the real-world amalogue of our zero-tax vote~distribution
condition: the households have more votes than the firms when T =0 .
Third, it is interesting to compare the water-quality standard the
Genoggengchaften voting procedure yields with the standard that emerges
under other voting mechanisms. We restrict ourselves to some comparisons
of the Genoggengchafter approach with simple majority voting. To simplify
matters, suppose that the single-peakedness condition is met (so that a
global superequilibrium existz for the Genogsenschaften method), and also
suppogse that the number of decisionmakers is odd: mtn 1is odd. Under these
conditions, it follows from Black's work that simple majority voting will
yield the median most-preferred tax rate as the unique voting equilibrium,
Obviougly, if there are more firms than communities1 (m >n), simple
majority rule will lead to a zero tax rate. In thig case, the water-quality

standard in the Genossenschaften global superequilibrium must be at least

as high as that under simple majority rule. If, moreover, one of the suffi~
cient conditions in Theorem 1 is met, then the Genossenschaften method will
definitely lead to higher water quality as its G.S, will have *° >0 .

On the other hand; if communities outnumber firms (n >m) , the
conclugion is less clear, First, it 1s obvious that for simple majority
voting to yield a positive tax rate, the number of communities with zero as

their most-preferred tax rate (T?) must be strictly less than E%E . If

Lihile the basic decisionmaking units in our model are firms and hougeholds,
the basic agents in the Genogsengchaften are, as noted in Section 1, firms
and communitieg. Hence we frame this comparison--where the relative numbers
of different types of agents is critical--in terms of the real decisionmaking
unitg: firms and communities.
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n-m
more than S communities prefer zero to any other tax rate, the discussion

of the m > n case applies again. Consgider the case where the number of

communities with T; =0 1is strictly less than E%E and, for simplicity,

suppose that each community's most-preferred tax rate is positive, If com-
munities are indexed in order of increasing mogt-preferred tax rate, the
simple majority voting equilibrium will be the 1% of the community with

k|
. n-mtl
index j = 5 + This tex rate may be lower or higher than the global

superequilibrium tax rate for the genossenschaft.

For example, if the firmg control the board when voting strengths
are determined by T =0, and if there does not exist a G.S. with a posi-
tive tax rate, as in Figure 6a, then clearly simple majority voting leads
to a higher tax rate and higher water quality than does the genossenschaft
rule. On the other hand, suppose the following circumstanceg exist:
(a) n=mtl ; (b) the coomunity with index 1 pollutes very little relative

r,

to any other community so that is much smaller than % ;3 {e) the

=TT

g=1 1
most-preferred tax rate of community 1, TT s is very low relative to the
desiregs of the other communities; and (d) the communities control the board

when votes are determined by the zero-tax effluent levels, In this case;

the minimum value for a global majority equilibrium at T = 0 1ig greater

than or equal to TT .« But then, by the results of Theorem 1, the global

superequilibrium tax rate will be greater than or equal to Ti , and if

N

1
LT,
=17

is small enough, the global superequilibrium will definitely have
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™ > Tf » The genossenschaft“s water quality standard S(1) will be superior
to that produced by gimple majority voting S(TT) . More generally, whether
water quality is higher under simple majority voting or under gencssengchaft

voting depends on all the characteristics of the region involved: the

m
G(tT) = T Gi(T) function (specifically, the magnitude of G'(T) for T ¢ T ),
i=1

the utility functions of the communities, the waste digcharges of the com-
n

munities (specifically, the magnitude of ¥ Fj relative to G({T) at various
i=1

valuges of T ¢ T and the importance of the different communities in the

r
conmunity voting bloc, as measured by ‘j;j“- for each 3 ), and the treat-
=
ment technology of the genossenschaft (as it affects S(T) and hence the
mogt-preferred tax rates of the various communities.

Finally, our analysis of the Genossenschaften produces some interesting
implications for the effect of improvements in the association's treatment
technology. We restrict our attention to the model in Section 3 for which
a global superequilibrium exists. Consider a change in the pollution tech-
nology that increases the amount of waste removed for each positive level
of expenditure but iz still marked by decreasing or constant returns to
scale. The genosgenschaft now possesses a technology K = a(E) with
a(E) > @(E) for all E >0 butc 6”(E) <0 . As a result, at each positive
tax rate T for which S{r) > 0, there is now less untreated waste than
there was under the old technology: g(f} < §{t)y for all T >0 such that
S(T) > 0 . The best water quality standard available for any given positive

tax rate has improved.
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This change has no effect on the distribution of votes for any given

tax rate T . When tax rate T prevails, the ith firm still has the

G, (T)

fraction ;&T) of the total vote and the jth household still has the
i,

fraction D) of the total vote, and Tj R Gi(T) , and hence J(T)

are the same as before, Furthermore, the improvement in techmology does
not alter firms' tax-rate preferences. They remain single-peaked with the
peak at T =0 , Lastly, the technological change maintains the convexity

of the opportunity set A, facing the jth household, and this is true

i
for all j =1, ..., n . Hence, each household's tax-rate preferences remain
single-peaked.

What does change is the tax rate at which each household's preference
ordering reaches its peak. One illustration of the change effected by tech-
nological improvement is presented in Figure 9. The jth household’s pre-
improvement and post~improvement opportunity sets are derived and its optimal
positions in the two gituations are shown. The symbols without carets and
the solid curves indicate the pre-technological improvement situation; the
symbols with carets and the dashed curves show the situation after the change,
In the case shown in Figure 9, the household's optimum after the technological
change shows a higher water quality standard than before the improvement
(§B < SB) and a higher level of consumption than in the preimprovement

AB B -_—
> . Si C, =Y, -1, and Y, and T, are fixed
situation (Gj Cj) nce 3 5 3 3 3 ,

the higher level of consumption in the new optimum means that the household's
most-preferred tax rate has decreased: ?; < T; as the figure shows.
But Figure 9 presents only one possible effect of techmological change.

The improvement may lead to an increase in a household’s most-preferred tax
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The Position of the j Household Before and After
The Technological Change
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FIGURE 10

Another Example of the Effect of Technological Change
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rate. This possibility is illustrated in Figure 10, where only the first
quadrant of our usual four-quadrant diagram is shown., The technological
improvement is reflected in the éxpaneion of the household's opportunity
set from the striped area to the striped area plus the shaded area. For
this household, the change shown leads to an improvement in itg optimal

water-quality standard (§B < SB) but a decreage in its optimal level of

consumption (Eg < C?) . Since the hougehold's gross income and its waste
dischange are fiied, and since Cj = ?3 - TFj , this corresponds to an
increage in the hougehold's most~preferred tax rate.

The effect technological improvement has on the global superequi-
librium tax rate(s) depends on how each housgehold's mogt-preferred tax rate
changes as a result of the improvement and on the weight each household
has within the househald voting bloc. The G.S. tax rate(s) may rise or
fall. Consider the two extreme cases. First, suppose that each hougehold
is like the household in Figure 10 so that the technological progress increases
each household's most-preferred tax rate. The net result is that for every
TeT with 0 < tL(T) < Tm s tL(?) increases and for every T ¢ T with
0 < tU(T) < Tm , tU(T) increases.l Hence, except for the part (if any)
of the graph lying along the horizontal axis and the part (if any) of the
graph coincident with the horizontal line drawn at T the entire graph
of the matting ¢ : T =T isg shifted upward, ag shown in Figures lla and
11b. In each case, the original situation is shown by the solid lines while

the situation after technological progress occurs is depicted by the broken

lines.

1Recall that tL(¢) is the minimum g.m.e. with regpect to T and tU(T)
ig the maximum g.m.e. with respect to T .
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The Effect of Technological Change When All Households
Are as in Figure 10

In Figure 1lla; the original global superequilibrium tax rates were
0, Tal 2 Ta2 2 Ta3 v and 'ra4 . After the technological improvement,
0, Tal and T,3 are gtill G.S5. tax rateg but T2 and T, Aare not,
The latter two are replaced by ?a2 > Ta2 and ?a4 > Tale * Technical change
might reduce the number of global superequilibria. For example, if the
graph of #(T) had shifted even further upward while at the same time the
difference between tU(TaB) and tL(Ta3) had been reduced sufficiently,
Ta3 would not be a G.S. effluent charge under the new technology. Figure
11b shows just the opposite situation. Technological progress creates two
pogitive global superequilibrium tax rates $b1 and $b2 whereas T = 0

wag the only G.S. before the improvement. Whether the number of global

superequilibria increases, decreases, or remains the same when technology
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changes; so long as each household's gituation is similar to that in Figure
10, one general result obtains., Namely, the improvement in the treatwment
technology increases or leaves unchanged the minimum and maximum global
superequilibrium tax rates. The minimum ig left unchanged only if it was
originally zero, and the maximum is left unchanged if and only if it was
originally equal to the maximum value in T .

Turning to the other extreme case, assume that all households resemble
the one in Figure 9. Technological change of the type shown there reduces
the most-preferred tax rate of every hougehold. The net result is that for
every feagible 1 such that 0 < tL(T) < T2 tL(T) decreases, and for
every T e T such that 0 < tU(T) < Tm s tU(T) decreases. If T =0
is a global majority equilibrium with respect to any T under the original
technology, it is a g.m.e. with respect to that T under the new, improved
technology. On the other hand, the new global majority equilibria for tax
rates in the interval (if there 1s one) for which Tm is the original g.m.e.
depend on exactly how the hougeholds' most-preferred tax rates change and
on each household's voting strength in the housgehold bloc,

Figures 12a and 12b illugtrate two possible situations resulting from
technological change when all hougeholdsg are like the one in Figure 9. Once
again, the original conditions generate the solid-line graphs while the post-
improvement conditions generate the broken-=line graphs. In Figure 12a, the
original global superequilibrium tax rates are O , T’ Tz T ?
and Tt * The technical change leaves O , Ton and Ty @8 G.S. rates
but it replaces T and Tk by ?QQ < Top and $o2 < T ? respectively.

Thig illustrateg the general result that obtains when all households are
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The Effect of Technological Change When All Hougeholds
Are as in Figure 9

positioned as in Figure 9, -The improvement in the treatment technology de-
creégeg or leaves unchanged the minimum and maximum global superequilibrium
tax rates, with no change tasking place in the minimum if and only if it was
zero originally, and no change in the maximum only if it was originally the
maximuem value in T , Tm N

As was the cage when Figure 10 described each hougehold's position,
the technological progress may increase the number of global superequilibria.
Thig would occur, for example, if the original &(T) graph in Figure 12a
had another “step" lying totally above the 45° line. The shifting downward
of the graph might, then, generate a new G.S. on this 'step.'

What creates a problem, however, for those concerned with water quality

is the pogsibility that when the households are like thoge in Figure 9,
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technological progress in treating waste can reduce the number of global super-
equilibrium tax rates and lead to a lowering of water quality. The potential
difficulties are illustrated by Figure 12b, If the vote were taken before
the technological improvement in treating waste, there would exigt two posi-
tive global superequilibrium tax rateé: Tﬁl and TBZ + But after techno-
logical progress has altered each household's opportunity set and decreased
each one's mogt-preferred tax rate, the only G.S. tax rate is zero. There

is no treatment of waste discharges, and firm waste emissions are at their
maximum levels. Hence, under the circumgtances shown in Figure 12b, the
Genoggengchaften voting mechanism translates an increased ability to clean
up waste for any given positive expenditure level into the lowest possible

water quality standard: S(0) ,
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