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SECTION 1

INTRODUCTION®

Traditionally economists have relied on time series data in the
estimation and testing of economic models. Such series are usually short
and are frequently highly collinear. This can lead to imprecisely esti-
mated models and render futile the testing process. In response, the
econometrician can abandon his attempts to decide subtle questions, or
he can resort to sources of empirical evidence other than time series
data,

Cross-section data provide alternative sources of information
since they typically contain more observations than time series and are
less likely to be collinear. Many economic models, however, specify
dynamic behavior over time as a part of the model, see, for example,
Griliches [5], and Nerlove [13], and, therefore, cross-section data by
themselves are inadequate. Perhaps partly in response to this difficulty,
data consisting of time-series of cross-sections are becoming more common

so that some past history is available for each unit of observation in

*I would like to thank Professors David Grether, Joseph Kadane, and Marc
Nerlove for their generous assistance and encouragement. Portionms of

this research were completed while I was a research fellow at the Brookings
Institution. Suppert was also received from the National Science Founda-
tion and from the Ford Foundation. Mrs. Glena Ames did a superb job of
typing.



the cross-section. The Current Population Survey sample of the U.S.
Bureau of the Census [23] and the New Jersey Negative Income Tax Ex-
periment data [17] are typical examples. Time series of cross-sections
can also be appropriate in models which are not dynamic as & means of
increasing the number of degrees of freedom.

The additional complexity of this type of data requires care in
the specification of the model under investigation, however, especially
the assumptions made about the nature of the random disturbances in the
model,

This paper analytically investigates several estimators of a single
equation model containing the lagged value of the dependent variable as

an explanatory variable., Suppose

yit - yit'].a + xitB +au1t ¥ 1 - 1) Loy N t = 1, Ty T (1-1)

where Yie is the observation on unit i at time ¢t ; is the

yit--l

observation on unit i at time ¢t-1 ; xit is a 1xk vector of exo-

genous variables, and ug is a random, unobserved, normally distributed

t

disturbance term with zero mean and variance Euit =1 . o is a constant

used to achieve the variance normalization of u @ is a fixed scalar,

it
and P is a Ikxl comstant vector of coefficients, lThere are N obser-
vations in each cross-section and there are T cross-sections. Typically
N is much larger than T . T 1is assumed to be at least 2.

Some account must be taken of the structure of the sample in con-

sidering the effects of omitted explanatory variables and measurement

errors, which constitute the error term in the equation. It is reasonable



to assume that gome omitted factors are associated with the unit of ob-
servation and persist over time while other factors are assoclated with

a time period and affect all of the units of observation to some degree.
These omitted effecta may be regarded as unknown constants or as random
effects whose joint distribution is only incompletely known. The first
approach leads to the addition of dummy variables to equation (1), one
variable for each group of omitted effects; the second leads to a variance-
components model for the errors in which the disturbance term u is

agssumed to be the sum of several independent random variables each of

which represents a gset of omitted effects. Thus
w, =ug b T b, (1-2)

where By 2 T and v, are independent random variables each with
m@an zero and with variances az R oi , and a: ;, respectively. If
the model-builder's interest is primarily in identifying, say, the indi-
vidual effects associated with each unit over time, then a dummy variable
approach might be appropriate but if his interest is, rather, in the entire
population of units from which his sample is drawn, then the variance-
components approach might be preferable (see Scheffé [19, 20]). Por
predicting Yie for a time beyond the sample period, dummy variables

are appealing, but for predicting Yie for a unit not in the original
sample, this method clearly cannot be used while the variance-components
method is applicable.

The question of which specification to use might be unimpertant

if both specifications led to similar estimates of the interesting



coefficients, but this is not necessarily the case. Balestra and Nerlove
[4) in estimating a demand function and Nerlove [14, 15] in Monte Cearlo
studies found that the choice of the specification made a significant
difference in the estimated coefficients,

The estimation problem in the variance-components model when the
relationship is dynamic is more difficult than for the classical regres-
sion model. Ordinary Least Squares applied to equation (1) no longer
has the optimal properties it has in the classical case. If Vic-1 Vvere
not & regressor, Ordinary Least Squares would be consistent but not effi-
cient (see Theil [21]). 1If Yie-1 appeared in the regression but the
covariance matrix of the disturbances were an identity matrix, Ordinary
Least Squares would be biased but consistent and efficient (see Hurwicz
[6], and Johnston [7]). However, if both complications occur together,
they reinforce each other and Ordinary Least Squares is inconsistent (see
Johnston [7]). This is not surprising since an important agssumption in
the use of Ordinary Least Squares is that the regressions in equation (1)
are uncorrelated with the error terms in the.sang period and Yie-1

contains u which will be correlated with u leading to correla-

it-1 it

tion between Yie-1 and u The finite-sample properties of Ordinary

it *
Least Squares in this case have not previously been analyzed analytically
in the literature, but it is clear from the large-sample asymptotic pro-
perties and Monte Carlo studies that this estimator is unsatisfactory,
and alternatives must be found.

The estimators which have baen considered in the literature as

alternatives to Ordinary Least Squares in estimating equation (1) and



similar specifications are of four types: (1) Generalized Least Squaras
estimates using & known or consistently estimated covariance matrix for

the errors; (2) Maximum Likelihood procedures or procedures which are
intended to be close approximations to Maximum Likelihood; (3) Instrumental
Variables estimation; and (4) estimators which knowingly misspecify the
mixed-effects model of equation (1) as a fixed-effects model, say, with
dummy variables and apply an appropriate estimation technique. Combina-
tions of these procedures such as using methods of the third or fourth
types to estimate consistently the covariance matrix and applying a method
of the first type using this estimate have also been conasidered.

Maddala [11] considered Generalized Least Squares (GLS) with a
consistently estimated covariance matrix for am equation with a lagged
dependent variable and found it asymptotically less efficient than if
the covariance matrix were known, regardless of the way the covariance
matrix is estimated. He shows that for equation (1), iterating the esti-
mation process between estimates of the covariance matrix and estimates
“of the parameters, which produces new estimates of the covariance matrix,
i3 not equivalent to the Maximum Likelihood method. Amemiys and Fuller
[2] also considered this problem. Amemiya [1] found the large-sample
asymptotic distribution for GLS with a consistently estimated covariance
matrix, for the Maximum Likelihood estimater (ML) and a misspecification
model of the fourth type listed above. All three are found to be asymp-
totically equivalent as N and T increase to infinity.

Wallace and Hussain [24] consider the estimation problem when the

lagged dependent variable is absent and the covariance matrix is estimated



with OLS using a variance-components model and using a fixed-effects model,
They find that the two methods are asymptotically equivalent. This re-
sult is of doubtful use, however, when Yip-1 OcCours in the equation,
since the addition of this complication may drastically affect the pro-
perties of the estimators.

The results in this literature have two shortcomings. First, they
fail to find distinctions among estimators which are quite different in
approach. This suggests that the asymptotic properties of these estima-
tors provide only a gross guide to the behavior of the estimators in
samples of realistic size; therefore, important differences may remain
undetected. A second difficulty is with the very notion of large-sample
asymptotic properties for this problem. The sample can get infinitely
large by increases in either the cross-section size, N s Or the time-
series size, T, or some combination of both. The properties of the
estimators might be thought to depend on the ratio of N to T in finite
samples, but these differences are obscured by the large-sample asymptotic
approach.,

Since the task of determining the exact finite-sampie properties
of the estimators used in this problem is intractable, one must proceed
either by Monte Carlo methods, or by finding some other way of approxi-
wating the distribution of these estimators which will not obscure their
differences.

Nerlove has investigated by Monte Carlo methods the properties of
various estimators of equation (1) using the disturbance specification (2)
with the time effect, T, omitted. In [14] the estimation problem is

considered for the case where equation (1) contains no exogenous variables.



The second paper [15] investigates the case where one exogenous variable
is present but also allows for a constant term. The sample size was
fixed at N =25 and T = 10 . For the two-component model, the covari-
ance matrix of the disturbances depends only on one parameter,
p = G:I(gz +-a:) called the intraclass correlation coefficient., Six
estimators of the medel are considered: (a) Generalized Laast Squares
(GLS) using the true value of p ., (b) Ordinary Least Squares (OLS).
(¢) Ordinary Least Squares applied to equatien (1) but with the addition
of a separate dummy variable for each observation in the cross section
(1LSC). This technique assumes a fixed-effects model and is, therefore,
2 type of specification error. (d) Instrumental Variables (IV) applied
to equation (1) using the only available instrument, the lagged values
of the exogenous variable. (e) "Two-round" estimates (2RC) found by using
an estimate of o obtained from LSC in the GLS estimator. (£} "“Two-round"
estimates (2RI) using as an estimator of p , the value obtained from
IV estimation. (g) Meximum Likelihood (ML) estimation of the relationship
(1) assuming that the initial observations Vio Bare fixed. Each of these
estimators was studied for 120 parameter combinations, but the same exo-
genous variables were used throughout., That study concludes that the
2RC estimator im superior.

Both in terms of relative bias and mean square error,

over a wide range of parameter values, the two-round pro-

cedure, using & value of § estimated from first-round

regressions including individusl constant terms, compares

favorably with all the other estimation techniques in-
veutigated....l

INerlove [15], p. 381,



There are, however, many difficulties with Monte Carlo studies.
Many possible experiments cannot be performed, and generalizations are
hazardous without theoretical results as a guide to what may safely be
inferred., One cannot even be Sure that the crucial parameters of the
problem have been varied. Furthermore, the results of Monte Carlo studies
are often difficult to summarize in a concise way.

The approach adopted in this study is to determine analytically
the approximate bias and mean gquared arror of several of the estimators
which have been discussed where the approximation is8 in terms of the dis-
turbance variance, 02 , rather than in terms of the sample size, which
is the customary approximation. The focus is placed on the maan squared

errors of the estimators since & quadratic loss functfon in g i g) ,
where (:gj) is the estimated vector of coefficients, leads to the choice
of the mean squared error as the appropriate criterion to use in deciding
between two estimators (see Lindgren [10]), The bias calculations may
also be of some interest.

The approximation technique used is due to Chernoff and Kadane and
has previously been used by Kadane to investigate the properties of k-class
estimators of a simultaneous equations system in [8] and [9].

The method is to express the error of the estimator g : g)
as an infinite series in powers of o, the standard deviation of the
disturbance. From this expression the squared error of the estimator
can be found as a series in o . Then expectations are taken term-by

term in these expansions until sufficient accuracy has been achieved.

As the standard error of the disturbance term in the model becomes small,



the accuracy of the approximation improves. As o becomes small, the

fit of the model improves and the regression functiom

Vie = Vie-1® + % P

becomes a better description of the data, Of course, this limiting pro-
cess cannot actually be occurring, unlike the approximations in terms

of the sample size where the sample could be envisioned as actually in-
creasing in size, but this does not prevent the use of the approximation.
How useful the approximate moments of the estimators found with this tech-
nique will be for a particular model will depend to some extent on how
accurate the approximations are for that model, but for comparing alter-
native estimators for a model, it is only necessary that the approximations
rank the estimators correctly, which may occur even if the absolute errors
of the small-gigma asymptotic moments are large.

Ideally, one would otbain the small-sigma asymptotic moments for
all of the eatimators discussed above, but even these asymptotic moments
are difficult to find; therefore, several of the estimators have not been
analyzed. The asymptotic moments are found for the following estimators,
GlS, OLS, LSC, IV, and OLS applied to a misspecified model.

While these results are derived for the two error components model, they
hold for an arbitrary nonsingular covariance matrix for the errors when
certain expectation matrices are recalculated for other covariances.

In particular, they hold for spherical errors and, therefore, as a special
case the approximate bias of QLS due to the presence of a lagged dependent

variable in the regression is found. It is shown that the simple conclusion
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of Johnston that the bias in & is negative when a 18 positive for
an equation with no exogenous variables no longer holds when an exogenous
regressor is introduced. The ligﬁ and magnitude of the bias will depend
on the atatistical properties of the exogenous variables,

The model and set of assumptions to be used throughout this study

are as follows. The equation to be estimated is
Yie = Vie-1® * ®geP + 09y, (1-1)

with error specification

- 1
Uge =My Fvge (1-2)

where By and vip @re independent, normally distributed random errors
with mean zero and constant variances oﬁ and of respectively. Spe-

cifically,

&-Liuj - EVi.\’it - E\Jitht =0 for 1 * j ’ s * t.

Also E“i” =m0 for all 1, jJ, t . o 1is chosen so that Vlr(uit) = 1.

jt
Arrange the sample observations first by individual and then by time

period and define the vectors

Y= (yp Yy +or Typ Yap coor Yap oo0s Tgp voos Tgg)'

'
Ya*© (7101 Y112 2 Yipep 2 YNQ: veey yNT"l) and

U (g, g ees Upm sees Uggy cen uNT)!
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x, = (xllj’ Xjgy v0r Xypy cees Xglp *0 xm,j)' i=1 ..., k

x, 1is the vector of observation on the jth exogenous variable. Dafine

b

the matrix of exogenous variables
X = (xl Xy ees xk) .
Using this notation equation (1) can be written as
y=y_ ,a+XB +ou. (1-3)

The covariance matrix of u 1is

Fuw'mz = I ® O (1-4)

where IN is the NxN identity matrix, & , is the Kroneker product

operator and QA is the TxT matrix

p = O':/(U: + o\z’) is the intraclass correlation coefficient of the dis-

turbance terms. To see (4) observe that
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E

uit“jt =0, 1¢j and

(1-5)

Q
N O EN

Bug Moy =BGy vy )y +ug )=

0’+G’2J 8 = ¢t
v

e

The NTxk matrix X is assumed to be nonstochastic and of full rank,
k¥ and to contain at least one nonconstant variable. Some assumption
must be made about the initial observations on the dependent variable

Yy

o’ it =1, ..., N, Perhaps the most natural assumption would be

that they are stochastic and drawn from the same distribution as the
other observations Yie But this is a conditional distribution depen-
dent on the values of the regressor variables in periods prior to those
included in the sample which are unknown by assumption. A distribution
could be assumed for the exogenous varisbles which could be used to ob-
tain the marginal distribution of the yio's , but this would not be in
the spirit of the model and would violate the assumption that i is
nonlto_chutic.z Therefore, the assumption is made that the initial ob-
servations on the dependent variable are nonstochastic. The results
found below, then, may be taken as conditional on the initial set of
observations on y . T is assumed to be at least two since if T equals
one the sample contains no information en the dynamic relationship. De-
note the set of assumptions just described as 9 . They are summarized

11']. T.b le I.

2If some prior observations on the regressors were available, the uncon-
ditional distribution of the Yio might be approximated from them, at

least if a is small,
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TABLE I
Assumptions (9)
y -Y_]_C!+XB + ou .

X 1is nonstochastic, of full ranmk, k , and contains at least one non-

constant variabile,
E(u|X) = 0 for all X,

u ~ n(0,()) where n(0,n) 1is an NT-dimensional normal distributiom with

mean vector 0 and nonsingular covariance matrix () = IN ® a .

The initial set of observations Yio ? i=1, ..., N 1is nonstochastic.

In Section 2 the GLS estimator is analyzed where the cevariance
matrix is known, As corollaries to that analysis the bias and mean squared
error for OLS are found, Section 3 discussed the problem of specification
error and analyzes the LSC estimator, and Section & treats the IV esti-

mator., The results are summarized in Section 5.



SECTION 2

In this section the properties of Generalized Least Squares (GLS)
are analyzed where the covariance matrix () is assumed to be known.
Of course, () is rarely known and must in practice be estimated, but
GLS 18 still of interest ip itself. If it were not for the presence
of y_, in the model, GLS would be BLUE (see Theil [21]). With y_,
present, however, GLS will be biased and may lack other desirable pro-
perties (see Johnston {7] and Hurwicz [6]).

The analysis is carried out using an arbitrary weighting matrix
g-l in the weighted least-squares estimator. When 2—1 = Q-l the esti-
mator is GLS and when 2-1 = 1, the estimator reduces to 0IS. These
derivations are valid for an arbitrary nonsingular covariance matrix
Q with the modifications described below.

In deriving the small-sigma asymptotic properties of estimators
of this model it is useful to distinguish between the model expressed
in equation (1-3), which includes y_, , and the "reduced form" of the

model in which Y.1 is substituted out of the equation. This is given

by
Lemma 1. The reduced form of equation (1-3) is

y=(W+oV)x+XB +ou

. <a> 2-1)
= (Z +oV") + gu
B
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where W and V are NTxl column vectors

W ("10’ ssey wlr"‘l’ “eey 'W ey wNT-l)'

and

v = (Vlo’ “swy vlT_l’ esay vm, nsey Vm_l)

with elements

t

t=- t
jzla jxijﬁ +C!yio ’ 1 = 1, ey N H Lt = 1, caey T-l
¥ie T
yio » 1-1, s ey N; t-o
and
r
t t-j
ng‘a uij » 1 = 1, seny N ; tw l, LR Y] T_l
Vit -4
k‘o ’ i.‘l,oa-,N; t=0,

72 and V* are NT x k+l matrices

Z=( W X ) and V¥ = ( Vv 0 ).
NTxl NTxk NTxl NTxk
2 is the nonstochastic part of the regressors and V* the sto-
chastic part. It should be noted that W and V correspond to the
fixed and random parts, respectively, of the lagged dependent variable;

not to y itself. The notation is summarized in Table II.
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Proof: The case t = 1 18 different since the definition of V.o differs
from the definition in the general case,

For t =1

Yip = Yyio® + X3P +ouyy

= VigX t KB Fouy,
For t = 2 the result is obviously trua, Assume the result is true for

an arbitrary t = s . Then

Yiesl = Py tXygP Y oUn

- “‘325“"1“115 +ouy,) +alygl + X, B +ouy,

s+l .

+1-§ 8
T a (X, B+ou ) +a
yul i) ij

+1
Yi0

which equals wis+1a + xia+1ﬁ + ﬂiu+1a + oU i1

q.e.d,

The following notation is used in the remainder of this paper.
-1
Let T be an arbitrary symmetric positive definite matrix. ¥ is the
weighting matrix for GLS and will usually be taken as n-l for GLS or

ags 1 for 0LS. Let
Q= 'z ) - =@ g

where a9 is a scalar, 919 is 1xk and 95 is its transpose, and
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4,9 is kxk ., qc is a k+Ilxl column vector and q, is  k+lxk .

Further, let Q* - (qc 0) be a k+l x k+1 matrix. Define Pz as the

projection Z(z'z)'lz' into the space spanned by the columns of 2Z .
Thus Pz is an idempotent and symmetric matrix. Let Si =1 - Pz »
the projection into the space orthogonal to Z . The projection notation

can be generalized as follows, Let P§ be the projection in the metric

defined by %,

- -1 - -
P§ w572y g7 ) g2
PE ig, again, symmetric and idempotent. Let M -z'lz Z'Z-l and
A 1 Q
M = sl M, . Then M, = 3‘1/2p§3'1/2 and H, = 2-1/2322-112 -

' =1, then Hl reduces to Pz . Define also M2 - E-Ichqrz'g-l

and ﬁi - 2-1 - M2 where qr is (qc)' . The following relationship

holds between Ml and Hz

M, = qp, 00 - 32T (2-2)

- -1
- 7 R - e

This follows from observing that

-1 -t
2 0
cr 91 911912 0
q9q = = q11Q = 111 q21q12 (2'3)
92191  Y21%12 | 0 93" g, |
0 0
- qll Q - (2‘4)

o st
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TABLE 11

Definitionsa

Yit - yit_la +xitB +Uuit » 1 = 1, "oy N y T = 1’ “sey T or

y = y.ija+ X 8 +a u
NTx1 Ntxl NTxk kxl1 NTx1

ses D
Q
.
.
-
k=3

Fue' m ) = Iy ® O. where (. «

Y= W + oV where W 1s nonstochastic and VvV 1s stochastie

]
W= (W oo Vi t Vngr ttr wNT-l)

t
V = (vlo’ ss ey vlT-l, caey VNO’ srep Vm_l) »

t t
t-3 t t-j
vw, = Y0 X, B+ay,.; Vv, = Q& “u,,, 1=1, ..., N
it jul i} io it jl ij
| 1, “ray T'I
wio = yiO H Vio = I i1 = 1, sy N

Z = (W X) 1is the nonstochastic part of the regressors and
NTxk+1

v* = (Vv 0 ) is the stochastic part
NTxk+1 NTxl NTxk

C=ruw' =1 ® (pC; + (1-0)C,), c’; =1 ® c,

G =EVW' = Iy @ (o6 + (1-0)02)

a = (ao al az L) T-I)
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TABLE II (continued)

v is an arbitrary symmetric positive definite matrix

91 92
-1 -1 Ix1 Ixk e
Q=@ 2) - - q 1,
921 922 k+lx]  k+lxk
kx1 kxk
Q* = (¢° 0)
?z = z(z'z)'lz' , the projection operator into the space spanned by the

columns of Z .

iz ~1-P

P - e TR N Rl

M, = r'lzqz'w'l , il -l M,

M2 - E-Ich(qc)'z'2-1 - q112-1/2(P§ - P§)2~1/2

d = (dyyy ooy dNT)' , an instrumental variable
D=(d X)

B = (0'2)"}
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where (4) follows from the formula for the inverse of a partitioned

matrix. Using (4) M, can be written as

0 0
M, =q,.5 2| Q- z'y
2 =9 —
0 (x's %)

-1

which is qllz-llz(Pg - P§)2-1/2 . The following convention will be used
on H1 2 Hz , and Q . These symbols appearing without a superscript
refer to an arbitrary % . When it is desired to specify Y, a super-

-1 “l =
bat @0 = (z'a 2yt

script will be used. For example, Q = (z'z"lz)
The analysis for a Generalized Lesast Squares estimator of equation

(1-3) is done for an arbitrary weighting wmatrix 2-1 « As special cases

corresponding to Y =1 and T = () the moments of QLS and the usual

GLS estimator with the correct covariance matrix are found. The estimator

to be analyzed is

<‘§> “lo., O, o1te, vy (2-5)
%

To analyze this estimator it is necessary to find the approximate

error of the estimator, (? - a) s &8s
FI

p-B
91 1
]
Lemma 2. . = Qfoz's u
2 =
+ o2 v* ' Hou - 2's tytqz 'y Tl

1
+ oo [-V* ';:'lzqv*'ﬁlu - v "M, vz D & 'ilu

+2's Wrqz's Wkz's Lul
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l& | Soped . — T -»1 - -
+a [-quv* ulv*v*'ulu + zv*'nlv*v* Myu + qnz's'; v*v*'nlv*qz'r; L

1

1 Llnyd T o *' .-1 o=
+ uzv*v* Mu + 2q,,2' Vv ZQv* Mu

- z'z"lv*v*'uzv*qz'g'lun + OP(GS ) .

1

Proof: Define A as (V*'y ‘z + z'ghlv*)Q and B as v*'v‘lv*q .

Using the definition of the estimator (5), the error of the estimator,

(a : g) ; can be written as
i

% 1,~1 -1 -1
. ) " ol @' +oV* )T (@ + V)] @' +ov* )N (2-6)
'

which is equal to
oQ[I + oA + an)]'l(z' + c-V*')}':-lu . (2-7)

If the inverse matrix [I + o(A + UB)]-I exists, (7) can be approximated

by a sigma-expansion using the formula

(I + UE)-I = I - UE +°2E2 - 03E3 + sse 2 (2-8)

The existence of the inverse matrix is shown by the following argument,
The matrix to be inverted is of the form (D + oF) where D is nen-
stochastic and E contains random terms. D is nonsingular by assump-
tion. Comsider the determinant |D + oE| . This determinant is a
polynomial expression in ¢ and is, therefore, a continuous function
of g . Then since |[D[ $ 0O by assumption, there exists a neighborhood

around g = 0 where |D + oE| 1s also nonzero. Therefore, the desired
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inverse exists for sigme sufficlently small to be in that neighborhood.
It is assumed throughout that sigma satisfies this criterion. The neigh=-
borhood of sigma around zero in which the inverse exists will be random
gince E 18 a random matrix.

Then using formula (8) the error expression (7) can be approxi-

mated as

oQII - oA + o2 (AA-B) + o (BA+AB- AR (2" +o V*')w lu + Op(o‘s) (2-9)

which is, after grouping terms by powers of sigma,

Qfoz's My + o2 [-Az's tu + V' Ly

+ 03[(AAA-B)Z'E-1u - Av*'z-lu] (2-10)

-1

+ 04[(3A+AB-AAA)Z'Z‘ u + (M-B)V*'S-lu]] + Op(c-s) .

To facilitate the proofs to follow, it is convenient to regroup the terms

of (10). cConsider first the terms of order 62 . They are

-1 1

-v*'s 7z v 2y vl + vl - v*'Mu - 2'v " Yyrqz sl L (2-11)

The terms of order 03 are

(v*'s" 1z + 25 Yyt 'z + 2'w vy - v s izt L

} _ . (2-12)
- (s L +2's 1v“)qv’"'s: 1, .

Multiplying (12) out and collecting terms gives



23

-v*'s'lzqv*'ilu - v*'ﬁlv*qz'z'lu - z'z'lv*qv*'ilu
+ 2% ke s ivkqz e (2-13)
The terms of order 04 are, similarly,
v*'g"lv*qv*'ulu + v*'s hyrgz s hyrgz 'y
+ v ' v s vkaz s le + 2ty Ivrgrr s kg e L
- [v*'g‘lzqv*'w'lzqv*'ulu + v*'w'lzqv*'ulv*qz'z'lu
+-v*'u1v*qv*'u1u + v*'nlv*qz'g'lv*qz'v'lu
+ z'z'lv*qv*'z'lzqv*'nlu + Z'E-IV*QV*'MIV*QZ't—lu
+ z'z'lv*Qz'z'lv*Qv*'ulu + z'z'lv*qz'g'lv*qz'z'lv*qz's'lu]
+ v lyqrr s lagvr 'Ly 4 v*'nlv*qv*'z'lu +2'v vt s Lzqvr s
+ 2 vrgrt s lzgvr s+ 2! Ivrgz s vt s
- v*'s gt sl
which reduces to
- v*'ilv*qv*'ilu + v*'ilv*qz'g'lv*qz'g'lu
+ v*'z'lzqv*'ﬁlv*qz'z'lu + z'z'lv*qv*'ﬁlv*qz‘z'lu
+-v*'z'lzqv*'g'lzqv*'ilu + z'g'lv*qv*'z'lzqv*'ﬁlu (2-14)
+ z'g'lv*qz'g'lv*qv*'ﬁlu
1

- 2'v " hrgz 'y tvrqz s T gz s

The second term of (14) is
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v ' vaz's gz 's

- v '§1Vqrz o 1Vqrz T . . (2-15)

Noting that qrz'g-lv is a scalar and, therefore, equals its transpose
gives for (15)

R P A (2-16)

- VM VPV M (2-17)
The third term of (14) is

v ' Lqv M vrz's” L

) 1zq‘:\r'nlvq 2’
- v'ilw*'uzu , (2-18)

taking advantage of the fact that V'M.V is a scalar., Then (18) 1is

1
v MV (2-19)
The fifth term of (14) is
v 'z Lzqvr s Lzt "Mu
- v*'s Zq Sv's Zq ‘v “1“

- 7'y chqrz e 1vv Mju, (2-20)

transposing the scalar V'E'Ich . Then (20) is

L Al 'ilu . (2-21)



25

The seventh term of (l4) can be similarly rewritten

2" lvkqz s~ Lykqur 'ﬁlu
- z'S‘IVqrz IVql v M u

= q,,2 's,:'lv*v*'v:' 1zqv* 'ﬁlu . (2-22)

Rewriting the last term of (l4) gives
-zn" Wz 'y raz s gz ' tu
- -z'y" byt 'sz*qz el (2-23)

Collecting the first term of (10) and expressions (11), (13), and (14)
and using (17), (18), (19), (21), and (23) gives the lemma,

Lemma 2 can be employed to find the bias and mean squared error
for GLS and OLS up to terms of order 56 + The bias is found first for

the estimator with welghting matrix = | as

Theorem 1. Under the set of assumptions (9) and assuming that T is
a positive definite and symmetric matrix the small-sigma asymptotic bias

of the estimator (5) is

()AL e

qu(tr M]_G tr Mlc + 2 tr Mlcﬁlm + 2(tr Elc tr M,C + 2 tr M,GM
+a0Q +tr MG tr M,C + 2 tr M,GM,C

0

] -1 ) ] [ eyl - 1 hoged
+zZ'7 [qn(zcnl(c«:: ) +2C MG + 26 tr M,C +C' tr MG

- zcnzc' -c'tr uzc]z:'lzf} + 0(05)

1772

C
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where C = EuV' and G = EVV' . The NT x NT matrices of expec%:ations
¢ and ¢ are derived in the appendix in Lemmas Al and A3 . It is shown
there that when the disturbances u have the time series of cross-sec-
tions covariance structure described in Table I the expectations are

C=I, ® (pC; + (1-p)C,) where p is the intraclass correlation

coefficient,
’_ T
0 1-ct - ... 1ot
Lo 1a 1-? ... 15!
cl = l-a . . . .
0 10 1 ... 1ot
3 2 T=2 1
0 1 a o ... «
o 0 1 o ... o
C, = | . '

and G = I ® (oG, + (l-p)Gz) where

.

0 0 0 0
. 0 (1-a)2 (1-0)(1-0%) ... oot
G, = 3 i ,
(1-a) . . :

o ot ham a-athHa-e?) ... a-ath?

- A
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and
ro 0 0 .. o [
1 0 az(l-a-z) GB(I-GHZ) . QF(1_Q'2)
Gy = 5 _
a-1 : : . :
-2 . ) i
o Tl oMlaay .. gD 2D,

Defining & as (1 « az oo aT-l)' and Yo 28 (710 Yog *°* yNo),
it can be verified that W = (I, ® cé)xs + ¥, @ a. C, 1s the component
of € due to the nonzero intraclass correlation among the disturbances

and the presence of the lagged dependent variable as a regressor while

02 arises solely from the presence of Yoq - The component matrices

of G, Gl and G2 similarly represent intracorrelation effects and
lagged variable effects, respectively. G 18 the matrix of covariances
among the reduced«form errors in Y. and C 18 the matrix of covariances
between these reduced-form errors and the disturbance terms. C(learly,

both of these matrices depend on the coefficients a and B of the

equation (1-3), G 1is a symmetric matrix, but C 1is not.

Proof: The proof is accomplished by finding the expectations of the terms
in Lemma 2 term by term. Recall that the stochastic elements in that
lemma are V* and u while ﬁl » My Z, Q, and 2-1 are non-
stochastic.

The first term of Lemma 2 has expectation
EoQz's 'u = 002’y Eu = 0 (2-24)

since u {s assumed to have zero mean. The terms of order 02 in the
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lemma are, except for Q which premultiplies all of the terms in the

expression,

v*'ﬁlu - z'z'lv*qz'g'lu . (2-25)

The expectation of (25) is
VM. u
E( 01 > - 25 levgtz 'yl (2-26)

Since V'ﬁiu and qrz'galu are scalars, (26) can be rewritten as

E tr X uy’
(: 1 :) ~2'r 1EVu':.'; Ich
0

which is, using Lemms Al and noting that tr ilc' - tr M,C,

tr ﬁ C
-1, -1
(: 1 :)- 2'v ety 1zqC (2-27)
0

The terms of order 03 in Lemma 2 all have expectation zero since each
one is an odd product of normally distributed random variables with zero
means (see Anderson [3]).

The terus remaining to be evaluated are all of order 54 »  They

are considered one by ome.

- *'_ B,
E(~q V" M,V*V* M u)
tr M;G tr ch + 2 tr H1GH1C
0

- -4y, (2-28)
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using Lemma A9,

The next term of order 54 is ZV*IEIV*V*'M.u which has expec-

2
tation

tr M.G tr M.C + 2 tr M,GM.C
2 1 2 1% (2-29

0

from Lemma A9,

The expectation of the third term is found from Lemma AlQ as
(LD NP~ B e | P PP vl 11, €
EZ's VQV M;V'QZ'T u = 92" [2(‘;!11 + I tr ulc]c T Zq . (2-30)
The expectation of the fourth term is given by Lemma A9 as

. — tr M,G tr M,C + 2 tr M,GM,C
EV¥ MV Mo - . (2-31)
0

The expectation of the next term is given by Lemma All,
[ "1 v -1 el
E2qy,2'E V'V*'x zqv* Hju

- 2qnz'z'1[c tr i'lc + GM,C + c"ﬁlc]x'IZq" . (2-32)

1

The expectation of the last term in Lemma 2 is found from Lemma AlD as
E-z'y Lyt 'uzv*qz w1y
-1 ' ' -1 e
= -2’7 "[26M,C° + C' tr MGl Zq . (2-33)

Having taken all of the necessary expectations, it remains only
to collect the termsg of order 04 » Collecting the terms of order 04

with only the first element nonzero from (28), (29), and (31) gives
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(:qll(tr HlG tr Mlc + 2 tr MIGMIC) + 2(tr HlG tr H20'+ 2 tr HlGH2C)[

+ tr HlC tr HzG + 2 tr MZGHIC (2-34)

0

The remaining terms from (30), (32), and (33) are
1 -1 a ! ' by y - - e
Z'v [q,,(26M,C" + C" tr M;6 + 2¢ tr M;C + 2GM,C + 2C'M,G)
- zcuzc' -Cc' tr Mzc;]s:'lzqc . (2-35)

The terms of order 55 are not shown in Lemma 2, but they would all be
odd products of normally distributed random variables and, therefore,
would have expectation zero. Then combining (24), (27), (34), and (35)
completes the proof of the theorem.

The bias of an estimator may influence the decision of whether
or not to use the estimator, but bias alone is not usually an adequate
criterion by which to judge an estimator; bias functions are not usually
thought to be monotonic functions of bias alone. A more appropriate mea-
sure of the adequacy of an estimator may be its mean squared error matrix.
Theorem 2 gives the small-sigma asymptotic mean squared error of the gen-

eral estimator of formula (5).

Theorem 2. Under assumptions (9) and assuming that 3 is a symmetric
positive definite matrix the small-sigma asymptotic mean squared error

of the estimator given by (5) is
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a-a &-a\
E( . = E(ee’)
B-p/ \B-8/, :

— 2 -_— - -
4 (tr Mlc) + tr HICHIC + tr M]_GM]_Q 0

|
(r2Q + o Q

UZQZ'ﬂ—
0 0

-1 1 by — tor ot g ~t s == by -1 %
z'n [{c+cT)tr M;C + M€ + C'M.CT + 204,C° + GM;0 + OM;G + O tr MG]T "2Q

-1 - - - - - - - -
- Q% 2"y N (cHc")tr M;C + CH,C + c'ulc' + 2culc' +GMy0 + (MG + ( tr MGl 1

[} -1 ] ? ] ]
+lzz [(cm)cru2c+cu2c+cuzc +2cu2c+cnzo+m2c+etrnzg
- g ((C+c')tr M,C + CM,C + C'M,C' + GM.a + OM,6)]n " L21q + 0(®) .

11 1 1 1 1 1

Four of the terms in the mean squared error are contributed by the bias
and the remainder come from the variance. The bias contributes the term
(tr -Mulc)'2 in the first part of the 04 expression, the term

-z's lc'g'lzqc tr ﬁlc and its transpose, and the term z'g-lc'nécz‘lz .
The first term of this theorem is similar to the familiar large-sample
expression for the covariance matrix of this estimator except that the
nonstochastic part of the regressors, Z , occurs in the expression in-

stead of the regressor matrix itself. The next higher order term is,

unfortunately, very lengthy.

Proof: The proof proceeds in a manner similar to the proof of Theorem 1.
First, the squared error of the estimator 1s found and then the expecta-
tion of this expression i1s found term by term.

From Lemma 2 the squared error of the estimator is
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(ee'), = Qfo z's tw's™z

3 en-l 4 - - - - - -
+o 2" u(u'M V- u's Laovt's 1z + (v*'nlu - 2's " *ez 'y tuyu's 1z

+-04[(V*1i1uu'ilv* + Z'E-IV*QZ'ﬁ-luu'z sz*' -lz

- z'z'lv*QZ'z'luu"ﬁlv* - v*'iluu'z'IZQV*'.!:'lz)
(2-36)
+ (-z'g"luu'ﬁlv*qz',s:'1 - 2'v Lua's " lzqv* 'R v*

-1 1o~1

- z' e vrevt Tz + 2t s zqvt ' lagvt 'y

2)

+ (-V*'z'lzqv*'ﬁluu'n'lz - v*'ilv*qz'z'luu'w'lz

. z-g-lv*qv*'ﬁluu't'lz +2'v vrz'y vz 's lua's 121 + op(os) :

Observe that in the terms of order 04 the last set of terms in parentheses
is the tranapose of the preceding parenthesized set of terms and the fourth
04 term is the transpose of the third.

The expectation of the first term of (36) is

EZ S uu 'n 1Z =z'y lﬁ? zZ. (2-37)

The terms of order 03 are all products of normally distributed random
variables each with mean zero; therefore, they all have expectation zero.
The expectation of the first group of terms of order 54 is found from

Lemmag A4, A6, and A5 to be
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1

B[V M uu M V¢ + 2" raz s Lau s T lzqvt 'z

z'y 1v""‘:zz S ’ﬁlv* - y* 'Eluu 'e” 1zqv"* ‘vl
— 2 - -— —_— .-
(tr HIC) + tr Mlmlc + tr Mlmlln 0

0 o

T | ] -1
+2'57 (2L + 6 tr M0) 2
-zl e MC+cMc' + Gn"ln)x'lzq* (2-38)
- g*'z%7l(c tr Elc + cﬁlc + nﬁlc)z' L,

noting that the fourth term is the transpose of the third.
The expectation of the next group of four terms is calculated with

the aid of Lemmas Al5, Al2, Al3, and A7 as

-1

E[-2'S uu'ﬁlv*qz'z'lv* - 2'v Lau's " Lzqv* "N, v*

1

Lou's lzqvt's" Lov+'s™1z)

zZ "53- 1uu 'EIV*QV* 'E- 1Z + Z 'S_’,-

1

A [oﬁ'lc + ciilc +Ctr ilc]x' Lg*

- z'g'l[g tr M,G + 2034-10']&'3”12(2*

S — - -1 )
q,,2'% [oM,6 + CM/C + C tr nlc]z z (2-39)

-1 -1
+2z" [cuzc+0tru2c+m2c:]s: Z.

The expectation of the last set of terms is the transpose of (39).
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With all the necessary expectations in hand it remains only to collect
terms to prove the theorem. The terms of order 02 are given by (37).
The terms of order 04 are given by (38), (39), and the transpose of
(39). ‘The 55 terms are not shown in (36), but they would all involve
odd products of normal variables and, therefore, have zero expectation
as was the case in Theorem 1. This completes the proof of Theorem 2.

In the proofs of Theorems 1 and 2, the only use made of the
variance-components structure of the disturbances was in finding the
expectations matrices N, €, and G . Therefore, the theorems hold
for an arbitrary disturbance structure if (), C, and G are approxi-
mately recalculated. In particular the theorems hold for a three-com-
ponent error model in which a time effect is allowed for as a component
of the error. The theorems generalize so easily because the weighting
matrix, 2—1 » 18 nonstochastic. If the covariance matrix of the dis-
turbances were estimated, then its structure would enter in a more com-
plicated way.

The cases of Theorems 1 and 2 of most interest are for the esti-
mators GLS (£ = Q) and OLS (¥ =I) . These results can be readily
seen from the theorem, but they are written out for completeness. The

GLS corollaries are
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tr EQC ’
Corollary 1 ( > 2Q“< 1 >- 2'a Yo'tz g™
1\ o

m——

~q (tr Mk r Mic + 2 or Wiodle) + 2¢tr ®io tr ¥3c + 2 tr Wiele)
11 1 1 oM 1 2 154
wl-oﬁQQ +trh§Gtr§?C+2trM§Gﬁ’l’c

0

I

+ Z'n-l[q?I(ZGﬁg(C-!-C') + 20" + 26 tr e + ¢’ er Ko
-1 6

- 2(;1-{2’(:' -¢'er H‘;G]n anc'! + 0(c )

Corollary 2: E(ee')GLS - U2Qn

4 (tr ﬁfl'c)2 + tr Mlaflc + tr i?c 0
Xe

0 0

- 2% M (cse)yer e + afle + c'ﬁ‘;’c' + 20’ + cﬁ‘}n + oMl + 0 tr i‘fc]n'lzqﬂ*
QQ*'Z'Q.-I[(CH:')CI‘ i‘i’c + cﬁ?c + c'ﬁ?c' + 2m’4‘fc' + Gifl’n + (ﬂ?c +0tr E‘;G]n-lz

+2'q L (cHeyex M‘;c + affc + c'Mlc’ + ZC'H‘;’C + ol + ol + ¢ tr x;’o

- q,((cc")er wle + cir';’c +c'lc' + cﬁ?c)]n'lz?q +0(c®)

Cc;rollary 2 follows from setting T = (; and noting that

Q20 1m lzqnq and t:rﬁ?(;ﬁ?q-trﬁfc.

The corollaries for QLS can be written using the projection nota-

tion.
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e tr P c
Corollary 3: E<el> = oz < z > - Z'C'Z(qI)c
2 018 0

4 -1
+0 un(z'z)

“tr PZG tr ch -2tr PZGPZC+ 2¢tr PZG tr (PZ-PX)C + 4 tr PzG(Pz-Px)C
+tr (PZ-PX)G tr ch +2tr (Pz-Px)GPzC

0

+ z'{zc'ﬁz(c+c') + zc"i"zc +2G tr "fzc +c'tr cm

- zc(pz-px)c' -c tr(Pz-Px)G]z(qI)c1 + 0(05)

Corollary 4: E(ee')OLS = az(z’z)'l

+ cr‘(‘(z'z)'1

— 2 [ — —
(tr ch) + tr PZCPZC + tr PG 0

A

- z'[(c+c")tr 'Ezc + CP,C + c"i"zc' + 2chc' + GFZQ + Q?zc +0tr cm]qu*

rA

Ix' ' = = 'S At = A1 - = -
Q" Z'[(cHc)tr ch + crzc +C ch + ZCPZC + GPZQ + QPZG + 0O tr PZG]Z

+q,,2'[(cHc")er (e, - ?z - B )C + C(P, - 'i"z - B)C + c'(pZ - ?z - rx)c'

' P - -_ -
+ 2C (Pz Px)c + (‘;(Pz 1’Z PX)Q + Q(Pz P_-P )G

Z X

+6 tr(rz-rx)nlz'r(z'z)'l + 0(36) .

This corollary follows from setting ¥ = I and using the relation-

ship between Hl

and M, givea at the beginning of this section.

A special case of these results may be of some independent interest.

If the cross-section dimension, N, 1is set to one so that the sample

-




37

size is T, all of the cross-section structure of the problem vanishes
and then setting p to zero. Corollary 3 provides an approximate
answer to the question of the bias of OLS due solely to the presence
of the lagged dependent variable as a regressor when the initial obser-
vation Y10 is considered to be fixed.

Hurwicz [6] and Johnston [7] considered the case where there are

no exogenous varlables in the equation
Ve = Wy + 0 (2-40)

or vy = ayt_l + B +ou (2-41)

t t

allowing for a constant term. The Subscript for the cross-section has
been suppressed since it would always be one in this discussion. It was
found that the sign of the bias in the least-squares estimate of o 18
negative if «a > 0 . Hurwicz also calculated the magnitude of the bias:
exactly for sample sizes of two and three, and approximately for T
greater than three. His approximation is good when « 18 near zero.

Corollary 3 can be used to find the asymptotic bias when at least
one nonconstant exogenous variable is present, but it is not useful for
equations (40) or (41). 1In these equations the notion of a small sigma
has no meaning. To see this write the reduced form of (41) with the
normalization Var(ut) = 1, This gives

T t t-1

t -
Yo =m0V, + B o +-ciﬁla ug . (2-42)
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T t
Then Var(yt) = Var (atyo + B C"—1.;.-3—- +ao T at iui>

iml
t
=g Var( % a* iui)
i=l
2t
l -
= crz —3 (2-43)
l -« ¢

since Yo is & fixed constant, This says that a small value of sigma
also means a small amount of variance to be explained and the sigma ap-
proximation i8 not useful. Calculations of the expressions of this sec~
tion suggest that sigma approximations are good when the disturbance
variance is small relative to the variance of the exogenous variables

in the model weightaed by their coefficients., That is, the approximations
are good when the model fits well leaving a relatively small residual
unexplained variance. Equations (40) and (41), however, have no source
of variation independent of the disturbance terms; therefore, the sigma
approximations are uninteresting there.

When a nonconstant exogenous variable is added to the equation,
however, the sigma approximation can be used. In this case the simple
conclusion of Johnston that the bias in & is negative when o 1is
positive no longer holds. The sign and magnitude of the bias will depend
on the statistical properties of the exogenous variables, To see this
consider the terms of order 52 in Corollary 3 under the assumptions
that (i) there is just one nonconstant exogenous variable; (1i) N =1 ;
(1i1) p =0 ; and (iv) the initial observation Yo is zero. Then

Q 1is a two by two matrix and
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Q= ')’ -Al (2-44)

where A = (X'X)(W'W) - (W'x)2 . Recalling that under assumption (iv)

W= CEXB , Corollary 3 can be rewritten as

5 1 L) 2 | - ] t
. (el > .2 (tr Pz°2> 1 <x C,C,CXB°  B'X czczx>< x'x >}
e A 1 ' !
2 OLS 0 X CZCZXB X sz X C2XB

+ 0034) . (2-45)

The trace of ?EC can be further broken dowm.

2
P,C, -% [X'xW'c, - W'XXH'C, - WXWK'C, + W'WEK'C,] (2-46)
using (44). The trace of (46) is
1 [X'xw'Cc,W - W'xw'c
A 2

- ulvy! tore ! _
X = W'EX'CW + W'WX'C,X] . (2-47)

Then substituting céxB for W gives

2
B  p— | F— ' N
A [x'xx C,C,C,% = X C,XX czczx] . (2-48)
Finally, substituting (48) into (45) and noting that tr 02 = 0 gives
the agsymptotic bias of OLS as Corollary 5.
e B2r2(x"0)x"celx - (X'CX)X'C,(C,+C1)X]
1 1 2 272 2 2Y 272
E e = - Z g + 0{c )
2 Jo1s B I (x'x)x'cg X - (x‘czx)zl
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where A = X'XW'W - (W'X)* = Bz(x'xx'czc,",x - (x'czx)z) >0 since A
is the determinant of the positive definite matrix (z'z) .

The signs of the biases in Corollary 5 are ambiguous. The terms
X'x, @'c x)2 , and X'Cc,C!X are nonnegative, but X'C_X and x'c;x

2 272 2

are Indefinite quadratic forms, C2 is clearly indefinite by inspection,
or note that 1its trace is zero and, therefore, its characteristic roots
sum to zero, but it is of rank T-1 which means that it must have charac-

teristic roots of both signs. The square of C, {8 similarly seen to

2
be indefinite. Therefore, the sign of the bias for OLS cannot be deter-
mined without reference to the particular exogenous variable in the re-
gression, even in the special case considered.

It is, perhaps, interesting to note that while the sign of the bias
of B depends on the 8ign of § and on &, the sign of the bias in
Q@ does not depend on the sign of B . In fact, the bias of & does
noet depend on B at all.

If something is known about the behavior of the exogenous variable,
however, more can be said, In particular, suppose there is one exogenous

variable, Xt , which grows geometrically and is one in period zero so

that xt - 7t , t =1, 2 ..., T. Assume for convenlience that
0<|a] <1, a7y, 741 and ar ¢ 1 . Since the bias expression

for 8 1is slightly simpler, attention i8 focused on the bias of B in
order to compute some mmerical results. Several quantities must be

computed. X'X is
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4
,2
2 27+2
2 3 . -
A S A o [ -L——z—z— : (2-49)
- 1- 7
)T
summing the geometric series.
— . — ’—- —T
0 1 « of ... of? 7
0 0 1 o« ... o3 72
’ T 0 0 0 1 q..o“ )
x'czx-(‘r y AEE o
o o . . . 0 1 .
o o0 . . . 0o | yT
2 -1
71 - @t
3 -2
7(1 - (@™

o 7 o 7D

= o7
7 la - @
7T (1 - ay)
0
3 2T+1 2 T2
I y AL _ AT-1,T42 7 7 7
(A, (1+a+(a)+...+(a))
z)'l
1 73_2,2T+1 T-1T+21'(a
- - b (2-50)
1-ar ) 1. 1-Z

o

X'ch must 2lso be found., It is



(r 7

= (7 72

= 711+ 20+ 3@? 4 oo+ 2T+ 2011 + 207 + 3(0)?

i 2
0 0 1 20 32 4 . (r-2)at 3
0 0 0 1 2 3° . (r-3ald
7| )
0o 0 .. 1 20
0 0 .. 0o 1
0 o .. 0 0
" 3 2 -3
Y (1 + 20y + 3(ay)” + ... + (T-2) ()
A+ 207 + 3@ + e + (13T
T
7) 7T 1(1 + 207)
7'.['
0
0
L

2T~-2

+“.+aﬁxmfﬂl+“.+7 .

To sum the terms in (51), recall that the sum

n o, n
giil--(-l-zri

i=1

-l (n+1)1:".l + nrn+1

(1-1)2

Using this formula (51) is

42

(2-51)

(2-52)
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5 71 - D@+ @™ 4 P - -2y @
a-an
£ @DETH + o+ 720 - 2y 4 @) (2-53)
. £ T

2 T-3 T-2
2T a a - *4 - &
(1-a7)2 1_72 7 2(7) +3(7> + ees + (T 2)(.,) + (T 1)<7>

T-4 T-3
+ 7721+ 2(%‘) + e + (r-3)<%) - ('r-z)<%> (2-54)

This expression can be summed in a similar manner to give

Y L i a_ (a)? _/a\T! a)T
xcz- 2 227 y '1‘7 + >
(1 -ar) 1 - (1_2) :
7

: 2T 2 T-2 T-1
i . [¢] _ a (2-55)
+ 3 1~ (T 1)(7> +('1'2)(7>
1 -

Q

iR

The last quantity which must be computed is x'czcéx . This is

1-62T2 q-g?T"3 2. 214 || 2.1 y
o - a2'1'~3 1~ aZT-li a_GZT-S . .a'l'-3 N C!T-l 0 72
1 3 (7 7 ... 70 :
Lo PN Sk B 3 o HgT2 1ot 0
0 0 0 0 o\ T
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’_.. -7
-7+72a+... +7T-laT-2_ (sz-2+72a2'r-3+ +7'r 1 'r)
2 -1 T~ - - -1 T-
YEAY o 47 0] 3. (7a2T 3+72a2T 4+...+7T 1T 1)
2 : :
= 2 (7 7 e 7T) - N
1-¢
-2 - - - -
mT +72aT 3+...+'JrT 1—(7'0:'1'+;\r2czT 1+...+7T 1c:zz)
L-O
-
(2-56)

The product in (56) is the sum of two sets of terms, those involving the
left-hand set of terms in the columm vector and those involving the paren-
thesized terms in the vector. The second part of the product is easily

computed, It is

2 -2
-i-f-l;z- 72a2T'2<1+§+<§> +...+<§> >+73012T-3<1 +§+---
T-2 T=-2
+<g> >+...+7TaT<1+é+...+<é> >
( )"'
T=2
22T2<1+1+...+<CZ!> >
1 a

T-

22'1'2(1-(1) )

- (2-57)
N,
a

The first part of the product in (56) is
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( ™)
? o+ Yo o+ P+ 4 o I
4 -
730 + I + 7'5(1 + ... 4+ 7T+1CIT 3 +
1 4 2 5 6 -
ZJ rat + Yo o+ 7 T e P . (2-58)
1 -0 -
PTal"2 4 T4l T3 | Te2T-h L 2(T-1) +J
.

Taking advantage of the gymmetry of (58), it can be written as the sum

of two geometric series, This gives

2 _ 2T -
12 z 72 +1fa7a [73(1..(7(1)1' 2)+75(1-(7a) )+...+7 (1 701):[

l-¢ 1 -7

which sums to

T=3
- s Tm-z(_(zl>
1 )y _LT+ 2 53 . 2T A 1 s 2-59)

1-a? | 1-4% 1°7@ 1- 92 1-«5

Collecting (57) and (59) gives for X'C.C!X

zz'r2<1-( > 1 2T

+
1- o (_ > il -2 T

T=-3
_ T+1'r-2( _(Z> )
73_7211-7 a 1 p

1-72 1 -1

(2-60)

With these formulas in hand, the asymptotic bias of 0LS can be numerically

evaluated up to terms of order 54 . Table ITI presents the results of



TABLE III. THE APPROXIMATE BIAS OF OLS WITH A GEOMETRICALLY GROWING EXOGENOUS VARTIABLE

B-llo, 02-05

T = 10 T = 20 T = 30 T = 40

.9 1.05 1.15 .9 1.05 1.15 .9 1,05 1.15 .9 1.05 1.15

-.5| .00635 .0135 .00859 | .000539 .00347 ,000368 | .0000653 .00133 .0000225{ .0000079 .000509 00000137

-,3| .00813 .0287 0 . 000898 ,0129 0 .000108 , 00590 0 .0000131 ,00181 0

.1} .,0211 ,105 .180 .00221 .0674 .0412 .000265 ,0455 .00211 . 000059 * %

.31 .0346 .133 .12% .00362 ,0635 .0109 .000433 ,0322 .000686 | .000053 .00917 ,0000263

.5 .0555 .160 .108 .00672 .0712 .00870 | .000802 .0306 .000537 | .000097 .0124 .0000329
.6| .0164 .0833 ,0310 | .00990 ,0855 .00949 | .00122 .0360  .000609 | .000148 .0143 .0000373
.7 * * * .00577 .0783 .00221 | .00200 L0482  ,000722 | .000262 .0195 . 0000506

*Loss of precision in calculation.

9%
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these calculations for several values of alpha and gamma values of .9,
1.05, and 1.15. The resulte are calculated for sample sizes of 10, 20,
30, and 40. Since the bias of ﬁ is, from Corollary 5, proportional to
1/8 and, therefore, the effects of varying beta are obvious, the calcu-~
lations are done for only one value of beta. Beta is fixed at one and
62 is taken to be .5.

The first fact which can be observed from the table {s that the
bias decreases rapidly with increases in the sample size. By the time
the sample size reaches thirty, the largest bias in the table is 4.8%
and at a sample size of forty the largest bias is 2%. For a sample of
ten observations the bias reaches 167 at o = .3 and 7 = 1,05 and is
18% for ¢ = ,1 and ¥ = 1,15 .,

The effect on the bias of varying gamma can be substantial. For
a sample of size ten and o = .1, the bias varies from 2% to 18% as
gamma varies from .9 to 1.15, For the same alpha and a sample size of
twenty, the size of thebiasat 7 = 1.05 is thirty times the size of the
bias at 7y = ,9 ., 1In mos; cases the largest biases occur at ¥ = 1,05
for all sample sizes and values of alpha.

Az alpha varies from -.5 to .7, the bias generally rises until

about .6 and then in some cases declines again, but the bias always re-

mains positive for the cases calculated, even when alpha is negative.



SECTION 3

The results of the previous gection can be used to find the pro-
perties of OLS under a type of misspecification of the equation estimated.

The true equation is, as before,
Y=y ¢+X8 +ou, Ewm' =q 3-1)
but instead of estimating (1), OLS 18 used on the equation
y=y o+ X8 + 47 + ou (3-2)

where ¢ 18 an NT x S matrix of nonstochastic variables and is assumed
to be of full rank § > 1. It is further assumed that the nonstochastic
component of the right-hand side of (2), (W X ¢) is of rank 1+k+J .

It then follows by the argument used earlier to establish the existence

of the necessary inverse matrix in the estimation of (1) that for suffi-
ciently small sigma the inverse matrix required in the estimation of (2)
exists,

Estimation of (2) corresponds to including variables in the rela-
tionship which do not belong there. One case in which this type of error
arigses is in estimating a variance-components model by regressing, instead,
the corresponding fixed-effects model with dummy variable regressors.

This procedure will be analyzed after the general case of (2) is discussed.
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If this were a classical regression model with nonstochastic regressors
and spherical disturbances, the properties of the migsspecified estimator
would be ciear. The estimator of the true parameters would remain unbiased,
but there would be some loss in efficiency. This case is formally covered
by Theil's analysis of specification error [21, 22] which, however, goes
on to consider the case of variables incorrectly omitted from the list
of regressors. However, where y., @Pppears as a regressor and the dis-
turbances do not satisfy the classical assumptions this analysis no longer
applies. In fact, the misspecified estimator discussed below (LSC) may
do better than the classical procedure.

Penote OLS applied to equation (2) when (1) is the true model as
least Squares under Misspecification (LSM). The asymptotic bias and mean
squared error of LSM will be found from Corollaries 2-3 and 2~4, The

1LSM estimator of (ax B' 7') is

N
a . . -1 :
@' +ov* )2 + ov™) Z' + oV ¢ <z' + oV* >
g - y (3-3)
7 /1M

where the reduced form of Lemma 2-1 has been substituted into the expres-
slon for the estimator, The systematic part of ¥oq 2 W, 18 unchanged
from the original model since equation (1) is still assumed to be the
correct specification. V* also remains the same.

The concern here is with the properties of & and ﬁ ; therefore,
an expression is derived for the error of these estimates alone. Using

the formula for the inverse of a partitioned matrix, the first k+l rows
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of the inverse matrix in (3) can be written as

[z ...ov*‘)i?*(z £V NI - @' o NGl . (3-4)

From (3) and (4) the error of the estimator for (a B8')' 1is
°1 ' V*' - v* -1 —
., =ol(Z" +o )P*(Z +oV¥)] "z + o'v*)P*u . (3-5)

But (5) is just the error of the estimator given by (2-6) with the welghting
matrix g'l taken as 5; + Therefore LSM i8 a GLS estimator of the form
(2-5) using an incorrect weighting matrix. Then Theorems 1 and 2 apply

directly to give the asymptotic bias and mean squared error of LSM as

tr M,C -
Corollary 1 zQ ). 2%c'F zq¢
o | I

o pe

-qll(tr M,G tr M,C + 2 tr HIGHIC + 2 tr MG tr uzc

+09Q + 4 tr HIGHZC + tr M,G tr M,C + 2 tr M,GM,C

. ° i

1 byt t [l o ] -
+2 P*[qz(ZGMI(C-i-C ).+ 20'M;G + 26 tr M,C + C' tr M)
t ' = c 6
- 26M,C c' tr MZG]PdIZq ! +0(@) .

The superscripts on Q and its components, ﬁl and M2 which indicate

that the weighting matrix is ?; are omitted in this corollary and the
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following one tc avoid excessive notatiomal complexity.,

. ' - 2 '_
Corollary 2: ©E(ee )LSH o QZ P*QP*ZQ

r’_ -
- .2 - - - -
J (tr ch) + tr Mlculc + tr MIGHIQ 0
4 .
+o00Q
0 4]
.~ A
- N 1 sz -— 27 [ P t — —
Z'R [(C+c")Er M\C + QM C +CeMCt +20M,C" + My + MG

S Y *
+0tr ulclr*zq
P ' = ~ 13 At g | - -
Q* 2z P*[(c-rc )er M, C + CM,C + C M, C' + ZCM1C + GM]_Q + mlc
+0 tr Mlc;]P*z
"5 ] H ] ]
-fz P*[(c+c 123 Hzc + cxzc + C “2c + zcuzc + Guzn +(H2G + G tr “2“

- — - v~ - - 6
- ' ' '
qll((C+C Jtr ch + CMIC +C HIC + M + QHlG)]P*Z}Q +0(c) .

It is difficult to say much about these corollaries, but if some
structure is imposed on § , further results can be obtained. Ome way
to estimate the variance components model of equation (1) with error
covariance matrix () = Iy ® (piTi; + (1-p)IT) , where i, is & Txl
vector of ones, is to estimate the corresponding fixed effaects model.
That is, to let ¢ = Ie ® 1, be a matrix of dummy variables, ome for

each individual in the cross-section, i.e., =1, 1=3 and is

¥it, §

zero otherwise where ¥ 1s the element of ¢ in column ] and row
td

]

it corresponding to the observation on individual 1 at time ¢ .

Clearly the columns of § span the N-dimensional space of the columns
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of I ® i,ri,i, . Denote this estimator as LSC.

The projection matrix "1"'* is easily computed as

¥ -1 '
L - Q@ DM@, @ 100, @ 191 "1, @ L)

bty
- Ly - I ® = (3-6)

Let 'Z-:?*Z . Then ¥ is

— 1 I
where Zi. =7 Ezi

Therefors, Z'Z 1is the within group sum of squares matrix (WSS) where

the group is the set of T observations on individual i . Then “1

becomes ?*z(z "P'*z)'lz'i* which is BZ ,» the projection on the nonsto-

chastic portion of the regressors of (3-1) where the interindividual

variation has been removed.

Some of the other terms occurring in the bias and mean-squared error

expressions can also be further amalyzed. Let a' = (ao al .2 ‘es aT"]')Il

- - - ' .
Recall that ( = Ig ® (pc, + (1 p)cz) . ¢ i,r(iT a)' ; therefore

BZ(IN ® 01) - I, ® c, as I X i, 1s orthogonal to Z and

1-ab

tr EZ(IN ® ¢;) = NE? - 1_a} . Similarly, since
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G =1 ® (pGy + (1-p)G,) and
G -—L(i - a)(i. - a)'
1 1l-o‘'T T ’
By =1 Gy - Bp)ip - )"

Further note that M, = A q;,(By - By) . To restate Corollary 1
for the case where ¢ = IN ® :I.T consider the terms of order 62 in

that corollary. They a&re, except for the factor @,

trﬁlc == e
-ZPCP2Z 3-7
o 0 4C T2 a-n
-

[/ tr Byl
Iy ® (pC; + (1-p)C,)]
-02< BZN. ! 2 >-’Z'c'2’q°

0

N

which becomes

~ —

Nr-l'aT - (l-p)tr By(I, @ C,)
) 0 1-a pltr By(Ly 2

- (1-0)2' (1, ® )%° | (3-8)

since 7 1is orthogonal to C, and tr C,=0.

1
tr By(I, ® C,) =tr ’2”(1N ® ¢,)Z%
=% (1, ® cz)zq" +r X'@Q, ® ¢,)%q, . (3-9)

Substituting (9) into (8) gives the bias of the LSC estimator as
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Corollary 3:
N - 1-O:T . (1 ' * o ! c ' [
E(,,l) L T - Jo (1=p)[2W'(C5 +C, )Zq~ + tr X'ciZq,]

L) -o% + 000"

2 18C

- (-p)X'cj%e"
(3-10)

where C; = I ® C,

The signs of the biases given by (10) are ambiguous, but the factors
affecting the bias can be seen. The effect of varying p can be seen
from (10). Here @ does not depend on p because the weighting matrix
is fixed. As p becomes larger the terms in p become more important
than those in (1l-p) and when p is near one, the bias will be approxi-

mately - _
o Lt
e 2 1-o
E e =5 0Q
2 0

—

T
1-a
» qu"(“’ - 1-a>
. (3-11)
T >

1-gy
‘lzf‘(T " 1

L

Since 91 is positive (Q 1is positive definite) the sign of
the bias of & will be independent of N and except for an interval
for « near one whose size depends on T, the bias will be positive.

The bias in B will depend also on the sign of q, which is
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a function of the behavior of the exogenous variables and the signs of
@ end B . It can be seen most clearly in the case where p 1is near
one how the different dimensions of the sample, N and T, affect
the properties of the estimator differently even apart from the different
statistical properties which the exogenous variables will have in the
different dimensions. Since adding more observations in the cross-sec-
tion does not compound the interaction between the lagged variable over
time and the disturbance structure, it {8 intuitively reasonable to
expect its effects to be simpler than the time-series effects, which is
clearly the case in expression (13).

When o is different from one, the analysis is more difficult,
The expression (10) contains terms of opposing signs. Consider the

second row of (10)., It is, again ignoring Yo

-(1-p)X'c}Zq°

==L, ® c,c¥ X'y @ cX1q° (3-12)

recalling that W = (g ® Céf!ﬂ +-?0 ® a, czcé is positive semi~
definite which means that Y'(IN ® Czcé)i is positive semidefinite.
The second term of (12) is, however, indefinite since C, was shown
above to be indefinite., The vector qc has a positive first element,
but the other elements could have either sign.

The first row of (10) also contains terms whose effect is ambiguous.
Also, in comparing W' c; 7 with X' c; %, it should be noted that

the first expression may be more sensitive to higher order time correla-

tions among the exogenous variables than the second term. For where
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terms like X' C; ¥ appear in the second expression, the first will
contain instead X' c;z X . 1In computing the second expression more
weight i8 put on cross-products of terms farther apart in time.

It is clear from Corollary 3 that the bias of LSC, as is also the
case for the other estimators, will be significantly affected both by
the values of the parameters of the model and by the statistical proper-
ties of the exogenous variables; the interactions of these factors will
be complex.

The asymptotic mean squared error of LSC follows from Corollary
2 using the relationships

P - -3)P ? = -3)P ¥ .
F = (1-p)F  and P,C = (1-0)P,C

Corollary 4: E(ee')Lsc - cz(l—p)(Z’Z)-l

(tr 'Ezc)z + tr F.zcizc + tr -B-ZGEZC 0

+ 04(2'1)-1

- (1-p)2'{(C}y +C} ")tz ByC + (1-p) (C3ByCy + CF "By’ + 2c3ByCy') + Bg

+ GBy + I tr ByGI%Q*
- (-p)Q*ZT(CG +C3 )t ByC + (1-p)(CoByCh + € By’ + 205" Bych)
+ ByG + GBylY +
0372 [(1-p)(C + 5 Itx (By = By)c + (1-0)(C5(By - B

+ Gy (By - PG + 205(By - BOCE") + (1-p)(G(By - By)
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+ (Bz- Bi-)c) + G tr(PZ— Fi)g

- q,, (1 p)((c*+c* )er ByG + (1- 0) (CHE 2PyCy + C; ch* ) +GP y + ByG) 121 (2'2) y~!

+0(O').

The mean squared errors of GLS and LSC can be compared using
Corcllaries 2-2 and 3-4. The terms of order 32 in these expressions
are g::-z(z'nmlz)-1 and oz(l-p)(z‘az)'l ;s respectively, Q-l can be

written as INQO:I when p $1 where "1 44

(NT - T—~T—(D'J.‘_-T)_p- I, ® 11 ) (see Nerlove [16]). 5* is

( NT - ;i: I ® i i > « The difference between GLS and LSC is reflected

—_— 1
1+ (1-Dp ™ 7

in the difference batween
The two factors are equal when p equals one (but () is singular
at this point). The estimators differ in the way they use the between
group variation in estimating « and P . The LSC estimator uses only
the within group variation while GLS uses both with the relative weights

depending on p and T ; the mean squared errors reflect this difference.

This analysis is carried further in Nerlove [16].



SECTION 4

Since the heart of the difficulty with OIS in the model where
nonspherical disturbances are present and the lagged dependent variable
occurs as a regressor ie the correlation between Y., and the error
vector, an alternative to OLS which attempts to deal directly with this
problem is worth considering. (me could deal with this prohlem by using
an instrumental variable for the lagged dependent variable. The practical
difficulty, of course, is where to find & satisfactory instrument for Y1 -

Some lagged exogenous variable could be used, or perhaps a linear
combination of the lagged variables. The adequacy of such an estimator
will depend on the correlation between the lagged variables and the lagged
endogenous variable and on the autocorrelation of the regressors. There-
fore, statements about the relative desirability of this estimator with-
out reference to thé properties of the regressors should not be expected.

Even in the best of estimation problems the instrumental variables
approach is justified by large-sample-asymptotic properties such as con-
sistency although the estimator may be badly biased in finite samples
(See Sargan [18]).

As was true for the other estimators considered, the theorems
found for IV on the assumption that () = IN @ {1 are valid for models
with an arbitrary nonsingular covariance matrix () if the matrices ¢

and ¢ are appropriately recalculated.
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The relationship to be estimated is, as before,
y=y o+ XB + ou . (4-1)
Suppose that a nonstochastic instrument

d=(d d d d

1
1 1z eer S dop e dpp sens Bun eny dp)

is available for the lagged dependent variable and let D = (d X) .

The instrument 1s assumed to have the properties that
E(u|d) = 0 for all values of d, and (4-2a)
the matrix D'z 18 of full rank. (4-2b) -

Thus d is related to the nonstochastic part of Y.y which is W,

and is not related to V , the atochastic part of Y1 A lagged
vector of an exogenous regressor will satisfy these assumptions in general
(except for the comstant term, of course). The assumptions employed in
the theorems on GLS are also maintained for this estimator., Define H

to be the k+l x k+1 matrix (D'Z)-1 and denote the first column of

H as hc and its first row as hr « The instrumental variables esti-

/\
(“) = [b'(v_, 01 'y . (4-3)
B Iv

Separating the stochastic and nonstochastic parts of y_; into W and

mator (IV) is

v as before gives for the error of the IV estimator
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e (d'(w + oV) a'x d’
e =g u (4~4)
2/ Lx'(w + eV) X'x X'

Iv
=o'z + oD'v¥) 'D'u . (4-5)

For & sufficiently small value of ¢ the inverse matrix in (5)
exists by the same type of argument which guaranteed the existence of
corresponding inverses for the other estimators. Then writing the in-
verse matrix in (5) as H(I + c;-D'V""H)-1 and approximating it by expanding
the inverse term as a power series in ¢ gives an approximate expression

for the error of IV as

1 2
Lemma 1: (: :) = H(cD'u -~ ¢“D'V*ED'u
€2
Iv

+ 6°D'V*HD'V¥D " - o'D'VAHD'V¥ED 'V*ED ') + 0 (o) -

Lemma 1 will be used to find the approximate bias and mean squared error

of IV. The bias is found as

Theorem 1: Under assumptions (9) and 2
el 2 [] 4 ? t I" 6
E{ o = ~{fo"p’' +o h HD'[26S + I tr ¢s]ic'ph  + 0o )
2
1v

where S = DHD' - Py -

The proof proceeds, as in the GLS proof, by taking the expectation

of each term in Lemma 1.
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The expectation of the first term in Lemma 1 is
EclD'u = 0 (4-6)

gince H and D are nonstochastic. The expectation of the term of
order 52 is
Eg2D'V*ED 'y = -o2D'EVH'D'u
1
= -crzD'EVu'Dhr

)
= -o2p'c'Dh" (4-7)

where the second line is valid because hrD'u is a scalar and thus
equals its transpose. The third term of Lemma 1 has zero expectation
since it is an odd product of normal variables each with mean zero.
The last term in Lemma 1 has expectation
o EHD "V*ED'V*HD 'V*HD 'y = - HD'EVAD'VhD'Vh'D'u
1
= - ED'EV*V*'phT niD'V*mD'u . (4-8)
Then by Lemma Al0, (8) is
1 [ ] 1
-ouDp'[26Db” h'D' + T tr GDW® h'D'lc'DHT . (4-9)

1
The expression Dhr h'Dp' can be more informatively expressed as

11 12 '
11P - h,.h D (4-10)

_ 12112
21 22 22" Th;
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hyy hyo

1x1 1xk
where H = R

hyy by,

kxl  kak

Expression (10) equals

1
hy, (DHD' - B.) (4-11)
h,.h
since h,. - ~2212 44 x'py7l,
22" "By,

The term of order 55 are not shown in Lemma 1, but it would clearly
be an odd product of normal variables again and would, therefore, have
expectation zero. Finally, combining (6), (7), and (9) produces the
theorem.

The effect of the intraclass correlation on the bias can ba seen

by rewriting Theorem 1. Considering only the terms of order 02 glves

E 1 - 02" (1, ® c')nhr' +pd" (I, ® (c'-C'))Dhr'l +0@™) (4-12)
e, o DIy @ Gy pD" (Ty 172 @) «
v
'
= -’p'[1y ® (¢} +o(c] = CNIDE" (4-13)

Clearly, in this approximation, the bias changes linearly with
p , but the terms of order g& contribute & factor which depends on
p2 . The matrix in square brackets in (13) is indefinite for any values
of p since each of the components of it is indefinite. There are no
values of ¢ and a for which that matrix is the zero matrix, Therefore,

the bias of the IV estimator will depend on the statistical properties

of both the instrument and the exogenous variables; even the direction
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of the bias is indeterminate.

Expression (13) can be written more explicitly in terms of X,

d, W, and C . It is trivial to show that

-1 ~1
r [ _1 ' wd' d'XX'W| wd' a'x
" <m E‘( m)x] a@w?| S\ Taw)X| W) - 1

Using this, the bias of the IV estimate of O is

=1 -1
2 1L |t _wd' d'mx'w N 4 B dw'
o “dl:a"i [“ (I '&"E)x:[ aw?| P A F I aw)*
4
+ 0(c) . (4-15)

Expression (15) makes clear the way in which the bias depends on
the properties of the variables., The correlations between d and W,
and d and X enter through d'Ww and d'X while serial correlation
properties of d and X enter through d'cd and d'CX with weights
depending on & .

The bias 48 not the appropriate criterion to employ in choosing
an estimator, 80 the mean squared error of the Instrumental Variables

estimator will now be derived.
Theorem 2: Under assumptions (8) and 2, the mean squared error of IV is
E(ee') = oD on'
v
&

+ o HD'{csC + C¢'SC' + (c+¢')tr SC + OSG + GSQ

+ 2¢'sC + G tr SNIpH' + 0(06) .
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Proof: The squared error of the estimator is, from Lemma 1

(ee')Iv - UZHD'uu'DH' - UB(HD'uu'DH'V*'D - HD'V*HD'uu'DH)

+ o™ (D "uu"DR'V* 'DR'V* 'Du ' + HD'V*HD ' v*HD 'v*HD 'uu 'R (4-16)
+ HD'V*ED'uu'DH'V* 'DH') + opoUS) .

The second term of order c4 18 the transpose of the first term,
The proof proceeds by finding the expectation of (16) term by term.

The expectation of the first term of (16) is

2

EUZHD'uu'DH' = ¢“HD'ODH’ . (4~17)

The terms of order 03 have expectation zero since they are odd products

of normal variables. The terms of order cA are evaluated as follows

Eo*HD "wu"pa'v* "DE'V* DR

t 1 f
= 6*ED'[cOh™ B'D'C + C tr Dh® h'D' + QD" h'D'GIDH’ (4~18)
from an application of Lemma A7, The second 04 term is the transpose

of the first, The expectation of the remaining 04 term is found from

Lemma A6 as

EHD'V*ED 'uu'pH 'v* 'DH'

- HD'[ZC'DhthrD'C +¢ tr ph’ h'p'qlnE’ . (4-19)
The terms of order 55 , which &sre not shown in Lemma 1, are odd products

of normal variables and, therefore, have zero expectation. Finally,

collecting (17), (18), and (19) produces the theorem.
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This theorem is considerably simpler than the corresponding theorems
for the other estimators. The first term, cz(n'z)- D'QD(Z'D)-1 , 1s
the same as the large sample approximation of the variance-covariance
matrix of IV for the case where all the regressors are nonstochastic.

The expectations matrices ¢ and G, which arise from the stochastic
part of the reduced form, V , enter in the 54 term.

Theorem 2 suggests a way of choosing which variable or linear com-
bination of variables to use as an instrument for Y.q - Suppose, first,
that Q = I ., Then the best instrument up to terms of order 54 , were
it available, would be W under the criterion of minimum mean squared
error of the estimator. That is, the difference of the mean squared errors
of the IV estimator using an arbitrary instrument and the IV estimator

using W 1is positive semidefinite. For the difference is
crz(n'z)'ln'n(z'n)'1 - »:rz(z'z)"1 . (4-20)
If (20) is to be positive semidefinite, then
1 TS S '
(zD)(DD) (D'Z) - (Z°Z) (4-21)

must be negative semidefinite. But (21) is -z'?Dz which clearly
satisfies that condition. Of course, W cannot be used since it is
unobservable, but that observable variable which i{s most like W should
be used. The IV estimator might be iterated using an estimate of W

as the instrument although there is no guarantee that the iterated esti-

mator would be optimal in finite samples. This would be similar to the

two-round procedures suggested by Nerlove in [15].
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When the covariance matrix » is not an identity matrix the op-
timality of W, even if it were available, i8 no longer clear. 1In
this case inefficiency still rewains, as for OLS, because IV ignores
7 . Then the optimal choice of the instrument will also involve 0 .

Minimizing az(D'Z)-lD'QD(Z'D)-* corresponds to maximizing its inverse
' ) -1 ]
ZD(M'aop) DZ . (4-22)

Let R be the nonsingular matrix for which R'0R = I and let A = RD .
Then (22) becomes Z'RPAR'Z . This expression is maximized for A = R'Z
or D=RIR'. R s the matrix of characteristic vectors of a
transformed by dividing each vector by the square root of its characteristic
value. The characteristic values of ) are 1l-p and 1 + (T-1)p and
the corresponding vectors are given in Nerlove [16]. The optimal instru-
ment vector D 1is etill unobservable because W 1s unknown and because
p 1ia not geﬁerally known. This suggeats that IV will do best when the
instrument chosen is a hybrid of the best "true" IV choice and an appro-
priate choice invelving generalized least squares considerations.

One might be able to do still better in choosing an instrument

vector by congidering the terms of order 54 in Theorem 2, but this

would be difficult to do in practice,.



CONCLUSION

Four estimators have been analyzed in this study by means of small-sigma
asymptotic approximations. The asymptotic bias and mean squared error
have been found for Generalized Least Squares, Ordinary Least Squares,
Least Squares with Constants, and Instrumental Variables. The expres-
sions obtained are in most cases extremely complex and depend impertantly
on the unknown parameters «, B, and p as well as on the statistical
properties of the independent variables. It seema unlikely that strong
conclusions can be drawn about the relative suitability of the various
estimators without explicit consideration of the unknown parameter wvalues,
For a particular problem, if no prior knowledge on the parameters is
available, a consistent estimator could be used to estimate the parameters
and then the mean squared error expressions could be evaluated at these
estimates to choose the best procedure. Whether this would be worth the
computational effort involved is uncertain, particularly since several
estimators which seem intuitively appealing have not been evaluated here
because of the complexity of the expectations which would have to be
analyzed.

Other typee of approximationg were explored for some of these
estimators, such as large and small p expansions and expansions in the

characteristic roots of (3, hut they either gave rise to intractable
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expressions or discarded too much of the expressions and produced unin-
teresting results. The ultimate usefulness of these kinds of expansions
in analyziﬁg the estimation of dynamic relationships requires further
study, but it is clear that the problem is & difficult one. Large-sample
asymptotics, however, do not distinguish among some estimators which may
be quite different in finite samples, and Monte Carlo studies may fail

to adequately explore the appropriate parameter variations. This study
points up the necessity of considering a variety of types of independent
variables before drawing firm conclusions about the choice of an esti-

mator for this problem,
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APFENDIX

This appendix contains the derivations of the lemmae on expectations
used in the body of the thesis. Lemmas Al, A2, and A3 depend on the spe-
cific form of the covariance matrix, (, assumed for the distribution
of the disturbances in the model, and would, therefore, have to be recal-
culated under alternative assumptions on () . The other lemmas depend
only on the normality of the errors and the assumption that they have a
zero mean. That is, they hold for any alternative assumptions about (

if the expectations in Lemmas Al and A3 below are appropriately recalcu-

lated.
Lemma Al: FuV' = ¢ = I ® (pC; + (1-o)c2)
wvhere
0 l-a 1-o 1-oT71
1 0 l'a 1—(12 o 1_a'r-1 0 1 2
cl - T-—a : : : : - 1T[ l-a l'Cl l-a s e 1"'(1
0 1-a l-o? 1-af 1

and
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€= : :
o 0 L] [ ] 0
- p

c1 and C2 are TxT . c1 is the component of € due to the nonzero

intraclass correlation among the errors and the presence of the lagged

dependent variable as a regressor while C2 arises solely from the second

fact.
Proof: — -
“11
“1T
1 N
Euv - E : [vlo LI vlT-l LI ) VNO o e s vNT"].]
“N1
uNT J
— -
0 U Vyp e ull‘vlT_1 vee 0 ... “IIVNT-I
0 .
- E L] -
0 umvll . . . uNTvNT-]-
Eu, v, = Eu : a'-ku i =1 ..., N; =1, ..., N3
it js it o4 jk ! ’ !
s (Al)

-k
- E(Bi +\’.Lt)ks:1a' (uj +ij) 2 t = 1) LA ] T ] 8 = 1) eny Tl‘l
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using the definition of LT Since Wy s Bys Vi o and ik are
assumed to be mutually independent for 1 ,& j and k # t , the expec-
tation (Al) is zero for 1 A j . If 1 =3, (Al) equals
8 s
8=k s~k 2 8-t 2
ENa (g tu g tug) = Y@ o, + {8 > tla o, (A2)
k=l kel
where {s >t} is the indicator function which is equal to 1 if 8 >t

and is zero otherwise., Then, expression (A2) equals

s-1
21 -a s-t 2
GU: 1o +[I2t}a o'“ . (A3)

The first term of (A3) is the appropriate element of oc1 and the second

term belongs to (l-p)c2 .

q.e,d.
Lemma A2: v’ = —0— (7-1 - or +ab)
(1-a)
Proof: BEV'u =E tr V'u = E tr uv'
« Mo (1-1- 01 +ah)
(1-c)
q.e.d.

Lenma A3: EVW' =G = Iq ® (e6; + (1-0)G,) where
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— w——
0 0 LN 3 0
0 (1-)2 (=) (1-a?) ... @-ay1-ath
G, = —1%
L a-ay? | : : ’
o (1" Hy(1-o) cer (1=t hy2
L -l
0 0 0 cee 0
0 a-a? La-af ... oF (1 -a 2y
G, = —=
2 Qe . .
0 aTcl-a'z) a2('1‘-1)(1_a-2('r-1))
No 2 2T

and tr G = 7~ (1-1 - 107 - 20 + 207 + 2™ - o7T)

(1-m?(1-a?)

N(l-

(1-ob)

+ (T-1 - &% + 2Ty .

The matrices G1 and Gz are TxT and represent the intracorrelation

effe;t and the other effects in G as c1 and C2 doin ¢C .
Proof:
0 vnvl1 v11v12 e vllvlr-l 0 v11v21 eon vllvNT-l
0 ‘ .
w' = |, .
O Vgr-1'11 Yar-1V17-1 @ Vape1Y21 vt vNT-lvNT-H
s L
For 1 4 j, Evi.vjt = 0 since Vig apd vjt have no components in

common and the component errors are assumed to be independent, For i1 = J
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8 g~ t tek
EvigVie "E[ T 0 "Gy + vy DI T a7 Ty +vpp)]
jul k=l
s 8- otk = S+t-24
=p(Ta (T a )+ (lp) v a (a4)
j=1 k=1 1=l

where m = min(s,t) since y and y are independent each with expec-

tation zero. Then expression (A4) equals

+ (1-p)x -—%————— . (A5)

The first term of (A5) is the s, t-element of G, and the second term
is the corresponding element of G2 .
q.e.d.
The group of lemmas below are derived from the following result
(see Anderson [3], p. 39). Let xi , 1=1, 2, 3, 4 be random variables

with a joint normal distribution N(O,¥) . Then

BRE R T o1kt ou gy T Ok Mhere

Recall that V¥ = ( Vv 0 ) and let p, F, &and L be arbitrary
NTx2 NTxl NTxl
(conformable) constant matrices with elements dij R fij , @and Lij .

a 0
Lemma A4: E(V*'Duu'rv¥) -(f :) where
0 0

a=tr CD tr C'F + tr CDCF' + tr GDOF .
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) t
" . V Duu FV 4]
Proof: v* Duu'Fv* = « Then
0 0o

! ' = T v.d f
EV Duu FV Eijiz n ijujuk kgvg

= T E(viui)E(ukvj)dijsz + E(viuk)g(ujvg)dijfkg

ijke ijky
+ ¥ E(v,v )E(u,u )d_ .f (46)
P A Vi T
= v ¢,.d . f + T ¢ .,d, c,  f + v g, d, wm,.f (A?)
13ke Ji11 ke ke 13kg ki 1§ ji ke i §ke ig 1775k ke

using the expectations C = (cij) and G = (gij) which are given by
Lemmas Al and A3 and the assumed covariance matrix Euu' =0 = (mij) .

Then (A7) can be written as

tr ¢D tr C'F + tr CDCF' + tr CDOF .

q.e.d,

The proofs of Lemmas A5-Al4 are similar to the proof of Lemma A4

and are, therefore, presented in less detail. For an arbitrary matrix

T

M, define m and o’ as its first row and first column, respectively.

|} 1
Lemma A5: EV*Duu'Fv* = [¢'d" tr cF' + ¢'FC'd” +GF'ad” O]

Proof: V*Duu'FV* = (vd"uu'FV 0) .

th

The 1 element of the vector vd uu'FV has expectation
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= ¥ E(v,u )E(u v, )df, + T E(v,u )E(u.v )d f
sop RO T BORIBT IR,

+ ¥ E(v,v,)E(u,u )d f
sig L

= voe £ de,, + vdc f e, + ¥dm. f
ke 'k i 4 » w g
e T Y S LT Y S B Ta Y

1 L ]
which gives the vector C'd" tr CF' + c'Fc'd” + gF'nd”

1 1
Lemma A6: EV¥Duu'Fv*' = ¢'fSd%¢c +c'dt £€ ¢ +¢ tr £545q .
Proof: V*Duu'Fv*' = vdTuu'tSy' .
th
The 1ip element has expectation

r c
E;ividjujukfkvg

- PE(V,u,)B(uv,)d S + TE(V,u )E(u.v,)d L + TE(V,v,)E(u,u )d £
PR YKV’ i« 1% Y% A M A e

= vdc, 5  + Td

[
ik 3171 kke 1k

+ 7d

ki ik

T c r c
£ b3 .
TR O3k k81
Combining these expectations for all the elements gives the lemma.
] 1

1
Lemma A7: Fuu'DV*'FV*' = c£%4° ¢ + d° c£%c + d®t° ¢

Proof: uu'DV*'FV*' x uu'd“fSy’

The izth element of uu'd®f°v' has expectation
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c c
E;{(uiujdjkakvt

c_C ¢ _C c_.C

=EY b -

EjicE(uiuj)E(vkvz)djfk + j_l,(E(uivk)E(ujvz)djfk + j?i‘(E(uivz)E(ujvk)djfk
c c.C c.C
f. + Te,,c, d.f" + Ve, ,c,,d £ .
fie TR T SRtk

Combining these expectation proves the lemma,

roerte ! c' TR & ¢' !
Lemma A8: Eu'DV* FV*Lu = d° C(F + F')C's +d° ¢ tr GF

Proof: u'DV*'FV*Lu = u'dSv'Fyg’u which has expectation

c r
E  udvf,,vtu
131 111 ik k" mm

= T E(uivj)E(vkum)difjkz; + T E(uivk)E:(vjum)d‘;fjkg:l

1 km 1 {km

+ T B(u,u )E(v,v, )dSf  g"
1 jkm i'm jJkiTikm

[+] r [« Tr c r
e d;f. ¢ + % c,c df + % omy 8ad 4
w1 gifm F ek 1t jxtm a1 KL sictm

- T
1 jlm
|

| ] 1 | |
wd® o +FNC'Y +d° QL trcF
which proves the lemma,

tr GD tr CF + tr GFCD' + tr GFCD

Lenma A9: EV* DV*V*'Fu =
— 0

[ ] ]
' v'DVV 'Fu
Proof: V*DV*V* Fu =



The expectation of V'DVW'Fu is

E T v,d, vv.f u
1jks 11} ' kke ¢

= % E(v,v)E(v,u )d f + T E(v,v )E(v,u,)d, .f
TP PR I A K P AL Y e S )

+ ¥ E(v,u,)B(v,v )4, f
1jkg : '] JkT1ike

- }'78

"y 159350 T Buctesty T CanfisBdig

1jke ke
which shows the lemma.

]
Lemma A10: EV*V*'DV*Fu = (GD +GD' + I tr GD)C'f"

Proof: V*v*'DV*Fu = vW'DVE u .

The 1" element of the vector vW'd’v'Fu has expectation

d X
E E;ivj jkkal,“f,

i

= T EMW,vO)E(V.u, ), £ + T E(v,v.)E(v.u )d, £
g LTSty TR BTORO  ty

+ % E(viu JE(v

v, )d
k4 |/ Jk

T
jkby

c fr+ T e

£+ vg,.d
wskese t T,

v g, .d,.¢
kg 15 Jk"gk¢ sk

r
3 ety
Assembling these expectations gives the lemma,

Lerma All. EV*V*'DV*'Fu = gd° tr cF + cFcd® + ¢'F'gd®

79
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Proof: V*V*'DV*'Fu = w'av'Fu, the 1th element of which has ex-

pectation

T v,V dcv £ u

ET¥
A A il 5 T

T E(v,v )E(v,u,)dSE , + ¥ E(v,v,)E(V,u, )d°f
sl T ke T BEVORT R

+ wE(v,u )E(v,v )dcf
ke i°g Tk ke

dSc £ ac |
by 511 jcgk ke + v gikfkgcgj j + jizc f

jkt ) #

a .
keB3k%)
Collecting these expectations produces the lemma.

Lemma Al2: Ruu'DV*'FV* = [(Q tr GF' + CFC' + CF'c')d® o]

Proof: uu'DV*'FV* = (uv'Fyu'dS 0) . The i ¢h element of uV'Fvu'd®

has expectation

c

ETu,v.f,.v,u.d
= "1

fhg L3 IEE L

e c c
- T E(uivj)z(vkug)fjkdz + T E(uivk)E(vjug)fjkdg + ¥ E(uiug)E(vjvk)fjkdg

hL9) ikt jke
v °ij°gkf3kd: + 7 cikc“fjkd: + % ‘”ugjkfjkd: .
ks ke Jkt

Collecting these expectations yields the lemma.
Lemma Al3: Fuu'DV*v*' = gd¢ + CcD'C + C tr cD'

Proof: uu'DV*V*' = uu'DVV' . The expectation of the izth element is



ESu,u,d
jkijjkkt

= TE(u uj)E( )djk +

FE(u k)E(u v )d + ?E(u )E(u
ik i

ik jk

Arranging this matrix of expectations gives the result,

1
¢ 1.0 ¢
Lemma Al4: EV*'DV*'¥v*'Lu = [d (c'L'G + GLC + G tr CL)f :[
0

Proof : V""DV*'FV*'Lu

v'd%v' £y L .
- ‘ v'dv't°Y'"Lu has expectation
0

E?‘vdva u
ijkmiijjk‘hnm

= 7 E(v j)(v u )d km 5 E(v vk)E(v ] )d

1 jkm 1 jkm “m

+ ,E(vu)E(vv)d

1 fim K iun
= Z‘dg Sc .t + 'S‘dg £1n%m £ 4+ v a5 g
ijhiijjmkkm 1 fien o1k kg ij‘mini!'kmjkj

[ ] [ ]
« d° ¢£° er oL + d° cLefS + @© c'L'esS
]
Lemma Al5: Euu'DVFFV* = [(ODG + CD'C + € tr ¢D')E° 0]

Proof: uu'DV*FV*
= (eu'DVEY 0)

t
= (wu'DVV'E"  0)

30

81
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!
since f'V is a scalar and, therefore, equals i{ts transpose, Vet
¢ 1
Then Euu'DW'fr = Euu'DV*V*'fr and an application of Lemma Al3 shows

1
that this expectation is (QBG + CD'C + C tr €D')f°  which proves the

lemma,
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